Flavour correlations dependence on jet substructure

Authors:

Liliana Apolinário
Raghav Kunnawalkam Elayavalli
Nuno Olavo Madureira
(liliana@lip.pt)
(raghav.ke@vanderbilt.edu)
(nuno.olavo@tecnico.ulisboa.pt)

Collision Physics

g - gluon
q - quark
$\begin{array}{ccc}\boldsymbol{\alpha}_{\mathbf{Q C D}} & \text { Running of } \boldsymbol{\alpha}_{\mathbf{Q C D}} \\ \alpha_{Q C D}\left(Q^{2}\right)=\frac{\beta_{0}}{4 \pi} \ln \left(Q^{2} / \Lambda_{Q C D}^{2}\right)\end{array}$

Hadronization

Process by which free partons bind to produce hadrons
$>\alpha_{Q C D}$ is the coupling constant of QCD

Collision Physics

Collision Physics

g - gluon
q - quark
$\overline{\mathrm{q}}$ - antiquark

Hadronization

Process by which free partons bind to produce hadrons

1000000

$>\alpha_{Q C D}$ is the coupling constant of QCD
$>$ Large $\mathrm{Q}^{2} \Rightarrow$ Small $\alpha_{Q C D} \Rightarrow$ pQCD
$>$ Small Q ${ }^{2} \Rightarrow$ Large $\alpha_{Q C D} \Rightarrow$ npQCD

Collision Physics

g - gluon
q - quark
$\overline{\mathrm{q}}$ - antiquark

Process by which free parton bind to produce hadrons

Objective: look for observables sensitive to hadronization effects

Motivation

$>$ Focus on Deep Inelastic ep Scatterings (DIS), with EIC beam energies, selected on high Q^{2} to ensure hard processes;

$>$ DIS provides clean environment (more precise measurements) to study hadronization and confinement such as the hadronization timescales;
$>$ Comparisons between vacum and nuclear DIS help the testing and calibration e.g. of Monte Carlo generators used to study the quark-gluon plasma produced in Heavy-lon Collisions.

Jets

> Jet: highly-collimated group of energetic final-state particles produced in a hard scattering event
> Clustering Sequence: proxy for the particle evolution history of a jet, down to the

$>$ Our work proposes jets as probing tools to investigate the transition from partons to hadrons

Simulation and Jet Analysis

> Monte Carlo event generators: PYTHIA 8.306 and HERWIG 7;

Settings	Values
$\sqrt{s_{e}}$	18 GeV
$\sqrt{s_{p}}$	275 GeV
Q^{2}	$>50 \mathrm{GeV}^{2}$
$p_{T, \text { part }}$	$>0.2 \mathrm{GeV} / \mathrm{c}$

$>$ Jets are found using the anti- k_{T} jet clustering algorithm and reclustered using the C/A algorithm with soft-drop grooming.

Settings	Values
R	1
$p_{T, j e t}$	$>5 \mathrm{GeV} / \mathrm{c}$
$\eta_{\text {jet }}$	$-1.5<\eta_{\text {jet }}<3.5$
$z_{\text {cut }}$	0.1
β	0

[A. J. Larkoski et al., arXiv:1402.2657v2] SD criterion: $\frac{\min \left(p_{T 1}, p_{T 2}\right)}{p_{T 1}+p_{T 2}}>Z_{c u t}\left(\frac{\Delta R_{12}}{R}\right)^{\beta}$

Splittings of Interest

Splittings of Interest

Charge Ratio

$$
r_{c}=\frac{\frac{d \sigma_{h_{1} h_{2}}}{d X}-\frac{d \sigma_{h_{1} \overline{h_{2}}}}{d X}}{\frac{d \sigma_{h_{1} h_{2}}}{d X}+\frac{d \sigma_{h_{1} \overline{h_{2}}}}{d X}}
$$

\boldsymbol{h}_{1} - leading charged hadron
\boldsymbol{h}_{2} - subleading charged hadron
X - jet substructure variable of choice
$\boldsymbol{h}_{1}, \boldsymbol{h}_{2}-$ pion (T), kaon (K), proton (p)

- $r_{c}>0$: higher probability of producing jets with equally-charged LCP;
- $r_{c}=0$: jets produced randomly with equally- or oppositelly-charged LCP.

