EFT approach to light and heavy quenching in thin media

New jet quenching tools to explore equilibrium and non-equilibrium dynamics in heavy-ion collisions, ECT*, Trento, Italy, Feb 15, 2024

Weiyao Ke, Central China Normal University
Based on WK, I Vitev 2301.11940, works in preparation with I Vitev, and with WB Zhao and XN Wang

Different methodologies for multi-scale problems

Some scales in a brick

- Q
- $E R$
$(E / L)^{1 / 2},(\hat{q} L)^{1 / 2}$
- $T, m_{D}, \Lambda_{\mathrm{QCD}}$

Screening scales " ξ "

Note that

$\min \{E / L, \hat{q} L\}=\sqrt{E \hat{q}}$
\triangleleft Parton propagation in a finite-size medium is characterized by many scales (not necessarily in this exact order).

- From dimensional analysis, any properly normalized observable will be a function of dimensionless control parameters

$$
\mathrm{Obs}=f \underbrace{\left(g_{s}, \frac{Q}{\xi}, \frac{\hat{q} L^{2}}{E} \sim \frac{\xi^{2}}{E / L} \times \frac{L}{\lambda_{g}}, R, \cdots\right)}_{\text {Phase space of dimensionless parameters }}
$$

- One strategy is to understand this multi-dimensional function via comprehensive modeling, e.g., general-purpose Monte Carlo.

The effective theories approach

Rather than describing everything, focus on simplified problem in regions with scale separation.

- This talk: define scale separation for calculations in a thin medium in the context of $e A \rightarrow h$. But most discussions are similar to hardon production in small systems.
- Medium in $e A$ is confined. Medium in small system can be strongly-coupled with strong off-eqilibirum effect.
- What is the minimal medium inputs to study high- E hadrons in such systems?

Scale separation in a thin medium (for collinear observable)

Semi-inclusive DIS in $e A$

$$
\left.\begin{array}{rl}
\frac{d \sigma_{e p \rightarrow h}}{d x_{B} d Q^{2} d z_{h}} & =\frac{2 \pi \alpha_{e}^{2}}{Q^{4}} \sum_{i, j} \underbrace{e_{q}^{2} f_{i / A}\left(x_{B}\right)}_{d N_{i j} / d z} \otimes C_{j i}^{h}(x, z)
\end{array} d_{h / j}\left(z_{h}\right)\right] \text { z } \begin{aligned}
& d N_{j i} \\
& d z \equiv F_{i j}(z, \underbrace{\frac{Q^{2}}{\Lambda^{2}}, \frac{E / L}{\xi^{2}}, \lambda_{g} \xi}_{\text {Large }}, \underbrace{\frac{L}{\lambda_{g}}, \frac{\xi}{\Lambda}}_{\text {Moderate }})
\end{aligned}
$$

Scale separation for the EFT, E / L is the semi-hard scale of the problem.

Soft-Collinear Effective Theory for Jet Physics

The d.o.f of Soft Collinear Effective Theory (SCET) in the vacuum Bauer, Fleming, Luke, PRD63(2001)014006, Bauer, Fleming, Pirjol and Stewart, PRD63(2001)114020, ...

- Collinear mode $p_{c} \sim\left(1, \lambda^{2}, \lambda\right) E$.
- Soft mode $p_{s} \sim\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right) E \quad$ (For $\operatorname{SCET}_{\text {II }}$ this is $\left.p_{s} \sim(\lambda, \lambda, \lambda) E\right)$.
- Multi-scale observables are factorized into single-scale sectors. RG/RRG equations seam different sectors to improve predictive power.

