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➢ 𝛼𝑄𝐶𝐷 is the coupling constant of QCD
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g – gluon 

q – quark

q – antiquark 

➢ 𝛼𝑄𝐶𝐷 is the coupling constant of QCD

➢ Large Q2  ⇒ Small 𝛼𝑄𝐶𝐷 ⇒ pQCD
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➢ 𝛼𝑄𝐶𝐷 is the coupling constant of QCD

➢ Large Q2  ⇒ Small 𝛼𝑄𝐶𝐷 ⇒ pQCD

➢ Small Q2  ⇒ Large 𝛼𝑄𝐶𝐷 ⇒ npQCD
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q – antiquark 
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Objective: look for observables 

sensitive to hadronization effects

?
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Motivation

➢ Focus on Deep Inelastic ep Scatterings (DIS), with EIC beam energies, selected on high 𝑄2 to ensure 

hard processes;

➢ DIS provides clean environment (more precise measurements) to study hadronization and confinement 

such as the hadronization timescales;

➢ Comparisons between vacum and nuclear DIS help the testing and calibration e.g. of Monte Carlo 

generators used to study the quark-gluon plasma produced in Heavy-Ion Collisions.

𝑒+

𝑒+
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γ
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Jets

➢ Jet: highly-collimated group of energetic final-state particles produced 

in a hard scattering event

Jet

➢ Clustering Sequence: proxy for the particle 

evolution history of a jet, down to the 

original outgoing parton

➢ Clustering Tree: product of the clustering sequence

➢ Our work proposes jets as probing tools to investigate the transition 

from partons to hadrons 
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Simulation and Jet Analysis

➢ Monte Carlo event generators: PYTHIA 8.306 and HERWIG 7;

Settings Values

𝑠𝑒 18 GeV

𝑠𝑝 275 GeV

𝑄2 > 50 GeV2

𝑅 1

➢ Jets are found using the anti-kT jet clustering algorithm and re-

clustered using the C/A algorithm with soft-drop grooming.

Settings Values

𝑝𝑇,𝑗𝑒𝑡 > 5 GeV/c

η𝑗𝑒𝑡 -1.5 < η𝑗𝑒𝑡 < 3.5

SD criterion:   
𝑚𝑖𝑛 𝑝𝑇1

 ,𝑝𝑇2
 

𝑝𝑇1
 + 𝑝𝑇2

 >  𝑧𝑐𝑢𝑡
∆𝑅12

𝑅

𝛽
[A. J. Larkoski et al., arXiv:1402.2657v2]

𝑧𝑐𝑢𝑡 0.1

β 0

𝑝𝑇,𝑝𝑎𝑟𝑡 > 0.2 GeV/c
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Splittings of Interest

Leading Charged 

Particles splitting (LCP)



Charge Ratio

𝒓𝒄 =
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

• 𝒓𝒄 > 0  : higher probability of producing jets with equally-charged LCP;

• 𝒓𝒄 < 0  : higher probability of producing jets with oppositely-charged LCP;

• 𝒓𝒄 = 0  : jets produced randomly with equally- or oppositelly-charged LCP.
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𝒉𝟏 – leading charged hadron 

𝒉𝟐 – subleading charged hadron

𝒉𝟏, 𝒉𝟐  - pion (π), kaon (K), proton (p)

𝑋 – jet substructure variable of choice

[Y.-T. Chien et al, arXiv:2109,15318]



Results – Formation Time

Formation Time

Estimate of the timescales involved in a particle splitting into 2 other 

particles that act as independent sources of additional radiation

              𝐸                   source energy

                     𝜃12                              angle between the 2 emitted prongs

             𝑧 =
𝑚𝑖𝑛 𝐸1

 ,𝐸2
 

𝐸1
 + 𝐸2

  energy fraction

𝝉𝒇𝒐𝒓𝒎 =
𝟏

𝟐 𝑬 𝒛 𝟏 − 𝒛  (𝟏 −  𝐜𝐨𝐬 𝜽𝟏𝟐)
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t

𝝉𝟏 𝝉𝟐

early

emission

late

emission

[Y.L. Dokshitzer et al., Basics of perturbative QCD] 

