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We study the energy deposition and thermalisation of high-momentum on-shell partons (minijets)
travelling through a non-equilibrium Quark-Gluon Plasma using QCD kinetic theory. For thermal
backgrounds, we show that the parton energy first flows to the soft sector by collinear cascade and
then isotropises via elastic scatterings. In contrast, the momentum deposition from a minijet reaches
the equilibrium distribution directly. For expanding non-equilibrium QGP, we study the time for a
minijet perturbation to lose memory of its initial conditions, namely, the hydrodynamisation time.
We show that the minijet evolution scales well with the relaxation time τR ∝ η/s/T (τ), where T (τ)
is the effective temperature and η/s is the viscosity over entropy ratio.
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I. INTRODUCTION

High-energy collisions of heavy ions at the Relativis-
tic Heavy Ion Collider (RHIC) at BNL and the Large
Hadron Collider (LHC) at CERN have produced am-
ple evidence for the creation of a hot and dense medium
consisting of deconfined quarks and gluons—the Quark
Gluon Plasma (QGP). One of the key signatures of the
formation of QGP is the suppression of high momentum
particles produced in the collision compared to the ex-
pectation from proton-proton collisions [1–5] (see [6–8]
for reviews). This phenomenon, called jet quenching, is
interpreted as energy loss of high-momentum quarks and
gluons when they travel through the QCD medium pro-
duced in heavy-ion collisions. The quenching of jets has
the potential to provide a powerful probe of the micro-
scopic structure of the QGP and its macroscopic trans-
port properties.
Initially, hard scatterings in the collision create highly

energetic partons. Because of the large virtuality of these
partons, vacuum-like splittings happen much faster than
typical timescales for the medium interactions. There-
fore, at this stage the evolution of a shower is vacuum-
like. The parton sheds virtuality by splitting into softer
and less virtual partons. Once the partons become on-
shell, there can only be splittings triggered by interac-
tions with the medium. We call such on-shell partons
minijets to distinguish them from high virtuality partons
undergoing a vacuum shower evolution.
Extensive theoretical and phenomenological works

have focused on describing parton energy loss in the
QGP. In a perturbative QCD picture, a parton travel-
ling through the QCD medium interacts with it by scat-
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tering with the background gluon fields. The modifica-
tions to a high energy parton and its splitting probabil-
ities can be computed in the BDMPS-Z framework [9–
12]. Semi-analytical approaches based on this frame-
work describe jet quenching as the multiple scattering
of a QCD parton or single vacuum-like splitting [13],
typically in a QCD medium that is a static “brick”
(see [14] for a review), but more recently also undergo-
ing longitudinal expansion [15], interacting with a highly-
anisotropic medium [16, 17], or even including the flow
of the plasma [18, 19]. Phenomenological approaches,
for example [20], interface the vacuum-like evolution of
a jet (via a parton shower) with perturbative scatterings
with the QCD medium. In [21] this is done through the
explicit factorisation of medium effects from the pertur-
bative, vacuum-like splittings. Many other models [22–
25] have more extensive phenomenological success, but in
turn require an interface between a parton shower and the
medium described by hydrodynamics, which no longer
carries information about individual QCD partons in the
medium.

As a high-energy parton interacts with, and loses en-
ergy to, the QCD medium, that energy and momentum
are transferred to the medium itself. This phenomenon of
medium response seems to be crucial for phenomenologi-
cal descriptions of measurements on jets [26–29] and par-
ticularly impacts relatively soft particles at large angles
from the jet axis. However, this is precisely the regime
in which it is challenging to treat the backreaction of
the medium due to energy and momentum lost by high-
energy partons using semi-analytical descriptions. Mod-
els like the dynamical core-corona initialisation [30, 31],
the minijet+hydro framework [32], the CoLBT-hydro
model [33], the hybrid model [34], and Jetscape [35]
include hard partons as source terms in the hydrody-
namic equations of motion which enables them to study
the feedback of jets on the evolution of the background
medium. However, in these studies, the background QGP
and jet perturbations are treated in different frameworks,
and therefore they must introduce some transition from
the perturbative showering regime to the hydrodynamic
description. The goal of this work is to study the en-
ergy loss and thermalisation of high-momentum partons
in the out-of-equilibrium QGP in a framework that nat-
urally includes both high-momentum partons and QCD
partons in the medium.

In the high-energy limit, the bulk properties and ther-
malisation of QCD medium can be described by an Ef-
fective Kinetic Theory (EKT) of QCD interactions [36].
At leading order in the coupling constant, the massless
gluon and quark degrees of freedom evolve according to
Boltzmann equations with elastic scattering and collinear
radiation processes. The interplay of these collision pro-
cesses with rapid longitudinal expansion in heavy-ion col-
lisions leads to the celebrated “bottom-up” thermalisa-
tion picture [37–39]. Numerical implementations of EKT
have yielded a detailed description of QGP equilibration
and hydrodynamisation in heavy-ion collisions [40–45].

Physically, the energy loss of high-momentum partons
is driven by the same scattering processes as the equili-
bration of the QGP. The separation between the medium
and a jet is merely a separation in the energy scale. A jet
transfers energy to softer and softer partons that even-
tually are no longer parametrically separated from the
medium. Therefore, the final stages of jet thermalisation
are best described in the common framework of EKT.
In this work, we use QCD kinetic theory to describe the
evolution of high-energy and on-shell partons (minijets)
and their thermalisation with the bulk QGP.
Recently, there were several works studying minijet

thermalisation using QCD kinetic theory [46–48]. It has
been shown that the energy of the partons is transported
down to the medium temperature scale via a turbulent
cascade. The energy that escapes the jet cone is mostly
transported by the soft fragments of the in-medium cas-
cade. However, these works considered minijets propa-
gating in a thermal background. In heavy-ion collisions,
the rapid longitudinal expansion introduces significant
momentum anisotropies in the momentum distribution
of QGP particles, which is especially relevant at the ear-
liest stages of the collision. In this work, we extend the
previous studies of minijet thermalisation to anisotropic
and expanding backgrounds.
The paper is organised as follows. In Section II, we

introduce the effective kinetic description of QCD and
motivate why linearised equations are suitable to study
minijets. We also specify the initial conditions for the
background and minijets. Next, in Section III, we present
a systematic study of jet thermalisation with an increas-
ing complexity of the background. We consider the case
of a non-expanding medium. For thermal backgrounds,
this reproduces previous results, where we clarify the
angular dependence of minijet thermalisation and intro-
duce the concept of angle-dependent temperature. We
also study minijet thermalisation in an anisotropic back-
ground without expansion. In Section IV, we consider
the longitudinally expanding case relevant to heavy-ion
phenomenology. We study the time it takes for minijets
to become part of the background, i.e., for them to hy-
drodynamise. Our conclusions are given in Section V.
In Appendix A, we provide explicit formulas for the lin-
earised collision kernel.

II. SETUP

A. QCD kinetic theory

The framework we are working with is the QCD kinetic
theory (AMY) [36] which is a leading order description in
the coupling λ = Ncg

2. As implementation details have
been discussed in multiple previous publications [40–45],
here we will provide only a short summary.
In the high-temperature (conformal) limit of QCD, the

dominant degrees of freedom for describing the energy-
momentum tensor are shown to be massless quark and
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gluon quasi-particles. Generally, the phase-space distri-
bution function fs(t,x,p) of some particle species s obeys
a Boltzmann equation

(∂t + p̂ · ∇x) fs(τ,x,p) = −Cs[f ], (1)

where p̂ is a unit vector. The collision kernel Cs[f ]

contains all QCD inelastic 1↔2 and elastic 2↔2 pro-
cesses [36],

Cs[f ] = Cs
2↔2[f ] + Cs

1↔2[f ]. (2)

The elastic kernel Cs
2↔2 is given by

Cs
2↔2[f ](p̃) =

1

2

1

νs

1

4

∑

abcd

(2π)3
∫

pkp′k′
|Mab

cd|2(2π)4δ(4)(P +K − P ′ −K ′)

× {(fa
pf

b
k(1± f c

p′)(1± fd
k′))− (f c

p′fd
k′(1± fa

p)(1± f b
k))}

× [δ(p̃− p)δas + δ(p̃− k)δbs − δ(p̃− p′)δcs − δ(p̃− k′)δds] ,

(3)

where we integrate over the in-coming and out-going
particle momenta with the Lorentz invariant measure∫
p

=
∫

d3p
(2π)32p . Here |Mab

cd|2 represents the squared

scattering amplitude for ab ↔ cd process summed over
spin/polarisation and colour degrees of freedom νs for
each in-coming and out-going particle (νs is 16 for glu-
ons and 6 for each quark/anti-quark flavour). The Dirac-
delta function in the first line ensures energy and momen-
tum conservation, while the distribution functions in the
second line represent the usual loss and gain terms. The
sum over external particles

∑
abcd with the four terms

in the last line sums over all possibilities for the particle
s with momentum p̃ to participate in a 2 ↔ 2 scatter-
ing. For large momentum transfer, the matrix elements
|Mab

cd|2 coincide with the tree level 2 ↔ 2 processes of
QCD [36]. In the case of purely gluonic scattering, we
have

|Mgg
gg|2 = 2λ2νg

(
9 +

(s− t)2

u2
+

(u− s2)

t2
+

(t− u)2

s2

)
.