SCET with Glauber gluon from a background medium $\left(\mathrm{SCET}_{\mathrm{G}}\right)$

A. Idilbi, A. Majumder PRD80(2009)054022, G. Ovanesyan, I. Vitev, JHEP06(2011)080.

- Interaction between collinear parton and medium is mediated by Glauber gluon $q \sim\left(\lambda^{2}, \lambda^{2}, \lambda\right) E$ generated by medium sources

$$
A_{G}^{a-}\left(q^{-}, \mathbf{q}\right)=i g_{s} \int d x^{+} d^{2} \mathbf{x} \frac{i e^{i q-x^{+}} e^{-i \mathbf{q} \cdot \mathbf{x}}}{\mathbf{q}^{2}+\xi^{2}} J^{a-}\left(x^{-}=0, x^{+}, \mathbf{x}\right)
$$

- At observable level, take ensemble average of a color-neutral medium

$$
\left\langle\left\langle g_{s} A_{G}^{a}(q) e^{i q \cdot y} g_{s} A_{G}^{b}(k) e^{i k \cdot y}\right\rangle\right\rangle \propto \delta^{a b} \delta^{(2)}(\mathbf{k}+\mathbf{q}) \frac{\rho_{G}\left(x^{+}\right)}{\left(\mathbf{q}^{2}+\xi^{2}\right)^{2}} e^{i q^{-} x^{+}} e^{i k^{-} x^{+}}
$$

- In a weakly-coupled medium, $\rho_{G}=\sum_{T} g_{S}^{2} \frac{C_{T}}{d_{A}} \rho_{T} . \rho_{T}$ is parton density in representation T.

Relevant regions at opacity one in $\mathrm{SCET}_{\mathrm{G}}$

- $e^{i q^{-} x^{+}}$sets the power counting for collinear modes

$$
\begin{aligned}
& q^{-} x^{+} \sim 1 \Rightarrow \lambda \sim \frac{1}{\sqrt{E L}} \\
& p_{c}=\left(1, \lambda^{2}, \lambda\right) E, \text { with } p_{c}^{2} \sim q^{2} \sim \frac{E}{L}
\end{aligned}
$$

- Part of the problem is perturbative $E / L \gg \Lambda^{2}$. For $E=60 \mathrm{GeV}$ and $L=3 \mathrm{fm}, E / L=4 \mathrm{GeV}^{2}$.
- The colliner-soft mode can be strongly coupled

$$
p_{c s}=\left(\eta, \lambda^{2}, \lambda \eta^{1 / 2}\right) E, \quad p_{c s}^{2} \sim \xi^{2} \ldots \xi^{2} \frac{L}{\lambda_{g}}
$$

NLO correction at opacity one

- Correction to jet parton: $\Delta F_{i j}^{\text {med }}=F_{i k}^{(0)} \otimes P_{k j}^{\operatorname{med}(1)}$

- What about NLO corrections to medium parton (anti-collinear mode)? \Rightarrow For collinear observables these diagrams are scaleless, ρ_{G} remains as a single medium input. These diagrams become important for TMD observable.

Simplify the calculation

$$
\boldsymbol{A}_{\perp}=\boldsymbol{k}_{\perp}, \boldsymbol{B}_{\perp}=\boldsymbol{k}_{\perp}+x \boldsymbol{q}_{\perp}, \boldsymbol{C}_{\perp}=\boldsymbol{k}_{\perp}-(\mathbf{1}-x) \boldsymbol{q}_{\perp}, \boldsymbol{D}_{\perp}=\boldsymbol{k}_{\perp}-\boldsymbol{q}_{\perp}
$$

where again x and \boldsymbol{k}_{\perp} are the longitudinal momentum fraction and the transverse momentum of the emitted parton relative to the parent parton respectively. Furthermore, \boldsymbol{q}_{\perp} is the transverse momentum introduced by the Glauber gluon exchange. In addition, we have the following phases