[L. Apolinário et al, arXiv:2012.021999]

𝝉𝟏 < 𝝉𝟐 



Charge Ratio
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[Y.-T. Chien et al, arXiv:2109,15318]
𝒓𝒄 =

 
𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

, 𝑿 = τ𝒇𝒐𝒓𝒎



Charge Ratio
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Leading charged particle

Sub-leading charged particle

➢ LCP “produced” at earlier times, typical of the earlier 

splittings ⇒ subsequent splittings randomize the 

charge correlation ⇒  𝑟𝑐 closer to 0

[Y.-T. Chien et al, arXiv:2109,15318]
𝒓𝒄 =

 
𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

, 𝑿 = τ𝒇𝒐𝒓𝒎



Charge Ratio 𝒓𝒄 =
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

, 𝑿 = τ𝒇𝒐𝒓𝒎
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➢ LCP “produced” at earlier times, typical of the earlier 

splittings ⇒ subsequent splittings randomize the 

charge correlation ⇒  𝑟𝑐 closer to 0

Leading charged particle

Sub-leading charged particle

➢ LCP “produced” at later times, typical of later 

splittings ⇒ retain more information of the splitting 

where the LCP separate, which favours opposite 

charges ⇒ 𝑟𝑐 more negative

[Y.-T. Chien et al, arXiv:2109,15318]



Charge Ratio
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➢ How dependent is the 𝑟𝑐 on the 

jet fragmentation pattern?

[Y.-T. Chien et al, arXiv:2109,15318]
𝒓𝒄 =

 
𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

, 𝑿 = τ𝒇𝒐𝒓𝒎
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Splittings of Interest

Resolved Soft-Drop 

splitting (RSD)

Leading Charged 

Particles splitting (LCP)
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Splittings of Interest

1st Soft-Drop 

emission (1SD)

Leading Charged 

Particles splitting (LCP)

Resolved Soft-Drop 

splitting (RSD)

[A.J. Larkoski et al, arXiv:1502.01719]
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Splittings of Interest

1st Soft-Drop 

emission (1SD)

Leading Charged 

Particles splitting (LCP)

Resolved Soft-Drop 

splitting (RSD)



Results – Formation Time
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𝝉𝒇𝒐𝒓𝒎 =
𝟏

𝟐 𝑬 𝒛 𝟏 − 𝒛  (𝟏 −  𝐜𝐨𝐬 𝜽𝟏𝟐)

𝒇𝒎

𝒄
 ~

𝟏𝟎−𝟏𝟓 𝒎

𝟏𝟎𝟖 𝒎/𝒔
=  𝟏𝟎−𝟐𝟑 𝒔

➢ 1SD tends to have smaller 𝝉𝒇𝒐𝒓𝒎

➢ LCP tends to have larger 𝝉𝒇𝒐𝒓𝒎

➢ RSD sits between the 1SD and the 

LCP



Results – Formation Time
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𝝉𝒇𝒐𝒓𝒎 =
𝟏

𝟐 𝑬 𝒛 𝟏 − 𝒛  (𝟏 −  𝐜𝐨𝐬 𝜽𝟏𝟐)

Conclusion: RSD splitting, an 

actual splitting from the clustering 

tree, is a good proxy for the LCP

➢ 1SD tends to have smaller 𝝉𝒇𝒐𝒓𝒎

➢ LCP tends to have larger 𝝉𝒇𝒐𝒓𝒎

➢ RSD sits between the 1SD and the 

LCP

➢  𝝉𝒇𝒐𝒓𝒎,𝟏𝑺𝑫  ≠  𝝉𝒇𝒐𝒓𝒎,𝑳𝑪𝑷

➢  𝝉𝒇𝒐𝒓𝒎,𝑹𝑺𝑫  ≈  𝝉𝒇𝒐𝒓𝒎,𝑳𝑪𝑷



Results – Charge Ratio

22

𝒓𝒄 =
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

, 𝑿 =
𝑵𝑹𝑺𝑫

𝑵𝑺𝑫

➢ 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 measures the 

depth/relative position of the 

RSD in the clustering tree

0.5



0.5

Results – Charge Ratio
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➢  The charge ratio decreases, in 

