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  Probing the QGP with jets
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Compare AA jets with the well 
established vacuum baseline of 

pp jets

Infer properties of 
the QGP



  Biased jet comparison

Which AA jets should I compare to a given set of pp jets? 

➔ Common procedure: Choose a window of reconstructed jet  

➔ Common problems:  

◆ AA jets migrate to lower reconstructed  (wide angle out of cone radiation)                           

           We are comparing jets that “started out” differently.
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  Bin migration in RAA
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pT → pT − ϵ



  Bin migration in RAA
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Same energy loss but different  !RAA
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pT → pT − ϵ



  Biased jet comparison

Which AA jets should I compare to a given set of pp jets? 

➔ Common procedure: Choose a window of reconstructed jet  

➔ Common problems:  

◆ AA jets migrate to lower reconstructed  (wide angle out of cone radiation)                           

           We are comparing jets that “started out” differently. 

◆ Selection/survivor bias - in-medium jet samples are biased towards less 

modified jets.
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  Biased jet comparison

Which AA jets should I compare to a given set of pp jets? 

➔ Common procedure: Choose a window of reconstructed jet  

➔ Common problems:  

◆ AA jets migrate to lower reconstructed  (wide angle out of cone radiation)                           

           We are comparing jets that “started out” differently. 

◆ Selection/survivor bias - in-medium jet samples are biased towards less 

modified jets. 

➔ Possible solution: electroweak boson + jet?             Lower statistics

pT
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Brewer et al. Journal of High Energy Physics 2022(2), 1-22 
Apolinário et al. 2401.14229 (Pablo’s talk Thursday 16:00)

https://link.springer.com/article/10.1007/JHEP02(2022)175
https://arxiv.org/pdf/2401.14229.pdf


 Quantiles - a way to estimate  migrationpT

J. Brewer, J. Milhano, 
J. Thaler; Phys. Rev. 
Lett. 122 (2019) 22, 
222301
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 Quantiles - a way to estimate  migrationpT

pT → pT − ϵ(pT),
dϵ
dpT

< 1

⟹ pv
T − pq

T(pv
T) = ϵ(pv

T) It is exact in the case of zero dispersion!

N most energetic pp jets  
= 

N most energetic AA jets 



J. Brewer, J. Milhano, 
J. Thaler; Phys. Rev. 
Lett. 122 (2019) 22, 
222301
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pv
T − pq

T(pv
T) ≈ ⟨ϵ⟩(pv

T) ⟹ QAA(pv
T) ≡

pq
T(pv

T)
pv

T
≈ 1 −

⟨ϵ⟩(pv
T)

pv
T

“  is a proxy for the average fractional jet energy loss”1 − QAA

 Quantiles - a way to estimate  migrationpT

pT → pT − ϵ(pT),
dϵ
dpT

< 1

⟹ pv
T − pq

T(pv
T) = ϵ(pv

T) It is exact in the case of zero dispersion!

N most energetic pp jets  
= 

N most energetic AA jets 

In the case of a non-zero dispersion it should hold for the average:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.222301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.222301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.222301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.222301


  Event generation and analysis details
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➔   medium and vacuum samples generated with JEWEL w/ and w/o recoils 

(  and dijet events at  and  centrality) 

 Constituent event-wise background subtraction (J. Milhano, K. Zapp, Eur.Phys.J.C 82 (2022) 11, 

1010) 

➔ Vacuum samples are generated as nucleon-nucleon collisions including nuclear 

PDFs 

       

106

γ + jet sNN = 5.02 TeV [0 − 10] %

Differences between vacuum and medium samples are 
in principle dominated by quenching effects

In-medium jet spectrum

14

dσmed

dpT
=

1
⟨Ncoll⟩

dσPbPb

dpT

Vacuum jet spectrum

dσvac

dpT
=

dσNN+nPDFs

dpT
NN={pp,pn,np,nn}

https://link.springer.com/article/10.1140/epjc/s10052-022-10954-1
https://link.springer.com/article/10.1140/epjc/s10052-022-10954-1


  Quantile procedure validation
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Average quantile  for a given photon pT pT