$$
\begin{align*}
& \Omega_{1}-\Omega_{2}=\frac{\boldsymbol{B}_{\perp}^{2}}{p_{0}^{+} x(1-x)}, \Omega_{1}-\Omega_{3}=\frac{\boldsymbol{C}_{\perp}^{2}}{p_{0}^{+} x(1-x)}, \Omega_{2}-\Omega_{3}=\frac{\boldsymbol{C}_{\perp}^{2}-\boldsymbol{B}_{\perp}^{2}}{p_{0}^{+} x(1-x)} \\
& \Omega_{4}=\frac{\boldsymbol{A}_{\perp}^{2}}{p_{0}^{+} x(1-x)}, \Omega_{5}=\frac{\boldsymbol{A}_{\perp}^{2}-\boldsymbol{D}_{\perp}^{2}}{p_{0}^{+} x(1-x)} . \tag{2.45}
\end{align*}
$$

We reproduce the light parton in-medium splitting functions for reference and subsequent comparison. The result for $q \rightarrow q g$ is given by

$$
\begin{aligned}
& \left(\frac{d N^{\mathrm{med}}}{d x d^{2} \boldsymbol{k}_{\perp}}\right)_{q \rightarrow q g}=\frac{\alpha_{s}}{2 \pi^{2}} C_{F} \frac{1+(1-x)^{2}}{x} \int \frac{d \Delta z}{\lambda_{g}(z)} \int d^{2} \boldsymbol{q}_{\perp} \frac{1}{\sigma_{e l}} \frac{d \sigma_{e l}^{\mathrm{med}}}{d^{2} \boldsymbol{q}_{\perp}}\left[\frac{\boldsymbol{B}_{\perp}}{\boldsymbol{B}_{\perp}^{2}} \cdot\left(\frac{\boldsymbol{B}_{\perp}}{\boldsymbol{B}_{\perp}^{2}}-\frac{\boldsymbol{C}_{\perp}}{\boldsymbol{C}_{\perp}^{2}}\right)\right. \\
& \quad \times\left(1-\cos \left[\left(\Omega_{1}-\Omega_{2}\right) \Delta z\right]\right)+\frac{\boldsymbol{C}_{\perp}}{\boldsymbol{C}_{\perp}^{2}} \cdot\left(2 \frac{\boldsymbol{C}_{\perp}}{\boldsymbol{C}_{\perp}^{2}}-\frac{\boldsymbol{A}_{\perp}}{\boldsymbol{A}_{\perp}^{2}}-\frac{\boldsymbol{B}_{\perp}}{\boldsymbol{B}_{\perp}^{2}}\right)\left(1-\cos \left[\left(\Omega_{1}-\Omega_{3}\right) \Delta z\right]\right) \\
& \quad+\frac{\boldsymbol{B}_{\perp}}{\boldsymbol{B}_{\perp}^{2}} \cdot \frac{\boldsymbol{C}_{\perp}}{\boldsymbol{C}_{\perp}^{2}}\left(1-\cos \left[\left(\Omega_{2}-\Omega_{3}\right) \Delta z\right]\right)+\frac{\boldsymbol{A}_{\perp}}{\boldsymbol{A}_{\perp}^{2}} \cdot\left(\frac{\boldsymbol{D}_{\perp}}{\boldsymbol{D}_{\perp}^{2}}-\frac{\boldsymbol{A}_{\perp}}{\boldsymbol{A}_{\perp}^{2}}\right)\left(1-\cos \left[\Omega_{4} \Delta z\right]\right) \\
& \left.\quad-\frac{\boldsymbol{A}_{\perp}}{\boldsymbol{A}_{\perp}^{2}} \cdot \frac{\boldsymbol{D}_{\perp}}{\boldsymbol{D}_{\perp}^{2}}\left(1-\cos \left[\Omega_{5} \Delta z\right]\right)+\frac{1}{N_{c}^{2}} \frac{\boldsymbol{B}_{\perp}}{\boldsymbol{B}_{\perp}^{2}} \cdot\left(\frac{\boldsymbol{A}_{\perp}}{\boldsymbol{A}_{\perp}^{2}}-\frac{\boldsymbol{B}_{\perp}}{\boldsymbol{B}_{\perp}^{2}}\right)\left(1-\cos \left[\left(\Omega_{1}-\Omega_{2}\right) \Delta z\right]\right)\right]
\end{aligned}
$$