general, with the increase of 

the RSD relative position

𝒓𝒄 =
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

, 𝑿 =
𝑵𝑹𝑺𝑫

𝑵𝑺𝑫

➢ 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 measures the 

depth/relative position of the 

RSD in the clustering tree

Conclusion: Yes! The 𝒓𝒄 

depends on the jet 

fragmentation pattern 



0.5

Results – Charge Ratio

24

➢  For 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 > 0.5, the 

descrease gives place to a 

plateau where 𝒓𝒄 remains 

constant

𝒓𝒄 =
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅𝑿
 

, 𝑿 =
𝑵𝑹𝑺𝑫

𝑵𝑺𝑫

➢ 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 measures the 

depth/relative position of the 

RSD in the clustering tree

➢  The charge ratio decreases, in 

general, with the increase of 

the RSD relative position

Conclusion: Yes! The 𝒓𝒄 

depends on the jet 

fragmentation pattern 



Results – Charge Ratio
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𝒓𝒄 =

 
𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

     ⇒ 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 < 0.5 cut keeps the qualitative 

behaviour of the generic 𝒓𝒄 ;

     ⇒ 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 > 0.5 cut eliminates the time-

dependence of the 𝒓𝒄 for all hadronic species 

and selects jets with higher chance of having 

opposite LCP.

➢ For PYTHIA (Lund 

String Model), 

Inclusive plot



Results – Charge Ratio
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𝒓𝒄 =

 
𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

     ⇒ 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 < 0.5 cut keeps the qualitative 

behaviour of the generic 𝒓𝒄 ;

     ⇒ 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 > 0.5 cut keeps the 𝒓𝒄 close to 0 

for earlier times, but also selects jets with 

overall higher chances of having opposite LCP.

➢ For HERWIG 

(Cluster Model), 

Inclusive plot



Results – Charge Ratio
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𝒓𝒄 =

 
𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

➢ Significant discrepencies between the 

predictions made by the two Monte Carlos, 

coming from the hadronization model;

Conclusion: the cluster model 

randomizes the charges of the 

LCP for earlier 𝝉𝒇𝒐𝒓𝒎 

Inclusive plot



Results – Charge Ratio

28

PYTHIA 8.306 offers the following 3 parton 

shower models:

➢ Simple

➢ DIRE

➢ VINCIA

Herwig 7 offers the following 2 parton shower 

descriptions:

➢ Dipole

➢ Default

Conclusion: the 𝒓𝒄  is roughly 

independent of the parton shower 

description in either Monte Carlo

𝒓𝒄 =

 
𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 



Conclusions
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➢The charge ratio is not only dependent on the formation time of the LCP 

(leading charged particles), but also on the jet fragmentation pattern;

➢A selection on 𝑁𝑅𝑆𝐷/𝑁𝑆𝐷 > 0.5 reveals a qualitatively different behaviour of the 

charge ratio between the Monte Carlos – PYTHIA and HERWIG.



Thank you for your attention!

Questions?
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Parton Description Matching

32

➢ PYTHIA’s simple shower and HERWIG’s dipole shower are the parton shower descriptions 

that allow for the best case scenario matching between event-level variables on both Monte 

Carlos, such as particle rapidity, transverse momentum and azimutal angle.



Results – Charge Ratio

33

𝒓𝒄 =

 
𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
−

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
+

𝒅σ𝒉𝟏𝒉𝟐

𝒅τ𝒇𝒐𝒓𝒎
 



Results – Groomed Momentum Fraction 𝒛𝒈 =
𝒎𝒊𝒏 𝒑𝑻𝟏

 , 𝒑𝑻𝟐
 

𝒑𝑻𝟏
 +  𝒑𝑻𝟐

 

➢ 1SD is highly asymmetrical; 

distributions extremely peaked 

for small 𝑧𝑔

LCP is highly symmetrical; 

distributions extremely peaked 

for large 𝑧𝑔

➢ RSD is more symmetrical than 

1SD and more asymmetrical 

than LCP; more to the likes of 

the LCP splitting

34
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