VIRTUALITY EVOLUTION OF JETS IN A QCD MEDIUM

Study of heavy－quark pairs within jets using QCD Factorization in heavy－ion collisions

Authors：Carlos Lamas，Bin Wu，Carlos Salgado

16／02／2024

I．FACTORIZATION OF JET CROSS SECTIONS IN HEAVY－ION COLLISIONS

Our HIC model

$$
A_{1}+A_{2} \rightarrow \gamma+\mathrm{Jet}+X
$$

(1) Nucleons inside nuclei are considered to be uncorrelated.

0 For high momentum scales the hard process is mostly initiated by the collision of one pair of nucleons

Parton－level diagrams

Other nucleons only connect to the jet in the hard process（see Florian＇s talk）

The impact parameter dependent cross section

* Cross section divided into jet and hard vertex sectors

$$
\begin{aligned}
& \frac{d \sigma}{d^{2} \mathbf{b} d O}=\int \prod_{f}\left[d \Gamma_{p_{f}}\right] \delta\left(O-O\left(\left\{p_{f}\right\}\right) \int d^{2} \mathbf{X} T_{A_{1}}(\mathbf{X}) T_{A_{2}}(\mathbf{X}-\mathbf{b}) \int \frac{d^{4} x_{I} d^{4} p_{I}}{(2 \pi)^{4}} e^{i p_{I} x_{I}} J_{\mu \nu}\left(X_{T}+x_{I} / 2, X_{T}-x_{I} / 2\right)\right. \\
& \quad \times \sum_{X_{h}}(2 \pi)^{4} \delta\left(P_{A_{1}}+P_{A_{2}}-p_{\gamma}-p_{I}-p_{X_{h}}\right) \frac{1}{2 s_{N N}} M_{h}^{* \mu}\left(P_{A_{1}}, P_{A_{2}} ; p_{\gamma}, p_{X_{h}}\right) M_{h}^{\nu}\left(P_{A_{1}}, P_{A_{2}} ; p_{\gamma}, p_{X_{h}}\right)
\end{aligned}
$$

where $X=\left(x_{0}^{\prime}+x_{0}\right) / 2$ and $x_{I}=x_{0}^{\prime}-x_{0}$
We defined the jet tensor

$$
\left.\left.\left.\left.J_{\mu \nu}^{a b}\left(x_{0}^{\prime}, x_{0}\right) \equiv\left\langle\left\langle\langle 0| \bar{T} A_{\mu}^{a}\left(x_{0}^{\prime}\right) \mid p_{q} p_{\bar{q}}\right\rangle\left\langle p_{q} p_{\bar{q}}\right| T A_{\nu}^{b}\left(x_{0}\right) \mid 0\right\rangle\right\rangle\right\rangle=\frac{\delta^{a b}}{N_{c}^{2}-1}\left\langle\left\langle\langle 0| \bar{T} A_{\mu}^{c}\left(x_{0}^{\prime}\right) \mid p_{q} p_{\bar{q}}\right\rangle\left\langle p_{q} p_{\bar{q}}\right| T A_{\nu}^{c}\left(x_{0}\right) \mid 0\right\rangle\right\rangle\right\rangle
$$

Range of validity of factorization

D: Cross section still not factorized
θ
Introduce a light-like vector along p_{I} direction and define a new set of LC-coordinates

$$
\begin{aligned}
& J_{\mu \nu}\left(X_{T}+x_{I} / 2, X_{T}-x_{I} / 2\right) \propto g_{\mu \nu}-p_{I}^{+} \frac{p_{I \mu} \bar{n}_{\nu}+p_{I L} \bar{n}_{\mu}}{\left(p_{I}^{+}\right)^{2}-p_{I}^{2} \bar{n}^{2}}+p_{I}^{2} \frac{\bar{n}_{\mu} \bar{n}_{\nu}}{\left(p_{I}^{+}\right)^{2}-p_{I}^{2} \bar{n}^{2}}+\bar{n}^{2} \frac{p_{I \mu} p_{I \nu}}{\left(p_{I}^{+}\right)^{2}-p_{I}^{2} \bar{n}^{2}} \\
& \quad \simeq g_{\perp \mu \nu}+O\left(\frac{m_{I}^{2}}{\left(p_{I}^{+}\right)^{2}}\right)
\end{aligned}
$$

$0-\pi$ We must include a factorization scale.