(4)
The t channel has an infrared divergence for small mo-
mentum transfer q = |p− p′|, with incoming momentum
p and outgoing p′ (similarly for the u channel), which is
regulated by a medium-induced effective mass m2

s, where

m2
g = 4g2

∫

p

[Ncfg(p) +
Nf

2
(fq(p) + fq̄(p))], (5)

m2
q = 4g2CF

∫

p

[2fg(p) +
Nf

2
(fq(p) + fq̄(p))]. (6)

A commonly used prescription is an isotropic screening
which replaces q2 → q2 + ξ2sm

2
s, where the coefficients

ξg = e5/6/2 and ξq = e/2 are chosen to reproduce the full
HTL results for the gluon drag and momentum diffusion
properties of soft gluon scattering and gluon to quark
conversion in thermal equilibrium [38, 42, 49, 50].

The inelastic kernel C1↔2 describes the medium-
induced collinear radiation of gluon bremsstrahlung as

well as splittings into quark-antiquark pairs

Cs
1↔2[f ](p̃) =

=
1

2

1

νs

(2π)3

4πp̃

∑

abc

∫ ∞

0

dpdp′dk′4πγa
bcδ(p− p′ − k′)

× {(fa
pn̂(1± f b

p′n̂)(1± f c
k′n̂))− (f b

p′n̂f
c
k′n̂(1± fa

pn̂)}
× [δ(p̃− p)δas − δ(p̃− p′)δbs − δ(p̃− k′)δcs] .

(7)
The splitting rates γa

bc satisfy an integral equation, which
has to be solved self-consistently to incorporate mul-
tiple interactions with the medium (see Appendix A).
The unit vector n̂ = p̃/|p̃| points in the splitting di-
rection. Because the formation time for emitted radia-
tion grows with energy [36], separate medium scatterings
interfere, leading to the so-called Landau-Pomeranchuk-
Migdal suppression [51–54].

For early times in a heavy ion collision, the dynamics
is dominated by the rapid expansion of the system in the
longitudinal direction. This allows us to approximate
the system as being homogeneous in the transverse plane
and boost-invariant in the longitudinal direction. The
evolution of the initially far-from-equilibrium system is
then described by a Boltzmann equation

(
∂τ − pz

τ
∂pz

)
fs(τ,p) = −Cs[f ], (8)

where τ =
√
t2 − z2. The second term on the left-hand

side originates from gradients in z-direction, which are
written as gradients in momentum space using boost-
invariance [55].
In this work, we focus on the thermalisation of minijets

inside the medium, which we model as a single energetic
parton going through a medium. We decompose f into
background and minijet (mj) perturbation

fs(τ,p) = f̄s(τ,p) + δfs,mj(τ,p). (9)

Note that we do not have a spatial coordinate dependence
for δfjet, which can be considered a local perturbation in
momentum space, but homogeneous in coordinate space.
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An actual minijet particle is local both in momentum
and coordinate space, therefore, our study is limited to
understanding the equilibration in momentum space and
cannot tell how the jet wake develops in coordinate space.
Implementing spatial localisation is important but com-
putationally demanding and we leave it for future work.

The QGP fireball mainly consists of soft particles and
the occupancies of high momentum partons produced
are much smaller than that of the background partons,
i.e., δfmj ≪ f̄ . In addition, we can assume the high-
momentum partons to carry a small fraction of the total
energy. This enables us to linearize the equations of mo-
tion, leading to a set of coupled equations for f̄s(τ,p) and
δfs(τ,p)

(
∂τ − pz

τ
∂pz

)
f̄s(τ,p) = −Cs[f̄ ], (10a)

(
∂τ − pz

τ
∂pz

)
δfs(τ,p) = −δCs[f̄ , δf ]. (10b)

We note that we keep the full non-linear evolution of
the background distribution in Eq. (10a). The linearised
collision kernel δCs[f̄ , δf ] describes how the background
affects the evolution of δfs(τ,p). Except when studying
chemical equilibration, we will drop the species subscript
for simplicity. Linearising C2↔2, Eq. (3), we receive one
contribution from the loss and gain terms and one from
the perturbation of the effective mass mg,q (Eqs. (5)
and (6)) that regulate the matrix elements. The inelastic
kernel δC1↔2 also receive contributions from linearising
loss-gain terms and the splitting rate γa

bc. We summarise
the explicit expressions of the linearised kernels in Ap-
pendix A.

Because we work with continuous distributions in
phase space, linearisation enforces the physical condition
that a parton can not scatter from itself. Although there
is no back-reaction of the perturbation onto the back-
ground distribution f̄ , the perturbation δf eventually
equilibrates and f̄ + δf can be considered as a new back-
ground. To derive Eq. (10b) we formally require δf ≪ 1
and δf ≪ f̄ , but once the equations are linearised the
magnitude of δf and even the sign can be arbitrary.

The thermalisation of background gluon and quark dis-
tributions by solving Eq. (10a) has been studied exten-
sively in previous works [40–45]. The linearised kinetic
equations of Yang-Mills (YM) theory have been solved
to derive linear non-equilibrium response functions for
medium perturbations at the characteristic medium en-
ergy scale [56–58]. The equilibration of high momen-
tum perturbations in gluon-only kinetic theory has been
studied previously for the isotropic static background
in [40]. More recently, the linearised QCD equations
Eq. (10) have been solved for high-momentum perturba-
tions around a static thermal background in Ref. [46, 47].
We extend these studies, in particular, by considering
high-momentum perturbations in QCD kinetic theory
with non-thermal and expanding backgrounds.

B. Initial conditions

1. Background

In thermal equilibrium, the quark and gluon distribu-
tions are uniquely defined by a single energy scale given
by temperature T , and the function

fth(p) =
1

ep/T ± 1
, (11)

where (−) corresponds to the Bose-Einstein distribution
for gluons and (+) corresponds to the Fermi-Dirac distri-
bution for quarks. The uniqueness of the temperature in
a thermal distribution is given by the fact that it can be
extracted from any moment of the distribution function

In =

∫
d3p

(2π)3
pnfth(p) = Nn,±T

n+3
n , (12)

where the normalisation constant is

Nn,± = [1− 2−n−2]
1±1
2

Γ(n+ 3)ζ(n+ 3)

2π2
. (13)

In the high-energy limit, the energy deposition in the
mid-rapidity region is dominated by the scattering of
small Bjorken-x gluons [38]. This leads to gluon sat-
uration phenomena with high gluon occupancies fg ∼
O(λ−1) ≫ 1 up to saturation scale Qs. The initial gluon
distribution is highly anisotropic, with typical longitu-
dinal momentum much smaller than the transverse mo-
mentum

〈
p2z
〉
≪
〈
p2T
〉
∼ Q2

s, where p2T = p2x + p2y. We
will use the previously used CGC-parametrisation of an
overoccupied gluonic plasma [41]

fsat(pT , pz) =
2A

λ

Q0e
− 2

3
1

Q2
0
(p2

T+ξ2p2
z)

√
p2T + ξ2p2z

, (14)

where the parameter ξ = 10 accounts for the anisotropy
of the initial distribution and Q0 = 1.8Qs sets the mo-
mentum scale of the background. The constant A = 5.24
is fixed such that the comoving energy density τe agrees
with classical lattice simulations. The initial density of
quarks is set to zero. During the evolution, the quarks
will be produced dynamically and the system will un-
dergo both chemical and kinetic equilibration [42, 43].

2. Minijet perturbation

A single minijet δf(p) = (2π)3δ(3)(p−En̂) is uniquely
characterised by its energy E and direction of propaga-
tion n̂1. In practice, we approximate the perturbation

1 As stated in Section IIA, we consider perturbations homoge-
neous in space.
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QGP

Minijet

Momentum space 

Minijet

FIG. 1. Illustration of a parity-even minijet configuration
in momentum space for a thermal QGP. The background
is isotropic and we choose the perturbation to point in z-
direction.

by a Gaussian of width σ = 0.1E2. For a minijet in
z-direction the distribution is written as

δf(p) =

(
2π

σ2

)3/2
E

p
exp

(
−p2x + p2y + (pz − E)2

2σ2

)
.

(15)
From this expression, it is easy to see that the com-
ponents of the perturbed energy-momentum tensor and
number density (for a single degree of freedom) read

δT tt =

∫
d3p

(2π)3
pδf = E, (16)

δT tz =

∫
d3p

(2π)3
pzδf ≈ E +O

(
σ2

E2

)
, (17)

δn =

∫
d3p

(2π)3
δf ≈ 1 +O

(
σ2

E2

)
. (18)

Note that the normalisation for linear perturbations is ar-
bitrary, so these values can be rescaled by an arbitrarily
small constant. If one considers more than one species
of particles, e.g. gluons and (anti-)quarks, one has to
perform the sum over all species a weighted by the cor-
responding degrees of freedom νs.
Kinetic evolution conserves energy and momentum.

Therefore, an equilibrated minijet increases the thermal
gluon or quark distribution by the corresponding energy
and momentum. This corresponds to changing the tem-
perature and boosting the thermal distribution. Explic-
itly, the thermal distribution for a perturbation is given
by

δfth(p) = (δT∂T + δuz∂uz ) fth (pµu
µ/T )

∣∣∣∣
uz=0

(19a)

=

(
δT

T
+ δv · p̂

)
p

T
fth(p)(1± fth(p)), (19b)

2 We checked that for a smaller width of σ = 0.05E there is no
difference in the isotropisation of δf(p).

where the 3-velocity is defined by uµ = γ(1,v), γ =

1/
√
1− v2. From Eq. (19) one can straightforwardly

compute the moments δT tt = π2

30 νeffT
4 4δT

T and δT tz =
π2

30 νeffT
4 4δv

3 . Here νeff = νg + 7
8νq are the effective de-

grees of freedom with νg = 16 for gluons and νq = 36
for 3 flavours of light quarks and anti-quarks. Note that
we consider the QGP at zero baryon chemical potential
and quark and anti-quark distributions are assumed to
be equal.