[Can be found in many literature, this one taken from Kang, Felix, and Vitev JHEP 1703 (2017) 146]

- The opacity-one results $P_{k j}^{\operatorname{med}(1)}$ are complicated, previous studies often rely on Monte Carlo / numerical mDGLAP.

$$
\partial_{\ln \mu^{2}} F=\left(P^{\mathrm{vac}}+P^{\mathrm{med}}\right) \otimes F
$$

- Analytic insights from a region analysis

$$
\Delta F_{j i}^{\mathrm{med}}(z) \approx \Delta F_{j i}^{\mathrm{med}, \mathrm{c}}(z)+\Delta F_{j i}^{\mathrm{med}, \mathrm{cs}}(z)
$$

Each sector is obtained by expand the full calculation with the respective power counting.

Collinear divergences at opacity one (flavor non-singlet)

- For collinear sector, expand in the small parameter $\frac{\xi^{2}}{E / L}$. Divergences can be cured by dimensional regularization (DR, $d=4-2 \epsilon$):

$$
\begin{aligned}
\Delta F_{\mathrm{NS}}^{\mathrm{med}}(z) & =\int_{z}^{1} d x F_{\mathrm{NS}}\left(\frac{z}{x}\right) P_{q q}^{\operatorname{med}(1)}(x)+\text { virtual correction. }+\mathcal{O}\left(\frac{\xi^{2}}{E / L}\right) \\
P_{q q}^{\operatorname{med}(1)}(x) & =\frac{\alpha_{s} B}{8} \cdot \frac{\alpha_{s} \rho_{G} L}{E / L} \cdot \frac{P_{q q}^{v a c(0)}(x)}{[x(1-x)]^{1+2 \epsilon}} \cdot\left[\frac{\mu^{2} L}{\chi z E}\right]^{2 \epsilon} \cdot C_{n} \Delta_{n}(x)
\end{aligned}
$$

- Qualitatively different collinear splitting spectra from vacuum splittings

$$
\frac{P_{q q}^{\mathrm{vac}(0)}(x)}{[x(1-x)]^{1+2 \epsilon}} \sim \frac{1}{x^{1+2 \epsilon}(1-x)^{2+2 \epsilon}}, \quad \frac{P_{g g}^{\mathrm{vac}(0)}(x)}{[x(1-x)]^{1+2 \epsilon}} \sim \frac{1}{x^{2+2 \epsilon}(1-x)^{2+2 \epsilon}}
$$

- The natural scale is $z E / L . Q^{2}$ only appears in coefficients $B\left(\frac{Q^{2} L}{2 E}\right)$ and $\chi\left(\frac{Q^{2} L}{2 E}\right)$.

Separate and renormalize the divergences

- How to separate the $1 / \epsilon$ poles? For non-singlet sector:

$$
\begin{aligned}
\int_{0}^{1} \frac{g(x)}{x^{1+2 \epsilon}(1-x)^{2+2 \epsilon}} d x & =\int_{0}^{1} \frac{g(x)-(1-x)^{2} g(0)-x(2-x) g(1)-x(x-1) g^{\prime}(1)}{x^{1+2 \epsilon}(1-x)^{2+2 \epsilon}} d x \\
& -\frac{g(0)}{2 \epsilon}+\frac{g^{\prime}(1)}{2 \epsilon}-g(1)\left(\frac{1}{2 \epsilon}+2\right)+\mathcal{O}(\epsilon)
\end{aligned}
$$