Factorized cross section

In the phase space region where collinear factorization works

$$
\frac{d \sigma}{d^{2} \mathbf{b} d o d^{2} \mathbf{p}_{\gamma} d \eta_{\gamma}}=\int d^{2} \mathbf{X} T_{A_{1}}(\mathbf{X}) T_{A_{2}}(\mathbf{X}-\mathbf{b}) \int d \Gamma_{p_{I}} \frac{d}{d o} J\left(\bar{n} \cdot p_{I}, \vec{n} ; \mathbf{X}\right) \frac{d \sigma_{h}}{d \Gamma_{p_{I}} d^{2} \mathbf{p}_{\gamma} d \eta_{\gamma}}\left(P_{A_{1}}, P_{A_{2}} ; p_{I}, p_{\gamma}\right)
$$

The hard-cross section can be computed from the PDFs and tree level amplitude
From now on we will focus on the calculation of the jet function

The jet function

$$
\begin{aligned}
& \frac{d}{d o} J\left(\bar{n} \cdot p_{I}, \vec{n} ; \mu^{2}, \mathbf{X}\right) \equiv \int_{0}^{\mu^{2}} \frac{d m_{I}^{2}}{2 \pi} \int d^{4} x_{I} e^{\frac{i}{2} \bar{n} \cdot p_{I} \cdot n \cdot x_{I}+\frac{i}{2} \overline{m_{I}^{2} \cdot p_{I}} \bar{n} \cdot x_{I}}\left(\sum_{m=1}^{\infty} \prod_{j=1}^{m} \int d \Gamma_{p_{j}}\right) \delta\left(o-o\left(\left\{p_{j}\right\}\right)\right) \\
& \left.\left.\quad \times \frac{-g_{\perp}^{\mu \nu}}{2\left(N_{c}^{2}-1\right)}\left\langle\left\langle\langle 0| \bar{T} A_{\mu}^{a}\left(X+x_{I} / 2\right) \mid\left\{p_{j}\right\}\right\rangle\left\langle\left\{p_{j}\right\}\right| T A_{\nu}^{a}\left(X-x_{I} / 2\right) \mid 0\right\rangle\right\rangle\right\rangle
\end{aligned}
$$

Conly valid in LC-gauge
For a general gauge we must construct the S-matrix element as a gauge-invariant object

II. THE JET FUNCTION FOR
 $Q \bar{Q}$ PRODUCTION AT LO

The coordinates for the jet function

The hard collision takes place around $X^{\mu}=(0, \mathbf{X}, 0)$

$$
t_{h} \equiv \bar{n} \cdot X
$$

$x_{I}^{+} \sim 1 / p_{I}^{-}=2 p_{I}^{+} / m_{I}^{2}$ needed to account for the uncertainty of jet production time around t_{h}.

- x_{I} will account for the initial position of the jet

The general formula for $Q \bar{Q}$ spectrum

The main formula on our model
$\frac{d J}{d z d m_{I}^{2}}\left(p_{I}^{+}, \vec{n} ; m_{I}^{2}, X\right)=\frac{1}{2 \pi} \int d^{2} \underline{x}_{I} d x_{I}^{+} e^{\frac{i}{2} m_{\overline{2}}^{2} x_{t}} \iint \frac{d^{2} \underline{p}_{q}}{(2 \pi)^{2}} \frac{d^{2} \underline{p}_{\bar{q}}}{(2 \pi)^{2}} \frac{1}{8 \pi z(1-z) p_{I}^{+}}$
$\left.\left.\quad \times \frac{-1}{2\left(N_{c}^{2}-1\right)}\left\langle\left\langle\langle 0| \bar{T} A_{a \mu}\left(X_{T}+\tilde{x}_{I} / 2\right) \mid p_{q} p_{\bar{q}}\right\rangle\left\langle p_{q} p_{\bar{q}}\right| T A^{a \mu}\left(X_{T}-\tilde{x}_{I} / 2\right) \mid 0\right\rangle\right\rangle\right\rangle$

If we integrate in m_{I}^{2} up to ∞ we go to the usual limit

A．The gluon jet function for $Q \bar{Q}$ in vacuum

III．SOME PRELIMINAR RESULTS

B．$g \rightarrow g$ due to single scattering

C．$g \rightarrow Q \bar{Q}$ due to single scattering

Our model for calculations...