In equilibrium, the temperature perturbation is
isotropic in momentum angle, while velocity perturba-
tions have cos θ modulation with respect to minijet direc-
tion. Respectively, these perturbations are even and odd
under the parity transformation p ↔ −p. Parity-even
and odd perturbations relate to different conserved quan-
tities. Parity-even perturbations impact the net change
in energy of the thermalised state but do not change the
net momentum, while parity-odd perturbations do not
change the energy but do add net momentum. To disen-
tangle the evolution of these two contributions, we will
separately study the evolution of parity even and odd
initial conditions. We will call these contributions net-
energy and net-momentum perturbations, respectively.
Thanks to the linearity, the minijet and its subsequent
evolution is a sum of these two configurations:

δf(p) =
1

2
(δf(p) + δf(−p))
︸ ︷︷ ︸
net-energy perturbation

+
1

2
(δf(p)− δf(−p))
︸ ︷︷ ︸

net-momentum perturbation

(20)
We emphasise that for momentum-integrated and parity-
even quantities, like energy density or pressure, the
parity-even (net-energy) perturbation is the only contri-
bution to the minijet evolution. Similarly, momentum-
integrated quantities that are parity-odd can be under-
stood from the parity-odd (net-momentum) perturba-
tions only. In Fig. 1 we show a cartoon of minijets in
the net-energy configuration, in momentum space. We
emphasize that, throughout this work, we will study per-
turbations (minijets) in momentum space only. In the
following, we will study how the minijet equilibration
depends on the angle with respect to the minijet axis.
In a thermal background, there is no preferred orienta-
tion of the minijet and we can choose the angle cos θ = 1
to coincide with the minijet direction as shown in the
figure. However, in the longitudinally expanding case,
the z direction is singled out as the beam axis. In this
case, the direction cos θ = 1 is along the z-axis and the
direction of a minijet in the transverse plane is given
by cos θ = 0. We will assume that the background
distribution is azimuthally-symmetric around the beam
axis, so we can choose the minijet direction to be in the
x − z plane, i.e., ϕ = 0. In the following, we will al-
ways consider a coupling of λ = 10 and minijet energy
of E = 30T (for constant-temperature backgrounds) or
E = 30Qs (for non-equilibrium backgrounds) unless oth-
erwise stated.
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III. MINIJET THERMALISATION IN
NON-EXPANDING PLASMA

In this section, we study thermalisation of minijets on
top of a background distribution without longitudinal ex-
pansion. Except for Section IIID, the background is as-
sumed to be thermal at temperature T . We work in the
usual Minkowski coordinates with time variable t.

A. Equilibration of net-energy perturbations

1. Two stage thermalisation

We first study purely gluonic plasma, i.e., YM ki-
netic theory, with λ = 10. In this section, we focus
on the perturbations that change the total energy in
the thermalised state, namely, those that are even under
p → −p. In Fig. 2 we show the evolution of such pertur-
bations in different angular slices (cf. Fig. 1) for different
times. The initial perturbation is centred at E = 30T ,
where T is the background temperature. The initial peak
rapidly decays and the p ∼ T region is populated by the
time tT ≈ 3 but is still very anisotropic. For tT > 10 the
initial minijet peak is no longer visible and all angles are
populated with the same shape of distribution function
but differing normalisation. We verify this by normalis-
ing each angular slice to the same area under the curve.
We observe a very good collapse for all angles with only
minor differences for the angle in the original minijet di-
rection. The rescaled distributions agree well with the
equilibrium distribution, indicating that even before the
isotropisation, at each momentum angle, gluons follow a
thermal distribution.

To understand what drives the collapse of distribution
functions at different angles before the isotropisation, we
plot the evolution of particle number δn and pressure
anisotropy δPT /δe in Fig. 3. For a minijet along the z
axis, δPT = 1

2 (δT
xx + δT yy) and δe = δT tt. We see

that as the minijet is quenched the particle number δn
increases. It is driven by the collinear bremsstrahlung
of gluons that are emitted while the hard parton inter-
acts with the medium. Similarly, δPT is approaching
the equilibrium value thanks to elastic scatterings. How-
ever, the density δn reaches equilibrium significantly ear-
lier, at time t1↔2T ≈ 11 (compared to the isotropisation
timescale t2↔2T ≈ 19). Therefore we conclude that the
thermalisation of parity-even perturbations proceeds in
two stages: by the time t1↔2 the energy is transported
to p ∼ T and the inelastic processes equilibrate the distri-
bution for each angle separately. Then elastic processes
transport energy to larger angles and isotropise the sys-
tem by t2↔2. It is worth mentioning that this result holds
for the whole minijet in Eq. (20) since the parity-odd part
vanishes upon integrating over the whole phase space.

2. Angle-dependent temperature

In Fig. 2 we showed that over time the distributions
collapse to the same functional form, which is actually a
thermal distribution. An alternative method of demon-
strating this behaviour is to introduce a notion of tem-
perature that is angle-dependent. We generalise Eq. (12)
to angular moments of the distribution function f defined
by

In(t, θ) ≡ 4π

∫
p2dp

(2π)3
pnf(t, p, θ) = Nn × Tn(t, θ)

n+3,

(21)
where we multiply with a factor of 4π instead of inte-
grating over the angles. Equation (21) defines an angle-
dependent temperature, which, in the case of a thermal
background, can be written as Tn(θ) = T + δTn(θ). For
linear perturbations, the angle-dependent temperature is
given by

δTn(t, θ)

T
=

δIn(t, θ)

(n+ 3)Īn
, (22)

where δIn and Īn are the moments of the perturbation
and background distributions. We plot the results of
Eq. (22) in Fig. 4 for different moments n (solid, dot-
ted, dashed and dot-dashed lines) and different angles θ
(blue, yellow, green, red lines). Around time t ≈ t1↔2

the curves collapse for different n. Importantly, δTn(t, θ)
is still very different for different angles. From this, it
follows that the momentum distribution of the full sys-
tem f = f̄th + δf along each θ-slice has approximately
the shape of a thermal distribution with temperature
T (θ) = T + δT (θ). Therefore for times t > t1↔2 the
distribution of the minijet is approximately given by a
thermal distribution with angle-dependent normalisation
(temperature)

δf(t, p, θ) ≈ δT (t, θ)∂T fth(p/T ), (23)

with δTn(t ≳ t1↔2, θ) ≈ δT (t, θ) for all n. In other words,
while the system is still anisotropic, the distribution of
the perturbation looks thermal along each angular slice.
Then, at t ≈ t2↔2, the curves collapse also for each angle
cos θ and the temperature δT (θ) = δT is the same in all
directions.

3. Jet energy and coupling constant scaling

Here we study the equilibration time dependence on
the initial minijet energy E and coupling constant λ. In
EKT simulations for isotropic under-occupied initial con-
ditions, the thermalisation timescale for high-momentum
perturbations was fitted to be [40]

tunder occ.
eq ≈ 34.+ 21. log(E/T )

1 + 0.037 log λ−1

√
E

T

1

λ2T
, (24)
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FIG. 2. Distribution of δf(p, θ) for a net-energy perturbation as a function of time, with different colours corresponding to
different angles cos θ. In the last panel, we scale the curves by the area underneath and compare them with the equilibrium
distribution.
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tT
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1.00

t1↔2 t2↔2

δn/δnth

3δPT /δe

FIG. 3. Time evolution of the number density δn and the
transverse pressure δPT , both normalised by the equilibrium
value. At the orange and the blue dashed line the difference
to 1 is smaller than 1%.

where
√
E/T/λ2T is the parametric timescale for the

first hard, medium-induced splitting. As the subsequent
splittings proceed faster, the first splitting is an indica-
tive timescale for the energy transfer towards the back-
ground energy scale. Note that for our initial conditions,
the minijet perturbations are anisotropic, and therefore
minijet thermalisation is achieved at the isotropisation
time t2↔2.

To compare minijet evolution with different initial en-
ergies E and different coupling constants λ we scale the

0 10 20 30 40

tT

0

50

100

150

200

δT
n
/T

cos θ=1.0

cos θ=0.9

cos θ=0.7

cos θ=0.2

n=0

n=1

n=2

n=3

FIG. 4. Temperature perturbations δTn for different angles
θ (colours) and moments n (linestyles) as a function of time
(pure glue). The vertical lines correspond to the two stage
thermalisation of the net-energy perturbation in Fig. 3.

evolution time with relaxation time

tR =
η/s

T

√
E

E0
, (25)

where parametrically the specific shear viscosity is η/s ∼
λ−2. Then tR has the same parametric coupling depen-
dence as tunder occ.

eq . We choose scaling with η/s instead of
λ, because it is a physical property of the QGP. We also
choose E0 = 30T as a constant minijet energy reference.
In Fig. 5 we plot the minijet anisotropy 3δPT /δe as
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FIG. 5. Transverse pressure over energy density as a function
of scaled time for (top) different couplings λ and (bottom)
different initial energies E of the minijet (pure glue). Gray
vertical line indicates 3δPT /δe > 0.9 for E = 30T and λ = 10.

a function of scaled time t/tR for different coupling
strengths (upper panel) and initial minijet energies (lower
panel). In the upper panel, we see similar evolution for
different couplings λ = 2, 5, 10, 15, 20 that correspond to
different shear viscosity values (η/s ≈ 7.84, 1.81, 0.624,
0.361, 0.235) for pure gluon plasma [59]. The isotropisa-
tion 3δPT /δe > 0.9 is reached at t ≈ 18.5tR for E = E0

and λ = 10. In the lower panel of Fig. 5 we see that
minijet isotropisation proceeds very similarly for mini-
jets of different initial energies E given this time rescal-
ing. Therefore the energy dependence of the equilibration
time is well captured by the factor of

√
E, in particular

for large E.