- The leading-log contribution contains the derivative of the parton spectra

$$
\Delta F_{\mathrm{NS}}(z)=\frac{\alpha_{s}\left(\mu^{2}\right)}{8} \frac{\alpha_{s}\left(\mu^{2}\right) B \rho_{G} L}{\nu / L}\left(\frac{1}{2 \epsilon}+\ln \frac{\mu^{2} L}{\chi z \nu}\right) 2 C_{F}\left[2 C_{A}\left(-\frac{d}{d z}+\frac{1}{z}\right)+\frac{C_{F}}{z}\right] F_{\mathrm{NS}}(z)+\cdots
$$

- This IR divergence is canceled by the UV in the collinear-soft sector $\left(p_{\mathrm{cs}}^{2} \sim \xi^{2} \ldots \xi^{2} L / \lambda_{g}\right)$.
- For realistic medium, physics at the collinear-soft scale is already strongly coupled. So we simply absorb the divergence by a renormalization $F_{i j} \longrightarrow\left(\delta_{i k}+\frac{1}{\epsilon} M_{i k}^{(1)}\right) \otimes F_{k j}$.

The renormalization group equations

Define the evolution variable $\tau\left(\mu^{2}\right)=\frac{\rho_{G} L^{2}}{\nu} \frac{\pi B}{2 \beta_{0}}\left[\alpha_{s}\left(\mu^{2}\right)-\alpha_{s}\left(\chi \frac{z \nu}{L}\right)\right]$:

$$
\begin{cases}\uparrow_{Q^{2}} & \frac{\partial F_{\mathrm{NS}}}{\partial \tau}=\left(4 C_{F} C_{A} \frac{\partial}{\partial z}-\frac{4 C_{F} C_{A}+2 C_{F}^{2}}{z}\right) F_{\mathrm{NS}} \\ -\downarrow^{-E / L} & \frac{\partial F_{f}}{\partial \tau}=\left(4 C_{F} C_{A} \frac{\partial}{\partial z}-\frac{4 C_{F} C_{A}+2 C_{F}^{2}}{z}\right) F_{f}+2 C_{F} T_{F} \frac{F_{g}}{z} \\ -\xi^{2} & \frac{\partial F_{g}}{\partial \tau}=\left(4 C_{A}^{2} \frac{\partial}{\partial z}-\frac{2 N_{f} C_{F}}{z}\right) F_{g}+2 C_{F}^{2} \sum_{f} \frac{F_{f}}{z} .\end{cases}
$$

The scale evolution equation is independent of the details at scale Q^{2} and ξ^{2}.

Energy loss of collinear partons

A "traveling wave" solution for $F_{N S}$

$$
\begin{aligned}
\frac{\partial F_{\mathrm{NS}}(\tau, z)}{\partial \tau} & =\left(4 C_{F} C_{A} \frac{\partial}{\partial z}-\frac{4 C_{F} C_{A}+2 C_{F}^{2}}{z}\right) F_{\mathrm{NS}} \\
F_{\mathrm{NS}}(\tau, z) & =\frac{F_{\mathrm{NS}}\left(0, z+4 C_{F} C_{A} \tau\right)}{\left(1+4 C_{F} C_{A} \tau / z\right)^{1+C_{F} /\left(2 C_{A}\right)}}
\end{aligned}
$$

The primary effect: shift spectra by $\delta z=-4 C_{F} C_{A} \tau$.
This is the energy loss $\Delta E=E \delta z \propto L^{2}$.

Apply to quenching in $e A$

- $R_{A}=D_{e A}\left(z_{h}\right) / D_{e d}\left(z_{h}\right)$,
$D_{e A}=\sigma_{e A \rightarrow h+X} / \sigma_{e A \rightarrow X}$
- NLO cross-section with NNFF1.0LO and (n)NNPDF3.0 (n)PDF.
- For HERMES: $\left\langle Q^{2}\right\rangle \approx 2.25 \mathrm{GeV}$, $\langle\nu\rangle=12 \mathrm{GeV}$ [NPB780(2007)1-27]
- For EMC: $\left\langle Q^{2}\right\rangle=11 \mathrm{GeV}^{2}$ and $\langle\nu\rangle=62 \mathrm{GeV}$ [EMC ZPC52(1991)1-11].