Average jet  for a given photon pT pT
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  Energy loss as a function of jet radius (w/ recoils)
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Larger jets lose a smaller fraction of their energy
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  Energy loss as a function of jet radius (w/o recoils)
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Larger jets lose a larger fraction of their energy
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  Energy loss as a function of jet radius (model comp.)
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  Energy loss dependence on color charge
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  Energy loss dependence on color charge
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pγ
T > 50 GeV |yγ | < 2.37 Δϕγ, jet > 7π /8

p jet
T > 30 GeV |y jet | < 2.8

JEWEL 2.3.0 + Pythia (w/ recoils) 
anti-  R=0.4 jetskt



  Energy loss dependence on color charge
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Color charge dependence of jet energy loss is 
not as strong as suggested by the RAA
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  Spectrum  cutoff effectpT
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Not feasible experimentally -  

jets are not measured with arbitrarily large pT



  Spectrum  cutoff effectpT
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Not feasible experimentally -  

jets are not measured with arbitrarily large pT
Underdetermined problem



  Equal  cutoff for both spectrapT
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  Using  to solve the cutoff problemQ̃AA
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  Using  to solve the cutoff problemQ̃AA
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Observables calculated from code in Romão et al. 2304.07196

 

 of first C/A reclustering 

sequence branch passing the 
Soft Drop condition: 
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https://arxiv.org/pdf/2304.07196.pdf
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 of C/A reclustering 

sequence branch passing the 
Dynamical Grooming 

 ( ,  Drop) condition: 
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Y. Mehtar-Tani, A. Soto-Ontoso and K. Tywoniuk, Phys. Rev. D 101(3), 034004 (2020)

https://arxiv.org/pdf/2304.07196.pdf
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.034004
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Momentum dispersion: 

DpT =
∑i∈jet p2

T,i

pT, jet
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Energy loss 
dependence on 

substructure
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Energy loss 
dependence on 

substructure

 at fixed bins 

of some 
substructure 

observable X?

QAA
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Energy loss 
dependence on 

substructure

Bin migration in X, 
not comparing 

same jets

 at fixed bins 

of some 
substructure 

observable X?

QAA

Assume bin migration in X is 
monotonic and calculate 
quantile matching in X?
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Energy loss 
dependence on 

substructure

Bin migration in X, 
not comparing 

same jets

 at fixed bins 

of some 
substructure 

observable X?

QAA

Bin migration in X 
is correlated with 

bin migration in pT

Assume bin migration in X is 
monotonic and calculate 
quantile matching in X?

Calculate bin migration 

in both X and  

simultaneously?

pT
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Energy loss 
dependence on 

substructure

Bin migration in X, 
not comparing 

same jets

 at fixed bins 

of some 
substructure 

observable X?

QAA

Bin migration in X 
is correlated with 

bin migration in pT

Assume bin migration in X is 
monotonic and calculate 
quantile matching in X?

Calculate bin migration 

in both X and  

simultaneously?

pT
That is an undetermined 

problem (1 equation,  
2 unknowns).
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Energy loss 
dependence on 

substructure

Bin migration in X, 
not comparing 

same jets

 at fixed bins 

of some 
substructure 

observable X?

QAA

Bin migration in X 
is correlated with 

bin migration in pT

Assume bin migration in X is 
monotonic and calculate 
quantile matching in X?

Calculate bin migration 

in both X and  

simultaneously?

pT
That is an undetermined 

problem (1 equation,  
2 unknowns).

Help?
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   Summary

➔ The  provides a proxy for jets that started out similarly that can be used in 

inclusive jet events and possibly a model-independent way of quantifying jet 

energy loss; 

  

➔ The color charge of the initiating parton does not play as important a role in jet 

energy loss as one would have thought by looking into  - the difference in 

spectrum steepness is quite impactful; 

➔ Experimental challenge to the measurement of the  presented by a 

momentum cutoff on the spectrum is easily circumvented using . 

➔ Energy loss dependence on substructure is an ongoing work.

QAA

RAA

QAA

Q̃AA

Unbiased quantification of jet energy loss João M. Silva 42



Back-up

43



44

50 100 150 200 250 300
 (GeV)

T
p

6−10

5−10

4−10

3−10

2−10

 ]
G

eVnb
 [ ηd T

dp
pp

σ2 d

q

Entries  32890

Mean    66.85

Std Dev     18.92

+jetsγR=0.4 pp 

this work

ATLAS

50 100 150 200 250 300
 (GeV)

T
p

3−10

2−10

1−10

1

10

210

 ]
G

eVnb
 [ ηd T

dp
pp

σ2 d

q

Entries  28637

Mean    63.59

Std Dev     14.06

R=0.4 pp inclusive jets

ATLAS

this work



45

100 200 300 400 500 600 700
 (GeV)

T
p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AAR

R = 0.4 inclusive jets

vac = pp

vac = NN + nPDFs

100 200 300 400 500 600 700
 (GeV)vac

T
p

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

AA
Q

R = 0.4 inclusive jets

vac = pp

vac = NN + nPDFs

Isospin and nuclear PDF effects in inclusive jets
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Isospin and nuclear PDF effects in jetsγ+
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  Energy loss dependence on color charge
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Equivalence between integral ( ) and differential ( ) quantile calculationQAA Sloss
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