B. Equilibration of net-momentum perturbations

Up to now, we have studied parity-even perturbations,
which lead to an isotropic increase in the temperature of
the system after they thermalise. The parity-odd per-
turbations, on the contrary, inject net momentum into
the system without perturbing the energy density. The
evolution of a minijet is a sum of parity odd and even
solutions, Eq. (20). We recall from Eq. (19) that the
equilibrium distribution for velocity perturbations con-

0 10 20 30 40

tT

0

200

400

δu
z n

cos θ=1.0

cos θ=0.9

cos θ=0.7

cos θ=0.2

n=0

n=1

n=2

n=3

FIG. 6. Velocity perturbations δuz
g,n for different angles cos θ

and moments n as a function of time (pure glue). The vertical
lines correspond to the two stage thermalisation observed for
net-energy perturbations in Fig. 3.

tains an explicit cos θ factor. Using the moments Eq. (21)
we can again study how the system thermalises in each
θ-slice. Analogously to Eq. (22) we now get

δuz
n(t, θ) cos θ =

δIn(t, θ)

(n+ 3)Īn
, (26)

where in thermal equilibrium δuz
n(t, θ) → δuz becomes a

velocity field. In Fig. 6 we show δuz
n(t, θ) for different mo-

ments n and angles θ as a function of time. The collapse
of different n moments indicates the emergence of a well-
defined velocity field δuz(t, θ) at a given angle. However,
we notice this happens for all angles at approximately the
same time. Therefore there is no significant separation
in timescales as there was for temperature perturbations,
c.f. Fig. 4. We note that the emergence of the velocity
field is faster than the temperature field. The reason
is that, even in equilibrium, the velocity perturbation is
anisotropic due to its cos θ-dependence. This means that
the elastic scatterings do not have to fully isotropise the
momentum distribution before reaching the equilibrium
distribution.

C. Chemical equilibration

In the previous section, we considered the dynamics of
a purely gluonic system. Now we will solve the Boltz-
mann equation Eq. (8) with all leading order QCD scat-
tering processes in C[f ] for both quark and gluon distri-
butions, fq and fg. Following [47], we initiate the evolu-
tion with a gluon minijet δfg, whereas the initial quark
perturbation is set to zero, δfq(t0,p) = 0. This allows us
to study the chemical equilibration of minijets. In Fig. 7
we study the equilibration of quark and gluon number
density and total transverse pressure (PT = P g

T + P q
T ).

We observe that the system isotropises first and only
at later times the ratio δnq/δng reaches its equilibrium
value.
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FIG. 7. Time evolution of the ratio of quark and gluon num-
ber densities δnq/δng and the transverse pressure δPT , both
normalised by their equilibrium value.
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FIG. 8. Quark momentum distribution δfq(p) as a function
of time in the minijet direction (cos θ = 1).

In Fig. 8, we show the evolution of the quark distribu-
tion along the minijet direction cos θ = 1. Although at
late times we expect (and observe) the development of a
thermal quark distribution, Eq. (19), at the early times
tT ∼ 0− 4, the quark perturbation becomes negative at
the background scale p ∼ T . This can be interpreted as
a medium response to the jet. Namely, the hard gluon
scatters off of a plasma quark and transfers momentum
to the soft particles. Therefore we see a depletion of soft
fermions and an increase of higher-momentum quarks.
The same process happens for the gluon background, but
in this case, there is a competing process of collinear
gluon radiation that masks this depletion.

The isotropisation of the net energy-momentum tensor
in the QCD case proceeds in a very similar fashion to YM.
As shown in Fig. 9, the coupling constant and minijet
energy dependence is very similar. Note, however, in
this case the couplings λ = 2, 5, 10, 15, 20 correspond
to η/s ≈ 10, 2.75, 0.97, 0.55, 0.37 in a QCD plasma [42].
In Fig. 10 we study the temperature evolution extracted
from gluon and quark distribution functions. Although
the gluons equilibrate kinetically among themselves in a

0 10 20 30 40 50

tT/(η/s
√
E/E0)
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0.25

0.50

0.75

1.00
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/δ
e λ = 2
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E = 30T
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tT/(η/s
√
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λ = 10

FIG. 9. Transverse pressure over energy density δPT /δe as
a function of scaled time for (top) different couplings λ and
(bottom) different initial energies E of the minijet for a QCD
plasma including both quarks and gluons.

very similar fashion as in the YM case (see also [42]),
fermion distributions cannot be described by a thermal
distribution until the system is chemically equilibrated.
Although in thermal equilibrium quarks are expected

to dominate the energy density, already at early times
the interaction with the medium changes the chemical
composition of the original gluon jet. In Ref. [48] this
was interpreted as the increase of flavour in quenched
jets. In Fig. 11 we show the angular composition of high
and low momentum partons of a minijet

dNs

dθ
= νs sin θ

∫ pmax

pmin

dp

∫
dϕ

(2π)2
p2δfs(p), (27)

where δfs(p) is the distribution for the original minijet
from Eq. (20). Although the kinematics of our simula-
tion is slightly different from Ref. [48], as we consider
lower energy perturbations, we reproduce the qualitative
features3. Namely, at high momentum, quarks start to
dominate already at early times, while at low momen-
tum gluons are still more abundant. Here we recall from

3 We express time in scaled units of tT , but physical units of time
can be easily recovered by considering a particular background
temperature, e.g. T ≈ 250MeV = (0.79 fm)−1.
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FIG. 10. Temperature perturbations δTa,n for (top) gluons
and (bottom) quarks as a function of time. Gluons show a
very similar behaviour to the pure glue case.

Fig. 8 that soft quarks below the temperature scale are
even depleted initially, which might explain a suppression
of the integrated yields below p < 10T .

D. Anisotropic background

Before we move on to discussing the case of an ex-
panding background, we want to address the equilibra-
tion of a minijet on top of a non-thermal background
without expansion. Even though the system is not ex-
panding, the z-direction is singled out in the initial dis-
tribution of gluons, Eq. (14), since we choose ξ ≫ 1.
This means that gluons in the z direction are highly sup-
pressed, while in the transverse plane, they are highly
occupied. We choose the initial perturbation δfg(t0,p)
to be in the transverse plane and pointing in x-direction,
i.e., cos θ = 0, ϕ = 0 (cf. Fig. 13). Hence, the loss term
in the elastic kernel Cg

2↔2(p⊥, pz = 0) receives large con-
tributions compared to the gain term, since the incoming
particles are suppressed for non-zero pz. In other words,
due to the shape of the background f̄g (τ0, p, θ), the initial
minijet perturbation is scattered out of the plane, while
the scatterings into the transverse plane are suppressed.
Note that in this case the cubic ∼ f3 terms in the elas-
tic collision kernel are suppressed for scatterings into an
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d
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FIG. 11. Angular distribution dNs(θ)/dθ of quarks and glu-
ons for (top) semihard and (bottom) soft particles.

empty region of the phase space and the subleading ∼ f2

terms are responsible for the onset of isotropisation [60].
As a consequence, for early times, the minijet perturba-
tion becomes negative for large ϕ. This can be seen in
Fig. 12, where we compare the evolution of the momen-
tum distribution δf(p) in different directions. Close to
the jet-axis (top panel), this effect is covered up by the
collinear splittings, but one can see a dip around p ∼ 2Qs.
Away from the minijet axis, we have δf < 0 in the trans-
verse plane (middle panel) and δf > 0 away from the
transverse plane indicating out-of-plane scattering.

IV. MINIJET HYDRODYNAMISATION IN
EXPANDING PLASMA

In this section, we study minijet equilibration in a
plasma undergoing Bjorken expansion. Namely, we solve
Eqs. (10a) and (10b) for quark and gluon distributions,

where the time variable is the proper time τ =
√
t2 − z2.

As in Section IIID, we now consider a minijet perturba-
tion on top of an anisotropic background parametrised
by Eq. (14). These CGC-inspired initial conditions are
highly occupied but anisotropic, and have been used pre-
viously to describe bulk QGP hydrodynamisation and
chemical equilibration [41–43, 57]. These studies have
shown that for moderate couplings the evolution becomes
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FIG. 12. Scattering out of the transverse plane for an
anisotropic background. (Top) Momentum distribution δf(p)
in minijet direction, cos θ = 0 and ϕ = 0, (middle) in the
transverse plane, but not in the minijet direction and (bot-
tom) away from the transverse plane.

universal if expressed in units of the time-dependent re-
laxation time τR(τ) = (4πη/s)/T (τ), i.e., in terms of the
scaled time w̃ = τ/τR. The effective temperature T is
defined by the background energy density

ē(τ) = νeff
π2

30
T (τ)4 . (28)

At late times the particle distributions approach the equi-
librium distribution, Eq. (11), with time-dependent tem-
perature T ∝ τ−1/3. In addition, the asymmetric plasma
expansion ∂µu

µ = 1/τ , deforms the distribution by vis-

QGP

Minijet

Momentum space 

Minijet

FIG. 13. Illustration of a parity-even minijet configuration
in momentum space for an out-of-equilibrium QGP that is
expanding in pz-direction. For an anisotropic background,
we choose the perturbation to point in x-direction.

cous corrections proportional to these gradients and the
shear viscosity η. This is encoded in the shear stress
tensor πµν which describes the deviation of the energy-
momentum tensor from ideal hydrodynamics. Generally,
we have [61]

δfvisc ∝ pµpνπ
µν . (29)

In a Bjorken expanding system, πµν is a diagonal matrix
leading to the general form

δfvisc =
η/s

τT (τ)
(1− 3 cos2 θ)F

(
p/T (τ)

)
, (30)

of linearised viscous corrections. F (p/T ) is some
isotropic function of momentum that is not known an-
alytically but can be extracted from numerical simula-
tions [62]. Viscous corrections decay only as a power of
time, whereas we will see that minijets are quenched on
shorter timescales. In the following, we will study how
minijet perturbations equilibrate in such a background
and how the separation of the initial minijet energy E
from the background energy scale Qs, and the direction
of the jet, affect the equilibration of the jet.