BDMPS-Z formalism4 Model the effect of other nucleons by classical fields
$\left\langle A^{a-}\left(t_{1}, \underline{x}\right) A^{b-}\left(t_{2}, \underline{y}\right)\right\rangle=\delta\left(t_{1}-t_{2}\right) \delta^{a b} 2 n(t) \sigma(\underline{x}-\underline{y})$

X The gluon jet can extract as much virtuality from the medium as desired in a single scattering.

We will still use it as a toy model

A. The gluon jet function for $Q \bar{Q}$ in vacuum

[Ellis, Stirling, Webber (2011)]

$$
\frac{d J}{d z d m_{I}^{2}}\left(p_{I}^{+}, \vec{n} ; m_{I}^{2}, X\right)=\frac{\alpha_{s}}{2 \pi} \frac{1}{m_{I}^{2}} P_{Q \leftarrow g}\left(z, m, m_{I}^{2}\right) \theta\left(z(1-z) m_{I}^{2}-m^{2}\right)
$$

where $P_{Q \leftarrow g}\left(z, m, m_{I}^{2}\right) \equiv T_{F}\left[z^{2}+(1-z)^{2}+\frac{2 m^{2}}{m_{I}^{2}}\right]$. Integrating in z and m_{I}^{2}
$J\left(p_{I}^{+}, \vec{n} ; \mu^{2}, X\right)=\frac{\alpha_{s}}{6 \pi}\left[-\frac{\sqrt{1-\frac{4 m^{2}}{\mu^{2}}}}{3 \mu^{2}}+2 \log \left(\sqrt{1-\frac{4 m^{2}}{\mu^{2}}}+1\right)+\log \left(\frac{\mu^{2}}{4 m^{2}}\right)\right]$
The factorization scale regularizes the UV divergence

B. $g \rightarrow g$ due to single scattering

C.3. $g \rightarrow Q \bar{Q}$ due to single scattering

$\frac{d J}{d x d m_{I}^{2}}\left(p_{I}^{+}, \vec{n} ; m_{I}^{2}, X\right)=\alpha_{s}\left(\alpha_{s} 2 C_{A} n \sigma_{T}\right) \frac{4 p_{I}^{+}}{\left(m_{I}^{2}\right)^{2}}\left[1-\cos \left(\frac{m_{I}^{2}}{p_{I}^{+}} L\right)\right] \int \frac{d^{2} p}{2 \pi} \frac{m^{2}+\left(z^{2}+(1-z)^{2}\right) p^{2}}{\left[p^{2}+m^{2}\right]^{2}}$

Virtuality integration
$\frac{d J}{d z}\left(p_{I}^{+}, \vec{n} ; \mu^{2}, X\right)=\alpha_{s}\left(\alpha_{s} 2 C_{A} n \sigma_{T}\right) 4 p_{I}^{+}\left[\frac{L}{p_{I}^{+}} S i\left(\frac{L}{p_{I}^{+}} \mu^{2}\right)+\frac{\cos \left(\frac{L}{p_{t}^{+}} \mu^{2}\right)-1}{\mu^{2}}\right] \int \frac{d^{2} p}{2 \pi} \frac{m^{2}+\left(z^{2}+(1-z)^{2}\right) p^{2}}{\left[p^{2}+m^{2}\right]^{2}}$

The factorization scale does no longer regularize the UV divergence (limitation of our model)

IV. CONCLUSIONS AND OUTLOOK

7. We must introduce a factorization scale in order to ensure that the jet function can be factorized from the hard process

Our toy model that allows us to understand some basic features of this separation of scales

Future improved model that allows us to keep trace of the virtuality at each step on the process

Future resummation at all orders in opacity