Results - Formation Time

Formation Time

$$
\tau_{f o r m}=\frac{1}{2 E Z(1-z)\left(1-\cos \theta_{12}\right)}
$$

Estimate of the timescales involved in a particle splitting into 2 other particles that act as independent sources of additional radiation

$$
\begin{array}{ll}
E & \text { source energy } \\
\theta_{12} & \text { angle between the } 2 \text { emitted prongs } \\
z=\frac{\min \left(E_{1}, E_{2}\right)}{E_{1}+E_{2}} & \text { energy fraction }
\end{array}
$$

Charge Ratio $\quad r_{c}=\frac{\frac{d \sigma_{h_{1} h_{2}}}{d X}-\frac{d \sigma_{h_{1} \overline{h_{2}}}}{d X}}{\frac{d \sigma_{h_{1} h_{2}}}{d X}+\frac{d \sigma_{h_{1} \bar{h}_{2}}}{d X}}, \quad x=\tau_{\text {form }}$

Charge Ratio $\quad r_{c}=\frac{\frac{d \sigma_{h_{1} h_{2}}}{d X}-\frac{d \sigma_{h_{1} \overline{h_{2}}}}{d X}}{\frac{d \sigma_{h_{1} h_{2}}}{d X}+\frac{d \sigma_{h_{1} \overline{h_{2}}}}{d X}}, \quad x=\tau_{\text {form }}$

> LCP "produced" at earlier times, typical of the earlier splittings \Rightarrow subsequent splittings randomize the charge correlation $\Rightarrow r_{c}$ closer to 0

Charge Ratio
 $$
r_{c}=\frac{\frac{d \sigma_{h_{1} h_{2}}}{d X}-\frac{d \sigma_{h_{1} \overline{k_{2}}}}{d X}}{\frac{d \sigma_{h_{1} h_{2}}}{d X}+\frac{d \sigma_{h_{1} \overline{h_{2}}}}{d X}}, \quad X=\tau_{\text {form }}
$$

> LCP "produced" at earlier times, typical of the earlier splittings \Rightarrow subsequent splittings randomize the charge correlation $\Rightarrow r_{c}$ closer to 0
> LCP "produced" at later times, typical of later splittings \Rightarrow retain more information of the splitting where the LCP separate, which favours opposite
 charges $\Rightarrow r_{c}$ more negative
$>$ How dependent is the r_{c} on the jet fragmentation pattern?

Splittings of Interest

Splittings of Interest

[A.J. Larkoski et al, arXiv:1502.01719]

Leading Charged
Particles splitting (LCP)

Resolved Soft-Drop splitting (RSD)

Splittings of Interest

Leading Charged Particles splitting (LCP)

Resolved Soft-Drop splitting (RSD)

$$
\text { Results - Formation Time } \quad \tau_{\text {form }}=\frac{1}{2 E z(1-z)\left(1-\cos \theta_{12}\right)}
$$

$>$ 1SD tends to have smaller $\tau_{\text {form }}$
$>$ LCP tends to have larger $\boldsymbol{\tau}_{\text {form }}$
$>$ RSD sits between the 1SD and the LCP

$$
\frac{f m}{c} \sim \frac{10^{-15} m}{10^{8} m / s}=10^{-23} s
$$

$$
\text { Results - Formation Time } \quad \tau_{\text {form }}=\frac{1}{2 E z(1-z)\left(1-\cos \theta_{12}\right)}
$$

$>$ 1SD tends to have smaller $\tau_{\text {form }}$
$>$ LCP tends to have larger $\boldsymbol{\tau}_{\text {form }}$
$>$ RSD sits between the 1SD and the LCP
$>\tau_{\text {form }, 1 S D} \neq \tau_{\text {form }, L C P}$
$>\tau_{\text {form }, R S D} \approx \tau_{\text {form }, L C P}$

Conclusion: RSD splitting, an actual splitting from the clustering tree, is a good proxy for the LCP

Results - Charge Ratio

$$
r_{c}=\frac{\frac{d \sigma_{h_{1} h_{2}}}{d X}-\frac{d \sigma_{h_{1} \overline{h_{2}}}}{d X}}{\frac{d \sigma_{h_{1} h_{2}}}{d X}+\frac{d \sigma_{h_{1} \bar{k}_{2}}}{d X}}, \quad X=\frac{N_{R S D}}{N_{S D}}
$$

$>N_{R S D} / N_{S D}$ measures the depth/relative position of the RSD in the clustering tree

Results - Charge Ratio

$$
r_{c}=\frac{\frac{d \sigma_{h_{1} h_{2}}}{d X}-\frac{d \sigma_{h_{1} \overline{h_{2}}}}{d X}}{\frac{d \sigma_{h_{1} h_{2}}}{d X}+\frac{d \sigma_{h_{1} \overline{h_{2}}}^{d X}}{d X}}, \quad X=\frac{N_{R S D}}{N_{S D}}
$$

$>N_{R S D} / N_{S D}$ measures the depth/relative position of the RSD in the clustering tree
> The charge ratio decreases, in general, with the increase of the RSD relative position

Conclusion: Yes! The r_{c} depends on the jet fragmentation pattern

Results - Charge Ratio
$r_{c}=\frac{\frac{d \sigma_{h_{1} h_{2}}}{d X}-\frac{d \sigma_{h_{1} \overline{h_{2}}}}{d X}}{\frac{d \sigma_{h_{1} h_{2}}}{d X}+\frac{d \sigma_{h_{1} \bar{h}_{2}}}{d X}}$,
$X=\frac{N_{R S D}}{N_{S D}}$