A. Hydrodynamisation

1. Net-energy perturbations

While the minijet perturbation equilibrates, the back-
ground f̄(τ0,p) undergoes the thermalisation process
as well. After being highly occupied initially, it ap-
proaches a form that is well described by viscous hy-
drodynamics [41]. For that reason, we are interested in
the timescales at which the minijets become part of the
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FIG. 14. Pressure anisotropy A for different initial orienta-
tions cos θ of the minijet as a function of time. Once all the
curves are in a range of 1% within each other, we say that
they have collapsed (vertical line). The black dotted line is
the expected evolution from viscous hydrodynamics.

hydrodynamic background. However, in contrast to the
non-expanding case, we do not have an analytical ex-
pression for the equilibrated minijet perturbation as in
Eq. (19). Instead, we will use the fact that the system
loses its memory of the initial conditions once the minijet
hydrodynamises. In addition to jet-like perturbations, we
will also consider the kinetic evolution of perturbations
that are very different, and consider the perturbations to
have hydrodynamised once the system evolution is the
same for both. To this end, we use the background dis-
tribution f̄(τ0,p) as a perturbation

δfaz
sym(τ0,p) =

δA

A
fsat(pT , pz). (31)

In contrast to the types of perturbations that may de-
scribe a jet, this perturbation is azimuthally symmetric.

A common quantity used to study hydrodynamisation
is the pressure anisotropy [63]

A =
δPT − δPL

δe/3
. (32)

Close to equilibrium the hydrodynamic prediction is A =
3
2π w̃

−1. In Fig. 14 we plot the anisotropy A(w̃) for jets
at different angles with the expansion axis, as well as
the azimuthally symmetric perturbation. For a minijet
in the transverse plane (cos θ = 0), the longitudinal pres-
sure vanishes and A = 3/2, while jets in the z-direction
start with positive δPL and A < 0. However, the longi-
tudinal pressure is rapidly suppressed by expansion and
A becomes positive. By the time of w̃mjh ≈ 2.7 jets
with different directions from the expansion axis, and
the azimuthally-symmetric perturbation, have the same
asymmetry as one another (and as the hydrodynamic pre-
diction) within 1%. We call it the minijet hydrodynami-
sation time.

In Fig. 15 we explicitly compare the gluon distribu-
tion function of the jet-like perturbation in the transverse
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FIG. 15. Normalised gluon distributions δfg of the minijet
and the azimuthally symmetric distribution δfaz

sym, in minijet
direction (ϕ = 0 and cos θ = 0).

plane and the azimuthally-symmetric perturbation at
late times. Initially, the minijet points in the x-direction
(ϕ = 0 and cos θ = 0). By the time of w̃mjh ≈ 2.7 the
distributions agree with each other.
Next, we study how minijet evolution depends on their

initial energy and the coupling strength. The upper panel
of Fig. 16 shows that the scaled time w̃ captures well
the coupling dependence, especially for larger values of
the coupling constant. In particular, by w̃mjh = 2.7
all simulations with coupling λ ≥ 5 follow the same
trajectory. In the lower panel of Fig. 16 we see that
the minijet energy dependence is also well captured by
3
√
E dependence. The cubic root raises from the non-

linear time dependence of w̃ ∝ τ2/3 close to equilib-
rium. We conclude that for sufficiently large couplings
and initial energies, all minijets hydrodynamise by the

time w̃mjh = 2.7 (E/E0)
1/3

.
We can convert the rescaled time in dimensionful units

following the arguments of [58] and solving

τmjhT (τmjh)

4πη/s
= 2.7

(
E

E0

)1/3

(33)

for the minijet hydrodynamisation time τmjh. At late
times, the temperature evolution approaches the ideal
hydro prediction

T (τ) =
ΛT

(ΛT τ)1/3
, (34)

where ΛT is an asymptotic energy scale, which we can
determine from the average entropy per unity rapidity in
hydrodynamic simulations

⟨sτ⟩ = νeff
4π2

90
Λ2
T . (35)

Thanks to near-ideal hydrodynamic evolution, it is pro-
portional to the produced particle multiplicity and is,
therefore, constrained by data [64].
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Substituting Eq. (34) into Eq. (33) we can solve for
τmjh

τmjh = 2.73/2
(4πη/s)3/2

ΛT

(
E

E0

)1/2

(36)

The reference energy is E0 = 30Qs, which can be ex-
pressed in terms of ΛT = 0.47Qs for the background QGP
equilibration for λ = 10. Then choosing the typical val-
ues of physical parameters η/s ≈ 0.16, ⟨sτ⟩ = 4.1GeV2

and νeff ≈ 40 [58] we obtain

τmjh = 5.1 fm

(
4πη/s

2

)3/2

×
( ⟨sτ⟩ /νeff
4.1GeV2/40

)−3/4(
E

31GeV

)1/2

(37)

This timescale is much larger than the typical back-

ground hydrodynamisation time of τQGP
hydro ∼ 1.1 fm [58]

and comparable to the total QGP lifetime in central
nucleus-nucleus collisions [64].

From Eq. (37) one would conclude that E ≈ 31GeV
partons should be fully quenched in a collision. How-
ever, one should keep in mind that this estimate applies
to a parton that is approximately on-shell and only un-
dergoing medium-induced radiation. A 31GeV parton
produced in a hard scattering would have virtuality and
therefore undergo vacuum-like fragmentation in addition
to the processes considered here. Fragmentation breaks
a high-energy parton into several lower energy ones on
timescales faster than those for typical medium interac-
tions. Therefore we anticipate that it would further de-
crease the quenching time compared to the estimate in
Eq. (37) for on-shell parton. Measurements of the jet nu-
clear modification factor at this energy, for example [65],
show that jets of such energy are significantly suppressed
compared to the proton collisions. However, the degree of
quenching can be seen more directly in measurements of
the momentum correlations between a direct photon and
the recoiling jet [66, 67]. Though these measurements
are for slightly higher momenta, most jets retain a sub-
stantial fraction of their energy. Therefore the quenching
time estimate from Eq. (37) seems too high.

One possible reason for short hydrodynamisation times
is that in our simulations the interaction strength is con-
trolled by η/s for both the background and perturba-
tions since there is no running of the coupling constant
at leading order. In contrast, current energy loss mod-
els use a separate parameter, q̂/T 3, to set the strength of
jet quenching. In reality, it is likely that high-momentum
partons will be more weakly coupled to the medium than
medium-medium interactions which would tend to de-
crease the degree of quenching. Though presumably less
important than the previously-mentioned effects, our es-
timate is also based on boost-invariant simulations, which
becomes less accurate when the QGP transitions to 3D
expansion at times comparable to the typical system size.
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FIG. 16. Longitudinal pressure over energy δPL/δe as func-
tion of time for (top) different couplings λ and (bottom) dif-
ferent energies E. In the top panel we compare the evolution
with the azimuthally symmetric perturbation δfaz
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FIG. 17. The moments δMz as a function of time, normalised
by the flux δT tz. Different lines correspond to different initial
orientations of the minijet with respect to the expansion axis.

Therefore the validity of Eq. (37) improves for smaller ini-
tial parton energies, where the effect of running coupling
and the 3D expansions is smaller.
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2. Net-momentum perturbations

Analogously to the static case studied in Section III B,
we would like to investigate the equilibration of the
parity-odd perturbations in the expanding background.
These parity-odd perturbations add to the momentum of
the system, δT ti, but keep the other diagonal components
of the energy-momentum tensor, like energy density δe
or the pressure δPT,L, unchanged. Therefore to monitor
its equilibration, we need to introduce new parity-odd
moments of δf . To this end, we define

δMz =
∑

a

νa

∫
d3p

(2π)3
(pz)

3

p2
δfa(p), (38)

where pz/p = cos θ and θ is the angle to the beam axis.
It is straightforward to show that in thermal equilibrium
we have that δMz = 3

5δT
tz (see Eq. (19)).

In Fig. 17 we plot the time evolution of the ratio
δMz/δT

tz as a function of w̃ for different initial an-
gles between the perturbation and the expansion axis.
Following a strong decrease due to the rapid expansion
in the beginning, δMz approaches the equilibrium value
for all angles between the minijet and expansion axes.
The evolution for different angles cos θ is the same be-
ginning around w̃ ≈ 2, which we interpret as hydrody-
namisation time for parity-odd perturbations. This time
is somewhat smaller than for the parity even perturba-
tions, cf. Fig. 14. This is consistent with the finding in
Section III B that for a static background, the velocity
field δuz is built up faster than the temperature field δT .

