Parton cascades at DLA: the role of the evolution variable

André Cordeiro

In collaboration with: Carlota Andrés, Liliana Apolinário, Nestor Armesto, Fabio Dominguez, Guilherme Milhano

New jet quenching tools to explore equilibrium and non-equilibrium dynamics in heavy-ion collisions 12–16 February 2024

Parton Showers in a Coloured Medium

 Hard partons radiate until the hadronisation scale → <u>Multi-scale object</u>

Parton Showers in a Coloured Medium

 Hard partons radiate until the hadronisation scale → <u>Multi-scale object</u>

• Time-ordered picture needed for medium interface with the cascade

Parton Showers in a Coloured Medium

 Hard partons radiate until the hadronisation scale → <u>Multi-scale object</u>

• Time-ordered picture needed for medium interface with the cascade

Is jet quenching sensitive to the ordering of vacuum-like splittings?

First, a look at vacuum (proton-proton) showers

Building blocks: QCD splittings

Building blocks: QCD splittings

Splitting probability given by pQCD: $\alpha C_F \frac{d\mu}{\mu} \frac{dz}{z}$ $\mu + d\mu$

Probability of not emitting until some scale S:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Yields the next emission scale s, given the previous scale s_{prev}

No-emission probability:

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{Z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Splitting variables:

-

No-emission probability:
$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi}\int_s^{s_{\text{prev}}} \frac{d\mu}{\mu}\int_{z_{\text{cut}}(\mu)}^1 \frac{dz}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow p^2 = rac{|m{p}_{
m rel}|^2}{z(1-z)}$$

$$s \to t_{\text{form}}^{-1} = \frac{p^2}{E} = \frac{|\mathbf{p}_{\text{rel}}|^2}{Ez(1-z)}$$

(Formation time)

$$s \rightarrow \zeta = \frac{p^2}{E^2 z (1-z)} = \left(\frac{|\boldsymbol{p}_{\text{rel}}|}{E z (1-z)}\right)^2$$
(Angle)

Splitting variables:

No-emission probability:
$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi}\int_s^{s_{\text{prev}}} \frac{d\mu}{\mu}\int_{z_{\text{cut}}(\mu)}^1 \frac{dz}{z}\right\}$$

Interpretations for the scale:

$$s \rightarrow p^2 = rac{|m{p}_{
m rel}|^2}{z(1-z)}$$
 (Virtuality)

$$s \to t_{\rm form}^{-1} = \frac{p^2}{E} = \frac{|{\bf p}_{\rm rel}|^2}{Ez(1-z)}$$

(Formation time)

$$s \rightarrow \zeta = \frac{p^2}{E^2 z(1-z)} = \left(\frac{|\boldsymbol{p}_{\text{rel}}|}{E z(1-z)}\right)^2$$

To generate a splitting:

1. Sample a scale from $\Delta(s_{\text{prev}}, s)$ 2. Sample a fraction from $\hat{P}(z) \propto 1/z$ **Ensure that** $|\boldsymbol{p}_{\text{rel}}|^2 > \Lambda^2$

No-emission probability:
$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{d\mu}{\mu} \int_{Z_{\text{cut}}(\mu)}^1 \frac{dz}{z}\right\}$$

Interpretations for the scale:

To generate a splitting:

Parton Shower Details

<u>No-emission probability:</u>

$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi} \int_s^{s_{\text{prev}}} \frac{\mathrm{d}\mu}{\mu} \int_{Z_{\text{cut}}(\mu)}^1 \frac{\mathrm{d}z}{z}\right\}$$

Parton Shower Details

t_{form 1}

 $T_{\rm s} \sim 1/E_{\rm iet}$

No-emission probability:
$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi}\int_s^{s_{\text{prev}}} \frac{d\mu}{\mu}\int_{z_{\text{cut}}(\mu)}^1 \frac{dz}{z}\right\}$$

- Splittings must happen above an hadronisation scale: $|\boldsymbol{p}_{
 m rel}|^2 > \Lambda^2$
 - This provides a **soft cutoff:** $z > z_{cut}(s)$

e.g.: Formation time ordering $|\mathbf{p}_{rel}|^2 > \Lambda^2 \iff z(1-z) > \frac{\Lambda^2}{t_{form}^{-1}E}$