Good description with $\xi=0.35 \mathrm{GeV}, \rho_{G}=0.4 \mathrm{fm}^{-3}$, excluding the threshold region $z_{h} \rightarrow 1$.

Relation to modified DGLAP equation \& anomalous dimensions

- It can be shown that the modified DGLAP equation contains the same leading-log physics. But the RG approach is much more efficient.
- Extract medium-induced anomalous dimensions (preliminary)

$$
\begin{aligned}
& \int_{0}^{1} d x \int d \mathbf{k}^{2} \int d \mathbf{q}^{2} \frac{d N_{q q}^{(1)}}{d x d^{2} \mathbf{k} d^{2} \mathbf{q}}\left(x^{2}-1\right) \\
& =\underbrace{\frac{\alpha_{s}^{2}\left(\mu^{2}\right) C_{F}}{2 \pi} \frac{\alpha_{s} \rho_{G} L}{E / L}\left(8 C_{A}+2 C_{F}\right) C_{\frac{Q^{2} L}{2 E}, \frac{\theta^{2} E L}{8}}^{8}}_{\Delta \gamma(3)}\left[\frac{1}{2 \epsilon}+\ln \frac{\mu^{2}}{E / L}+\mathcal{O}(1)\right]
\end{aligned}
$$

for the region $\xi^{2} \ll \mu^{2} \ll E / L$.

Opacity expansion \Longrightarrow gradient expansion (preliminary)

One can further organize higher-opacity correction in this approach.

$$
\frac{\partial F_{\mathrm{NS}}}{\partial \tau}=\underbrace{2 C_{F}\left[2 C_{A} \frac{\partial F_{\mathrm{NS}}}{\partial z}-\left(2 C_{A}+C_{F}\right) \frac{F_{\mathrm{NS}}}{z}\right]}_{\mathrm{N}=1}+\underbrace{B_{2}\left(\tau, \alpha_{s}, \frac{E}{L \xi^{2}}\right)\left[\frac{\partial^{2} F_{\mathrm{NS}}}{\partial z^{2}}-\frac{2}{z} \frac{\partial F_{\mathrm{NS}}}{\partial z}+\frac{2 F_{\mathrm{NS}}}{z^{2}}\right]}_{\mathrm{N}=2, \mathrm{SGA}}+\cdots
$$

- Opacity-two leading-log contribution appears as a diffusion term.
- Opacity expansion \Rightarrow Extract $L L$ terms after expansion in $\frac{\xi^{2}}{E / L} \Rightarrow$ Gradient expansion.

What is the perturbative controllable part of energy loss?

- RG analysis of shows that (light) parton energy loss is sensitive to physics at two scales in a thin static medium:

$$
\Delta E_{q}=C_{F} C_{A} \frac{4 \pi}{\beta_{0}} \frac{B \rho L}{2 E / L}\left[\alpha_{s}\left(\xi^{2}\right)-\alpha_{s}\left(\frac{\chi E}{L}\right)\right]
$$

- Physics at medium screening scale ξ^{2} is strongly-coupled. Only scale E / L is perturbative for energetic partons.

Mass effect in energy loss

- The off-shellness of a heavy quark is different from a light quark.

$$
\frac{1}{\mathbf{k}^{2}+x^{2} M^{2}} \approx \frac{1}{\mathbf{k}^{2}} \frac{\theta^{2}}{\theta^{2}+\theta_{D}^{2}}, \quad \theta=\frac{\mathbf{k}}{\omega}, \quad \theta_{D}=\frac{M}{E}
$$