B. Chemical equilibration

We will now study how the quark and gluon fraction of
the minijets evolve within an expanding background. In
Fig. 18 we show the time evolution of the ratio of quark
and gluon densities δnq/δng compared to the build-up
of longitudinal pressure δPL, as in Fig. 7. Interestingly,
the order of chemical and kinetic equilibration is now re-
versed. This is consistent with the ordering found for
the background evolution in Bjorken expansion [42, 43].
The longitudinal expansion generates pressure anisotropy
proportional to expansion rate ∂µu

µ = 1/τ and specific
shear viscosity η/s. However, expansion does not imbal-
ance the chemical composition of the plasma and chem-
ical equilibration can be achieved faster than isotropisa-
tion.

So far, we have studied minijets initiated by a per-
turbation in the gluon distribution. However, we can
similarly study the evolution of a non-zero quark per-
turbation δfq(τ0,p) and set the initial gluon distribution
to zero. The evolution for such an initial condition is
depicted with dashed lines in Fig. 18. We observe that
gluons are produced rapidly, and the perturbation be-
comes gluon-dominated at w̃ < 1. From then on, the

0 2 4 6 8

w̃

0.00

0.25

0.50

0.75

1.00

(δnq/δng)
/

(δnq/δng)th

3δPL/δe

initial quark jet

FIG. 18. Time evolution of the ratio of quark and gluon
number densities δnq/δng and the transverse pressure δPT

in an expanding system. Both quantities are normalised by
their equilibrium value. Solid (dashed) lines correspond to
the evolution of an initial gluon (quark) jet.

evolution is qualitatively similar to the case of an ini-
tial gluon jet, although the equilibration is slightly de-
layed. The pressure PL takes more time to isotropise in
the beginning, but by around w̃mjh ≈ 2.7 both quark-
and gluon-initiated perturbations have reached the same
anisotropy.

V. CONCLUSIONS

In this paper, we used a leading-order QCD effec-
tive kinetic theory to study the thermalisation of high-
momentum low-virtuality partons (minijets) in the QGP.
Using a unifying framework of kinetic theory we were
able to simultaneously describe the evolution of the back-
ground QGP and the thermalisation of a linearised high-
momentum perturbation. Consequently, both the high-
momentum energy loss and low-momentum transport are
governed by the same parameter—the QCD coupling
constant—which we quantify by the physical property
of QGP, the specific shear viscosity η/s. Improving on
the previous work of minijet quenching in thermal back-
grounds, we studied minijet thermalisation and hydrody-
namisation in a Bjorken-expanding QGP.
In the first part of the paper, we studied the equilibra-

tion of minijets in a static thermal background and found
that the two conserved quantities (energy and momen-
tum) are deposited and thermalise in slightly different
ways. Energy is deposited via a two-step cascade, where
the energy of the high-momentum parton first flows to
the soft sector by collinear cascade and then is isotropised
by elastic scatterings. This results in a scaling of the dis-
tribution function characterised by an angle-dependent
temperature, prior to isotropisation. In contrast, the
momentum deposition to the thermal plasma proceeds
faster and we observe no two-step thermalisation. We
find that pressure isotropisation precedes chemical equi-
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libration for non-expanding plasma, which is the same as
for the background QGP [42, 43].

In the second part of the paper, we studied minijets
embedded in an expanding and non-equilibrium QGP.
Because the longitudinal expansion breaks the rotational
symmetry, we considered minijets initialised at differ-
ent angles with respect to the direction of the expan-
sion. We found that the longitudinal expansion rapidly
inverses the pressure anisotropy of minijets pointing to-
wards the beam axis. Performing simulations for different
coupling values and initial minijet energies, we find that
high-momentum perturbations hydrodynamise, meaning
that they become indistinguishable from soft background
perturbations, at the rescaled time w̃mjh ≈ 2.7 3

√
E/E0,

where w̃ = τT (τ)/(4πη/s). Although we mostly studied
gluon-initiated perturbations, we also found that quark-
initiated jets are quickly populated by gluons and the
subsequent evolution is qualitatively the same as for
gluon jets.

We presented a detailed study of how high-momentum
perturbations, minijets, are quenched by the QCD
medium in and out-of-equilibrium in leading order QCD
kinetic theory. However, our study involved several sim-
plifications that should be relaxed for a more realistic
description of minijets in heavy-ion collisions. First,
we considered perturbations that are homogeneous in
space and boost-invariant. Therefore our results could be
thought of as spatially-averaged but momentum-resolved
evolution of minijets. Similarly, at late times the trans-
verse dynamics of the QGP can no longer be neglected.
Therefore relaxing the assumptions about homogeneity
and boost-invariance of both background and perturba-
tions is an important next step in the detailed studies of
jet medium-interactions. However, such simulations are
computationally demanding as the dimensionality of the
phase-space increases. Second, we use leading order QCD
kinetic theory and neglect the running coupling effects.
Thermalisation dynamics of the QGP at next-to-leading
order has been studied for isotropic systems in Ref. [68].
The jet-medium interactions at NLO in isotropic QGP
are known but have not been studied numerically [50]. It
would be interesting to study the effect of higher-order
corrections on minijet quenching. However, it will be
difficult to describe the final stages of minijet thermali-

sation, where the full control of NLO corrections in an
anisotropic medium is needed [69].

The minijet partons that we have studied in this work
should be interpreted as the by-products of a jet vac-
uum shower, and therefore, our work contributes to a
better understanding of jet-medium interactions. This
work represents a key step towards future developments
aimed at incorporating QCD kinetic theory treatments
of equilibration into jet phenomenology. For example,
Refs. [21, 70] has motivated the factorisation of vacuum-
like splittings from the medium-induced splittings that
we consider in this work. In the future, that approach
may be integrated with our results to describe the ther-
malisation of jets as a composition of the thermalisa-
tion of several minijets. A promising avenue is to use
QCD kinetic theory simulations to extract medium re-
sponse functions to minijet perturbations. Such an ap-
proach is taken in the KøMPøST framework [57, 58] for
initial net-energy and net-momentum perturbations at
the typical medium energy scale. The non-equilibrium
KøMPøST response functions then describe how spatial
fluctuations of energy-momentum tensor in initial state
hydrodynamise and contribute to the subsequent hydro-
dynamic evolution. Analogously, one should be able to
construct suitable response functions to initial minijet
perturbations. We leave these exciting and challenging
undertakings to ongoing and future work.
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Sadofyev, (2023), arXiv:2309.00683 [hep-ph].

[20] K. C. Zapp, Eur. Phys. J. C 74, 2762 (2014),
arXiv:1311.0048 [hep-ph].

[21] P. Caucal, E. Iancu, and G. Soyez, JHEP 10, 273 (2019),
arXiv:1907.04866 [hep-ph].

[22] J. Casalderrey-Solana, D. C. Gulhan, J. G. Milhano,
D. Pablos, and K. Rajagopal, JHEP 10, 019 (2014),
[Erratum: JHEP 09, 175 (2015)], arXiv:1405.3864 [hep-
ph].

[23] Y. He, T. Luo, X.-N. Wang, and Y. Zhu, Phys. Rev.
C 91, 054908 (2015), [Erratum: Phys.Rev.C 97, 019902
(2018)], arXiv:1503.03313 [nucl-th].

[24] S. Cao et al. (JETSCAPE), Phys. Rev. C 104, 024905
(2021), arXiv:2102.11337 [nucl-th].

[25] B. Schenke, C. Gale, and S. Jeon, Phys. Rev. C 80,
054913 (2009), arXiv:0909.2037 [hep-ph].

[26] J. Casalderrey-Solana, D. Gulhan, G. Milhano, D. Pab-
los, and K. Rajagopal, JHEP 03, 135 (2017),
arXiv:1609.05842 [hep-ph].

[27] G. Milhano, U. A. Wiedemann, and K. C. Zapp, Phys.
Lett. B 779, 409 (2018), arXiv:1707.04142 [hep-ph].

[28] Y. Tachibana, N.-B. Chang, and G.-Y. Qin, Phys. Rev.
C 95, 044909 (2017), arXiv:1701.07951 [nucl-th].

[29] R. Kunnawalkam Elayavalli and K. C. Zapp, JHEP 07,
141 (2017), arXiv:1707.01539 [hep-ph].

[30] Y. Kanakubo, Y. Tachibana, and T. Hirano, Phys. Rev.
C 101, 024912 (2020), arXiv:1910.10556 [nucl-th].

[31] Y. Kanakubo, Y. Tachibana, and T. Hirano, Phys. Rev.
C 105, 024905 (2022), arXiv:2108.07943 [nucl-th].

[32] C. Gale, S. Jeon, D. Pablos, and M. Singh, in 11th
International Conference on Hard and Electromagnetic
Probes of High-Energy Nuclear Collisions: Hard Probes
2023 (2023) arXiv:2307.07844 [hep-ph].

[33] W. Chen, S. Cao, T. Luo, L.-G. Pang, and X.-N. Wang,
Phys. Lett. B 777, 86 (2018), arXiv:1704.03648 [nucl-th].

[34] J. Casalderrey-Solana, J. G. Milhano, D. Pablos,
K. Rajagopal, and X. Yao, JHEP 05, 230 (2021),
arXiv:2010.01140 [hep-ph].

[35] Y. Tachibana et al. (JETSCAPE), Acta Phys. Polon.
Supp. 16, A50 (2023), arXiv:2212.12188 [hep-ph].