• Initialisation condition for the shower: $t_{form}^{-1} < E$

Parton Shower Details

No-emission probability:
$$\Delta(s_{\text{prev}}, s) = \exp\left\{-\frac{\alpha C_R}{\pi}\int_s^{s_{\text{prev}}} \frac{d\mu}{\mu}\int_{z_{\text{cut}}(\mu)}^1 \frac{dz}{z}\right\}$$

- Splittings must happen above an hadronisation scale: $|\boldsymbol{p}_{
 m rel}|^2 > \Lambda^2$
 - This provides a **soft cutoff**: $z > z_{cut}(s)$

e.g.: Formation time ordering $|\boldsymbol{p}_{rel}|^2 > \Lambda^2 \iff z(1-z) > \frac{\Lambda^2}{t_{form}^{-1}E}$

• Initialisation condition for the shower: $t_{form}^{-1} < E$

- For consistency between orderings: $\zeta < 4 \Longrightarrow |\mathbf{p}_{rel}| < \frac{E}{2}$ (Enforced via retrials)

Massless Limit :

A

 $\zeta \simeq 2(1 - \cos \theta)$

Results (Work in Progress)

Differences in Ordering Choices

Splittings along the quark branch

Different orderings → Different phase-space for allowed splittings

Differences in Ordering Choices

Different orderings → Different phase-space for allowed splittings

Transverse momentum distributions follow $\frac{dp_{rel}^2}{2}$

Splitting 1 $E_{jet} = 1000 \text{ GeV}$

 $1 \text{ GeV/c} < |\boldsymbol{p}_{\mathrm{rel}}|$

 $t_{\rm form}^{-1}$ ordering

3

4

2

 $\log_{10} \frac{1}{\sqrt{2}}$

Lund Plane Boundaries:

- Angular cutoff: $2 > \sqrt{\zeta}$

 $|\zeta < 4|$ - Hadronisation:

4

()

 $\left(\right)$

 $\circ 3$

rel

 \log_{10} -

Splitting 1 $E_{jet} = 1000 \text{ GeV}$

2

 $\log_{10} -$

 \log_{10}

 $1 \text{ GeV/c} < |\boldsymbol{p}_{\mathrm{rel}}|$

 $t_{\rm form}^{-1}$ ordering

3

Shower evolution: Both transverse momentum and angle decrease.

Shower evolution: Both transverse momentum and angle decrease.

Differences between phase-space trajectories → Uncertainty at DLA Accuracy t_{form}^{-1} p²

Inversions in Kinematic Variables

Formation Time Inversions:

Splittings with a formation time shorter that their <u>immediate</u> predecessor.

Inversions in Kinematic Variables

Formation Time Inversions:

Splittings with a formation time shorter that their <u>immediate</u> predecessor.

Angular inversions

Inversions in Kinematic Variables

Formation Time Inversions:

Splittings with a formation time shorter that their <u>immediate</u> predecessor.

Angular inversions

<u>Can this discrepancy translate into</u> <u>differences in quenching magnitude?</u>

Now, a simple jet quenching model!

Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011) Casalderrey-Solana, Iancu :: JHEP 08 (2011) 015

(Tywoniuk, Wed 14:00)

<u>Medium parameters (for a simple model):</u>

- Medium length: L
- Transport coefficient:

$${\hat q} \sim rac{\langle k_{\perp}^2
angle}{\lambda}$$

Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011) Casalderrey-Solana, Iancu :: JHEP 08 (2011) 015

(Tywoniuk, Wed 14:00)

Medium parameters (for a simple model):

- Medium length: L
- Transport coefficient:

$$\hat{q}\sim rac{\langle k_{\perp}^2
angle}{\lambda}$$

Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011) Casalderrey-Solana, Iancu :: JHEP 08 (2011) 015

(Tywoniuk, Wed 14:00)

<u>Medium parameters (for a simple model):</u>

- Medium length: L
- Transport coefficient:

$$\hat{q} \sim rac{\langle k_{\perp}^2 \rangle}{\lambda}$$

<u>Eliminate event if</u>

– Splitting is inside the medium: $t_{
m form} < L$

Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011) Casalderrey-Solana, Iancu :: JHEP 08 (2011) 015