- For energy loss, it is sufficient to investigate the soft-gluon approximation of $Q \rightarrow Q+g$

$$
\begin{aligned}
\frac{d P_{Q Q}^{\operatorname{med}(1)}}{d \omega} \otimes F_{Q}(E+\omega)= & \int_{0}^{\infty} d \omega \frac{2 C_{F}}{\omega} F_{Q}(E+\omega) \int \frac{d^{2-2 \epsilon} \mathbf{k}}{(2 \pi)^{-2 \epsilon}} \frac{\alpha_{s}^{(0)}}{2 \pi^{2}} \frac{\Phi_{\mathrm{LPM}}\left(\frac{\mathbf{k}^{2}+\omega^{2} \theta_{D}^{2}}{2 \omega / L}\right)}{\left(\mathbf{k}^{2}+\omega^{2} \theta_{D}^{2}\right)} \\
& \int \frac{d^{2-2 \epsilon} \mathbf{q}}{(2 \pi)^{-2 \epsilon}} \frac{\alpha_{s}^{(0)}}{\pi} \frac{C_{A} \rho_{G} L}{\left(\mathbf{q}^{2}\right.} \frac{2 \mathbf{q} \cdot(\mathbf{k}+\mathbf{q})}{(\mathbf{k}+\mathbf{q})^{2}+\omega^{2} \theta_{D}^{2}}+\mathcal{O}\left(\frac{\xi^{2}}{E / L}\right)
\end{aligned}
$$

- Without $\omega^{2} \theta_{D}^{2}$, this is the same as light parton.

Phase space region for leading-log contribution

- The phase-space region where dead-cone scale can be neglected:

$$
k^{2} \sim \frac{\omega}{L} \gg \omega^{2} \theta_{D}^{2} \Longrightarrow \omega \ll \frac{1}{\theta_{D}^{2} L}
$$

- An approximation treatment to identify leading-log contribution: dropping $\omega^{2} \theta_{D}^{2}$ from the matrix-element, but impose a reduced integration limit $\Theta\left(\omega<\frac{1}{\theta_{D}^{2 L}}\right)$

$$
\xi^{2} L \ll \omega \ll \min \left\{\frac{1}{\theta_{D}^{2} L}, E\right\}
$$

Mass modifies the perturbative region of energy loss calculations

- RG analysis of shows that (light) parton energy loss is sensitive to physics at two scales in a thin static medium:

$$
\Delta E_{q}=C_{F} C_{A} \frac{4 \pi}{\beta_{0}} \frac{B \rho L}{2 E / L}\left[\alpha_{s}\left(\xi^{2}\right)-\alpha_{s}\left(\frac{\chi E}{L}\right)\right]
$$

- The quark mas modifies/lowers the scale on the perturbative side.

$$
\Delta E_{Q}=C_{F} C_{A} \frac{4 \pi}{\beta_{0}} \frac{B \rho L}{2 E / L}\left[\alpha_{s}\left(\xi^{2}\right)-\alpha_{s}\left(\frac{\chi E}{L} \min \left\{\frac{E / L}{M^{2}}, 1\right\}\right)\right]
$$

- NP effect is even more dominant for heavy quark energy loss.

Heavy vs light quark energy loss in eA

Summary

- We studied parton propagation in a thin medium scenario defined by the scale separation

$$
Q^{2} \gg E / L \gg \xi^{2}, \quad L / \lambda_{g} \sim \xi / \Lambda \sim 1
$$

- After power expansion in $\frac{\xi^{2}}{E / L}$, collinear observable acquires an IR divergences. Its renormalization lead to a set of PDE type RG equations.
- Equations encode energy loss. Anomalous dimension at opacity one can be extracted. Can be extended to higher-order in opacity as a gradient expansion.
- A pocket formula for Q^{2}, E, L, ξ^{2}, M dependent energy loss in thin medium is obtained.
- Parton energy loss is sensitive to physics at both screening scale and semi-hard scale $\frac{E}{L}$.
- Heavy quark mass further reduces the semi-hard scale.

Questions