[36] P. B. Arnold, G. D. Moore, and L. G. Yaffe, JHEP 01,
030 (2003), arXiv:hep-ph/0209353.

[37] R. Baier, A. H. Mueller, D. Schiff, and D. T. Son, Phys.
Lett. B 502, 51 (2001), arXiv:hep-ph/0009237.

[38] J. Berges, M. P. Heller, A. Mazeliauskas, and

R. Venugopalan, Rev. Mod. Phys. 93, 035003 (2021),
arXiv:2005.12299 [hep-th].

[39] S. Schlichting and D. Teaney, Ann. Rev. Nucl. Part. Sci.
69, 447 (2019), arXiv:1908.02113 [nucl-th].

[40] A. Kurkela and E. Lu, Phys. Rev. Lett. 113, 182301
(2014), arXiv:1405.6318 [hep-ph].

[41] A. Kurkela and Y. Zhu, Phys. Rev. Lett. 115, 182301
(2015), arXiv:1506.06647 [hep-ph].

[42] A. Kurkela and A. Mazeliauskas, Phys. Rev. D 99,
054018 (2019), arXiv:1811.03068 [hep-ph].

[43] A. Kurkela and A. Mazeliauskas, Phys. Rev. Lett. 122,
142301 (2019), arXiv:1811.03040 [hep-ph].

[44] X. Du and S. Schlichting, Phys. Rev. D 104, 054011
(2021), arXiv:2012.09079 [hep-ph].

[45] X. Du and S. Schlichting, Phys. Rev. Lett. 127, 122301
(2021), arXiv:2012.09068 [hep-ph].

[46] S. Schlichting and I. Soudi, JHEP 07, 077 (2021),
arXiv:2008.04928 [hep-ph].

[47] Y. Mehtar-Tani, S. Schlichting, and I. Soudi, (2022),
10.1007/JHEP05(2023)091, arXiv:2209.10569 [hep-ph].

[48] C. Sirimanna, I. Soudi, G. Vujanovic, W.-J. Xing, S. Cao,
and A. Majumder, Phys. Rev. C 108, 014911 (2023),
arXiv:2211.15553 [hep-ph].

[49] M. C. Abraao York, A. Kurkela, E. Lu, and G. D. Moore,
Phys. Rev. D 89, 074036 (2014), arXiv:1401.3751 [hep-
ph].

[50] J. Ghiglieri, G. D. Moore, and D. Teaney, JHEP 03, 095
(2016), arXiv:1509.07773 [hep-ph].

[51] L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk
Ser. Fiz. 92, 535 (1953).

[52] L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk
Ser. Fiz. 92, 735 (1953).

[53] A. B. Migdal, Phys. Rev. 103, 1811 (1956).
[54] P. B. Arnold, G. D. Moore, and L. G. Yaffe, JHEP 06,

030 (2002), arXiv:hep-ph/0204343.
[55] G. Baym, Phys. Lett. B 138, 18 (1984).
[56] L. Keegan, A. Kurkela, A. Mazeliauskas, and D. Teaney,

JHEP 08, 171 (2016), arXiv:1605.04287 [hep-ph].
[57] A. Kurkela, A. Mazeliauskas, J.-F. Paquet, S. Schlicht-

ing, and D. Teaney, Phys. Rev. C 99, 034910 (2019),
arXiv:1805.00961 [hep-ph].

[58] A. Kurkela, A. Mazeliauskas, J.-F. Paquet, S. Schlicht-
ing, and D. Teaney, Phys. Rev. Lett. 122, 122302 (2019),
arXiv:1805.01604 [hep-ph].

[59] L. Keegan, A. Kurkela, P. Romatschke, W. van der Schee,
and Y. Zhu, JHEP 04, 031 (2016), arXiv:1512.05347
[hep-th].

[60] T. Epelbaum, F. Gelis, S. Jeon, G. Moore, and B. Wu,
JHEP 09, 117 (2015), arXiv:1506.05580 [hep-ph].

[61] D. Teaney, Phys. Rev. C 68, 034913 (2003), arXiv:nucl-
th/0301099.

[62] K. Dusling, G. D. Moore, and D. Teaney, Phys. Rev. C
81, 034907 (2010), arXiv:0909.0754 [nucl-th].

[63] W. Florkowski, M. P. Heller, and M. Spalinski, Rept.
Prog. Phys. 81, 046001 (2018), arXiv:1707.02282 [hep-
ph].

[64] P. Hanus, A. Mazeliauskas, and K. Reygers, Phys. Rev.
C 100, 064903 (2019), arXiv:1908.02792 [hep-ph].

[65] S. Acharya et al. (ALICE), Phys. Rev. C 101, 034911
(2020), arXiv:1909.09718 [nucl-ex].

[66] A. M. Sirunyan et al. (CMS), Phys. Lett. B 785, 14
(2018), arXiv:1711.09738 [nucl-ex].

[67] M. Aaboud et al. (ATLAS), Phys. Lett. B 789, 167
(2019), arXiv:1809.07280 [nucl-ex].

http://arxiv.org/abs/hep-ph/9607355
http://dx.doi.org/10.1134/1.567126
http://arxiv.org/abs/hep-ph/9607440
http://arxiv.org/abs/hep-ph/9607440
http://dx.doi.org/10.1134/1.567389
http://arxiv.org/abs/hep-ph/9704255
http://arxiv.org/abs/hep-ph/9704255
http://dx.doi.org/10.1007/JHEP08(2011)015
http://dx.doi.org/10.1007/JHEP08(2011)015
http://arxiv.org/abs/1105.1760
http://dx.doi.org/10.1142/S021830131530012X
http://dx.doi.org/10.1142/S021830131530012X
http://arxiv.org/abs/1503.05958
http://arxiv.org/abs/2307.06226
http://dx.doi.org/10.1103/PhysRevC.105.014914
http://dx.doi.org/10.1103/PhysRevC.105.014914
http://arxiv.org/abs/2109.04575
http://dx.doi.org/10.1007/JHEP08(2023)027
http://arxiv.org/abs/2303.03914
http://dx.doi.org/10.1103/PhysRevD.108.034018
http://arxiv.org/abs/2304.03712
http://arxiv.org/abs/2309.00683
http://dx.doi.org/10.1140/epjc/s10052-014-2762-1
http://arxiv.org/abs/1311.0048
http://dx.doi.org/10.1007/JHEP10(2019)273
http://arxiv.org/abs/1907.04866
http://dx.doi.org/ 10.1007/JHEP09(2015)175
http://arxiv.org/abs/1405.3864
http://arxiv.org/abs/1405.3864
http://dx.doi.org/ 10.1103/PhysRevC.91.054908
http://dx.doi.org/ 10.1103/PhysRevC.91.054908
http://arxiv.org/abs/1503.03313
http://dx.doi.org/10.1103/PhysRevC.104.024905
http://dx.doi.org/10.1103/PhysRevC.104.024905
http://arxiv.org/abs/2102.11337
http://dx.doi.org/10.1103/PhysRevC.80.054913
http://dx.doi.org/10.1103/PhysRevC.80.054913
http://arxiv.org/abs/0909.2037
http://dx.doi.org/ 10.1007/JHEP03(2017)135
http://arxiv.org/abs/1609.05842
http://dx.doi.org/10.1016/j.physletb.2018.01.029
http://dx.doi.org/10.1016/j.physletb.2018.01.029
http://arxiv.org/abs/1707.04142
http://dx.doi.org/10.1103/PhysRevC.95.044909
http://dx.doi.org/10.1103/PhysRevC.95.044909
http://arxiv.org/abs/1701.07951
http://dx.doi.org/10.1007/JHEP07(2017)141
http://dx.doi.org/10.1007/JHEP07(2017)141
http://arxiv.org/abs/1707.01539
http://dx.doi.org/10.1103/PhysRevC.101.024912
http://dx.doi.org/10.1103/PhysRevC.101.024912
http://arxiv.org/abs/1910.10556
http://dx.doi.org/10.1103/PhysRevC.105.024905
http://dx.doi.org/10.1103/PhysRevC.105.024905
http://arxiv.org/abs/2108.07943
http://arxiv.org/abs/2307.07844
http://dx.doi.org/ 10.1016/j.physletb.2017.12.015
http://arxiv.org/abs/1704.03648
http://dx.doi.org/ 10.1007/JHEP05(2021)230
http://arxiv.org/abs/2010.01140
http://dx.doi.org/10.5506/APhysPolBSupp.16.1-A50
http://dx.doi.org/10.5506/APhysPolBSupp.16.1-A50
http://arxiv.org/abs/2212.12188
http://dx.doi.org/10.1088/1126-6708/2003/01/030
http://dx.doi.org/10.1088/1126-6708/2003/01/030
http://arxiv.org/abs/hep-ph/0209353
http://dx.doi.org/ 10.1016/S0370-2693(01)00191-5
http://dx.doi.org/ 10.1016/S0370-2693(01)00191-5
http://arxiv.org/abs/hep-ph/0009237
http://dx.doi.org/10.1103/RevModPhys.93.035003
http://arxiv.org/abs/2005.12299
http://dx.doi.org/10.1146/annurev-nucl-101918-023825
http://dx.doi.org/10.1146/annurev-nucl-101918-023825
http://arxiv.org/abs/1908.02113
http://dx.doi.org/10.1103/PhysRevLett.113.182301
http://dx.doi.org/10.1103/PhysRevLett.113.182301
http://arxiv.org/abs/1405.6318
http://dx.doi.org/10.1103/PhysRevLett.115.182301
http://dx.doi.org/10.1103/PhysRevLett.115.182301
http://arxiv.org/abs/1506.06647
http://dx.doi.org/10.1103/PhysRevD.99.054018
http://dx.doi.org/10.1103/PhysRevD.99.054018
http://arxiv.org/abs/1811.03068
http://dx.doi.org/10.1103/PhysRevLett.122.142301
http://dx.doi.org/10.1103/PhysRevLett.122.142301
http://arxiv.org/abs/1811.03040
http://dx.doi.org/10.1103/PhysRevD.104.054011
http://dx.doi.org/10.1103/PhysRevD.104.054011
http://arxiv.org/abs/2012.09079
http://dx.doi.org/10.1103/PhysRevLett.127.122301
http://dx.doi.org/10.1103/PhysRevLett.127.122301
http://arxiv.org/abs/2012.09068
http://dx.doi.org/10.1007/JHEP07(2021)077
http://arxiv.org/abs/2008.04928
http://dx.doi.org/10.1007/JHEP05(2023)091
http://dx.doi.org/10.1007/JHEP05(2023)091
http://arxiv.org/abs/2209.10569
http://dx.doi.org/ 10.1103/PhysRevC.108.014911
http://arxiv.org/abs/2211.15553
http://dx.doi.org/10.1103/PhysRevD.89.074036
http://arxiv.org/abs/1401.3751
http://arxiv.org/abs/1401.3751
http://dx.doi.org/10.1007/JHEP03(2016)095
http://dx.doi.org/10.1007/JHEP03(2016)095
http://arxiv.org/abs/1509.07773
http://dx.doi.org/10.1103/PhysRev.103.1811
http://dx.doi.org/10.1088/1126-6708/2002/06/030
http://dx.doi.org/10.1088/1126-6708/2002/06/030
http://arxiv.org/abs/hep-ph/0204343
http://dx.doi.org/10.1016/0370-2693(84)91863-X
http://dx.doi.org/10.1007/JHEP08(2016)171
http://arxiv.org/abs/1605.04287
http://dx.doi.org/10.1103/PhysRevC.99.034910
http://arxiv.org/abs/1805.00961
http://dx.doi.org/10.1103/PhysRevLett.122.122302
http://arxiv.org/abs/1805.01604
http://dx.doi.org/ 10.1007/JHEP04(2016)031
http://arxiv.org/abs/1512.05347
http://arxiv.org/abs/1512.05347
http://dx.doi.org/ 10.1007/JHEP09(2015)117
http://arxiv.org/abs/1506.05580
http://dx.doi.org/10.1103/PhysRevC.68.034913
http://arxiv.org/abs/nucl-th/0301099
http://arxiv.org/abs/nucl-th/0301099
http://dx.doi.org/10.1103/PhysRevC.81.034907
http://dx.doi.org/10.1103/PhysRevC.81.034907
http://arxiv.org/abs/0909.0754
http://dx.doi.org/10.1088/1361-6633/aaa091
http://dx.doi.org/10.1088/1361-6633/aaa091
http://arxiv.org/abs/1707.02282
http://arxiv.org/abs/1707.02282
http://dx.doi.org/10.1103/PhysRevC.100.064903
http://dx.doi.org/10.1103/PhysRevC.100.064903
http://arxiv.org/abs/1908.02792
http://dx.doi.org/10.1103/PhysRevC.101.034911
http://dx.doi.org/10.1103/PhysRevC.101.034911
http://arxiv.org/abs/1909.09718
http://dx.doi.org/10.1016/j.physletb.2018.07.061
http://dx.doi.org/10.1016/j.physletb.2018.07.061
http://arxiv.org/abs/1711.09738
http://dx.doi.org/10.1016/j.physletb.2018.12.023
http://dx.doi.org/10.1016/j.physletb.2018.12.023
http://arxiv.org/abs/1809.07280