(Tywoniuk, Wed 14:00)

<u>Medium parameters (for a simple model):</u>

- Medium length:
- Transport coefficient:

<u>Eliminate event if</u>

- Splitting is inside the medium: $t_{
 m form} < L$
- Splitting transverse momentum is below medium scale:

$$|\boldsymbol{p}_{\rm rel}|^2 < \hat{q} \ t_{\rm form} \iff (\hat{q}\zeta)^{-1/3} < t_{\rm form}$$
Medium resolves splittings on
the (de)coherence time scale
 \rightarrow Daughters lose energy (Not resolved) (Resolved)
individually $t_{\rm form} < t_{\rm dec}$

Mehtar-Tani, Salgado, Tywoniuk :: Phys.Rev.Lett. 106 (2011) Casalderrey-Solana, Iancu :: JHEP 08 (2011) 015

(Tywoniuk, Wed 14:00)

<u>Medium parameters (for a simple model):</u>

- Medium length: L
- Transport coefficient:

$$\hat{q}\sim rac{\langle k_{\perp}^2
angle}{\lambda}$$

<u>Eliminate event if</u>

individually

- Splitting is inside the medium: $t_{
 m form} < L$
- Splitting transverse momentum is below medium scale:

$$|\boldsymbol{p}_{\rm rel}|^2 < \hat{q} \ t_{\rm form} \iff \underbrace{(\hat{q}\zeta)^{-1/3}}_{t_{\rm dec}} < t_{\rm form}$$

Medium resolves splittings on
the (de)coherence time scale
 \rightarrow Daughters lose energy (Not resolved) (Resolved)

 $t_{\rm form} < t_{\rm dec}$

16

 $t_{\rm dec} < t_{\rm form}$

Eliminate events within this area: $\mathcal{P}_{quench} = \Theta(L > t_{form} > t_{dec})$

Choosing a quenching condition

Eliminate events within this area:

$$\mathcal{P}_{ ext{quench}} = \Theta(L > t_{ ext{form}} > t_{ ext{dec}}) \qquad t_{ ext{dec}} = (\hat{q}\zeta)^{-1/3}$$

1 -

Choosing a quenching condition

Eliminate events within this area:

$$\mathcal{P}_{ ext{quench}} = \Theta(L > t_{ ext{form}} > t_{ ext{dec}}) \qquad t_{ ext{dec}} = (\hat{q}\zeta)^{-1/3}$$

Two implementations:

• Option 1: Apply only to first splitting

Choosing a quenching condition

Eliminate events within this area:

$$\mathcal{P}_{ ext{quench}} = \Theta(L > t_{ ext{form}} > t_{ ext{dec}}) \qquad t_{ ext{dec}} = (\hat{q}\zeta)^{-1/3}$$

Two implementations:

- Option 1: Apply only to first splitting
- Option 2: Apply to whole quark branch

Choosing a quenching condition

Eliminate events within this area:

$$\mathcal{P}_{ ext{quench}} = \Theta(L > t_{ ext{form}} > t_{ ext{dec}}) \qquad t_{ ext{dec}} = (\hat{q}\zeta)^{-1/3}$$

Two implementations:

- Option 1: Apply only to first splitting
- Option 2: Apply to whole quark branch

Percentage of events eliminated by the quenching condition

Applying conditon to the first splitting → Significant differences in quenching between algorithms

Differences are **seem to remain** (for larger L) when applying the condition to the full quark branch.

Percentage of events eliminated by the quenching condition

Applying conditon to the first splitting → Significant differences in quenching between algorithms

Differences are **seem to remain** (for larger L) when applying the condition to the full quark branch.