$>N_{R S D} / N_{S D}$ measures the depth/relative position of the RSD in the clustering tree
$>$ The charge ratio decreases, in general, with the increase of the RSD relative position
$>$ For $N_{R S D} / N_{S D}>0.5$, the descrease gives place to a plateau where r_{c} remains constant

Conclusion: Yes! The r_{c} depends on the jet fragmentation pattern

Inclusive plot

Results - Charge Ratio

$r_{c}=\frac{\frac{d \sigma_{h_{1} h_{2}}}{d \tau_{\text {form }}}-\frac{d \sigma_{h_{1} \overline{h_{2}}}}{d \tau_{\text {form }}}}{\frac{d \sigma_{h_{1} h_{2}}}{d \tau_{\text {form }}}+\frac{d \sigma_{h_{1}} \overline{h_{2}}}{d \tau_{\text {form }}}}$

$\Rightarrow N_{R S D} / N_{S D}<0.5$ cut keeps the qualitative behaviour of the generic r_{c};
$\Rightarrow N_{R S D} / N_{S D}>0.5$ cut eliminates the timedependence of the r_{c} for all hadronic species and selects jets with higher chance of having opposite LCP.

Inclusive plot

Results - Charge Ratio

$r_{c}=\frac{\frac{d \sigma_{h_{1} h_{2}}}{d \tau_{\text {form }}}-\frac{d \sigma_{h_{1} \overline{h_{2}}}}{d \tau_{\text {form }}}}{\frac{d \sigma_{h_{1} h_{2}}}{d \tau_{\text {form }}}+\frac{d \sigma_{h_{1} \overline{h_{2}}}}{d \tau_{\text {form }}}}$
$>$ For HERWIG (Cluster Model),

$\Rightarrow N_{R S D} / N_{S D}<0.5$ cut keeps the qualitative behaviour of the generic r_{c};
$\Rightarrow N_{R S D} / N_{S D}>0.5$ cut keeps the r_{c} close to 0 for earlier times, but also selects jets with overall higher chances of having opposite LCP.

Inclusive plot

Results - Charge Ratio

$r_{c}=\frac{\frac{d \sigma_{h_{1} h_{2}}}{d \tau_{\text {form }}}-\frac{d \sigma_{h_{1} \overline{h_{2}}}}{d \tau_{\text {form }}}}{\frac{d \sigma_{h_{1} h_{2}}}{d \tau_{\text {form }}}+\frac{d \sigma_{h_{1} \overline{h_{2}}}}{d \tau_{\text {form }}}}$

> Significant discrepencies between the predictions made by the two Monte Carlos, coming from the hadronization model;

Conclusion: the cluster model randomizes the charges of the LCP for earlier $\boldsymbol{\tau}_{\text {form }}$

Results - Charge Ratio

$r_{c}=\frac{\frac{d \sigma_{h_{1} h_{2}}}{d \tau_{\text {form }}}-\frac{d \sigma_{h_{1} \overline{k_{2}}}}{d \tau_{\text {form }}}}{\frac{d \sigma_{h_{1} h_{2}}}{d \tau_{\text {form }}}+\frac{d \sigma_{h_{h} \overline{h_{2}}}}{d \tau_{\text {form }}}}$

PYTHIA 8.306 offers the following 3 parton shower models:
$>$ Simple
$>$ DIRE
> VINCIA

Herwig 7 offers the following 2 parton shower descriptions:
> Dipole
$>$ Default

Conclusion: the r_{c} is roughly independent of the parton shower description in either Monte Carlo

Conclusions

> The charge ratio is not only dependent on the formation time of the LCP (leading charged particles), but also on the jet fragmentation pattern;
$>$ A selection on $N_{R S D} / N_{S D}>0.5$ reveals a qualitatively different behaviour of the charge ratio between the Monte Carlos - PYTHIA and HERWIG.

Thank you for your attention!

Questions?

Backup Slides

LABORATÓRIO DE INSTRUMENTAÇÃO
E FÍSICA EXPERIMENTAL DE PARTÍCULAS
partículas e tecnologia

Parton Description Matching

> PYTHIA's simple shower and HERWIG's dipole shower are the parton shower descriptions that allow for the best case scenario matching between event-level variables on both Monte Carlos, such as particle rapidity, transverse momentum and azimutal angle.

Results - Groomed Momentum Fraction
 $$
z_{g}=\frac{\min \left(p_{T 1}, p_{T 2}\right)}{p_{T 1}+p_{T 2}}
$$

> 1SD is highly asymmetrical; distributions extremely peaked for small z_{g}
> LCP is highly symmetrical; distributions extremely peaked for large z_{g}
$>$ RSD is more symmetrical than 1SD and more asymmetrical than LCP; more to the likes of the LCP splitting