<u>What role do time-inversions play</u> <u>in these quenching differences?</u>

Discarding time-inverted events from the samples:

*** All events with at least one time-inverted splitting are removed before applying the quenching model

Discarding time-inverted events from the samples:

*** All events with at least one time-inverted splitting are removed before applying the quenching model

For angular ordered showers:

- $\Rightarrow \zeta$ strictly decreasing
- $\Rightarrow t_{dec}$ strictly increasing
- \Rightarrow No time inversions \rightarrow less quenched

phase-space

Discarding time-inverted events from the samples:

(Ad-hoc 'cut') $E_{jet} = 1000 \text{ GeV}$ $1 \text{ GeV/c} < |\mathbf{p}_{rel}|$ $\zeta < 4$ $L > t_{form} > t_{dec}$)remined before applying the quenching model t_{form}^{-1} For angular ordered showers: χ christly de grade and remined to the structure of the structure o

For angular ordered showers: $\Rightarrow \zeta$ strictly decreasing $\Rightarrow t_{dec}$ strictly increasing \Rightarrow No time inversions \Rightarrow less query

 \Rightarrow No time inversions \rightarrow less quenched phase-space

(Not resolved)

 $t_{\rm form} < t_{\rm dec}$

(Resolved)

 $t_{\rm dec} < t_{\rm form}$

 $\mathcal{P}_{\text{quench}} = \Theta(L > t_{\text{form}} > t_{\text{dec}})$

Vetoing the time-inversions by retrial:

quenching effects

(Phase-space is adjusted splitting by splitting)

*** Time-inverted splittings are re-tried while generating the shower

Vetoing the time-inversions by retrial:

(Phase-space is adjusted splitting by splitting)

*** Time-inverted splittings are re-tried while generating the shower

Fraction of quenched events remains levelled across algorithms for the 'Full Branch' condition

<u>**Warning:</u>** Phase-space altered splitting-by-splitting</u>

21

Fraction of Quenched Events

(Phase-space is adjusted splitting by splitting)

Vetoing the time-inversions by retrial:

*** Time-inverted splittings are re-tried while generating the shower

Fraction of quenched events remains levelled across algorithms for the 'Full Branch' condition

Warning: Phase-space altered splitting-by-splitting

quenching effects

The implementation details of the jet interface with a time-evolving medium are crucial!

Summary

- A toy Monte Carlo parton shower was developed:
 - To explore differences between ordering algorithms.
 - Aiming at a framework for time-ordered in-medium emissions.

Summary

- A toy Monte Carlo parton shower was developed:
 - To explore differences between ordering algorithms.
 - Aiming at a framework for time-ordered in-medium emissions.
- The details of how jets interface with a time-evolving medium impact quenching magnitude.
 - These models do not incorporate medium dilution, differential energy loss. Only vacuum-like emissions are incorporated.
 - Quenching differences are large for the 1^{st} splitting \rightarrow **Important for initial stages**

Summary

- A toy Monte Carlo parton shower was developed:
 - To explore differences between ordering algorithms.
 - Aiming at a framework for time-ordered in-medium emissions.
- The details of how jets interface with a time-evolving medium impact quenching magnitude.
 - These models do not incorporate medium dilution, differential energy loss. Only vacuum-like emissions are incorporated.
 - Quenching differences are large for the 1^{st} splitting \rightarrow **Important for initial stages**

Thanks!

Acknowledgements

European Research Council Established by the European Commission

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

Fundação para a Ciência e a Tecnologia

Backup Slides

Without the consistency condition

If the condition $\zeta < 4$ is used simply to initialise the angular shower, the time and angle distributions do not behave consistently across algorithms

With the consistency condition

When the condition $\zeta < 4$ is used as a veto for all emissions, the distributions become consistent.

Excluding time inversions – 1D Distributions

Inclusive Sample – 1D Distributions

Vetoing time inversions – 1D Distributions

Inclusive Sample – Lund Planes

***Ordered in angle**

Excluding time inversions – Lund Planes <u>*Ordered in angle</u>

Vetoing time inversions – Lund Planes <u>*Ordered in angle</u>

Very Preliminary!

Quenching Weights

 $E_{jet} = 1000 \text{ GeV}, \Lambda = 1 \text{ GeV}$ $E_{jet} = 500 \text{ GeV}$ $\Lambda = 0.1 \text{ GeV}$

An apparent dependence on the hadronisation cutoff and initial jet energy

Quenching Weights – Radius Cut

Cut all events whose quark branch has a splitting wider than $R_{max} = 0.2$ - This defines the new vacuum sample, and the quenching model is applied on top of this cut

An aggressive cut, but it returns independence of E_{jet} and Λ .

Very Preliminary!