17

[68] Y. Fu, J. Ghiglieri, S. Iqbal, and A. Kurkela, Phys. Rev.
D 105, 054031 (2022), arXiv:2110.01540 [hep-ph].

[69] J. Ghiglieri, G. D. Moore, and D. Teaney, JHEP 03, 179
(2018), arXiv:1802.09535 [hep-ph].

[70] P. Caucal, E. Iancu, A. H. Mueller, and G. Soyez, Phys.
Rev. Lett. 120, 232001 (2018), arXiv:1801.09703 [hep-
ph].

[71] A. Kurkela, R. Törnkvist, and K. Zapp, (2022),
arXiv:2211.15454 [hep-ph].

[72] P. B. Arnold and C. Dogan, Phys. Rev. D 78, 065008
(2008), arXiv:0804.3359 [hep-ph].

http://dx.doi.org/ 10.1103/PhysRevD.105.054031
http://dx.doi.org/ 10.1103/PhysRevD.105.054031
http://arxiv.org/abs/2110.01540
http://dx.doi.org/10.1007/JHEP03(2018)179
http://dx.doi.org/10.1007/JHEP03(2018)179
http://arxiv.org/abs/1802.09535
http://dx.doi.org/10.1103/PhysRevLett.120.232001
http://dx.doi.org/10.1103/PhysRevLett.120.232001
http://arxiv.org/abs/1801.09703
http://arxiv.org/abs/1801.09703
http://arxiv.org/abs/2211.15454
http://dx.doi.org/10.1103/PhysRevD.78.065008
http://dx.doi.org/10.1103/PhysRevD.78.065008
http://arxiv.org/abs/0804.3359


18

Appendix A: Linearised collision kernels

The linearised collision kernel δC[f̄ , δf ] consists of elas-
tic 2 ↔ 2 scatterings and inelastic effective 1 ↔ 2 split-
ting and merging processes. Once we linearise, we get
one contribution from the gain and loss terms and one

contribution from the matrix elements.

a. 2 ↔ 2-processes

First we consider the 2 ↔ 2-processes. The unper-
turbed collision term can be written as

Cs
2↔2[f ](p̃) =

1

2

1

νs

1

4

∑

abcd

(2π)3
∫

pkp′k′
|Mab

cd|2(2π)4δ(4)(P +K − P ′ −K ′)

× {(fa
pf

b
k(1± f c

p′)(1± fd
k′))− (f c

p′fd
k′(1± fa

p)(1± f b
k))}

× [δ(p̃− p)δas + δ(p̃− k)δbs − δ(p̃− p′)δcs − δ(p̃− k′)δds] ,

(A1)

The linearised kernel can be split into two parts

δCs
2↔2[f ](p̃) = δC

s,(1)
2↔2 [f ](p̃) + δC

s,(2)
2↔2 [f ](p̃), (A2)

and first we will look at the linearisation of the gain and

loss terms δC
s,(1)
2↔2 [f ](p̃). This can be straightforwardly

carried out and we get

δC
s,(1)
2↔2 [f ](p̃) =

1

8νs
(2π)3

∫

pkp′k′

{[
|Mgg

gg|2
]
(δfg

pf
g
k(1 + fg

p′)(1 + fg
k′)− δfg

k(1 + fg
k)f

g
p′f

g
k′

+ fg
pδf

g
k(1 + fg

p′)(1 + fg
k′)− (1 + fg

k)δf
g
kf

g
p′f

g
k′

+ fg
pf

g
kδf

g
p′(1 + fg

k′)− (1 + fg
k)(1 + fg

k)δf
g
p′f

g
k′

+ fg
pf

g
k(1 + fg

p′)δf
g
k′ − (1 + fg

k)(1 + fg
k)f

g
p′δf

g
k′)

× [δ(p̃− p)δgs + δ(p̃− k)δgs − δ(p̃− p′)δgs − δ(p̃− k′)δgs]

+
[
2|Mgg

q1q̄1 |2
]
(δfg

pf
g
k(1− fq

p′)(1− fq
k′)− δfg

k(1 + fg
k)f

q
p′f

q
k′

+ fg
pδf

g
k(1− fq

p′)(1− fq
k′)− (1 + fg

k)δf
g
kf

q
p′f

q
k′

+ fg
pf

g
k(−δfq

p′)(1− fq
k′)− (1 + fg

k)(1 + fg
k)δf

q
p′f

q
k′

+ fg
pf

g
k(1− fq

p′)(−δfq
k′)− (1 + fg

k)(1 + fg
k)f

q
p′δf

q
k′)

× [(2Nf )δ(p̃− p)δgs + (2Nf )δ(p̃− k)δgs − δ(p̃− p′)δqs − δ(p̃− k′)δqs]

+
[
4|Mq1g

q1g|2
]
(δfq

pf
g
k(1− fq

p′)(1 + fg
k′)− (−δfq

p)(1 + fg
k)f

q
p′f

g
k′

+ fq
pδf

g
k(1− fq

p′)(1 + fg
k′)− (1− fq

p)δf
g
kf

q
p′f

g
k′

+ fq
pf

g
k(−δfq

p′)(1 + fg
k′)− (1− fq

p)(1 + fg
k)δf

q
p′f

g
k′

+ fq
pf

g
k(1− fq

p′)δf
g
k′)− (1− fq

p)(1 + fg
k)f

q
p′δf

g
k′)

× [δ(p̃− p)δqs + (2Nf )δ(p̃− k)δgs − δ(p̃− p′)δqs − (2Nf )δ(p̃− k′)δgs]

+
[
2[2(Nf − 1)]|Mq1q2

q1q2 |2 + [2(Nf − 1)]|Mq1q̄1
q2q̄2 |2 + 2|Mq1q̄1

q1q̄1 |2 + |Mq1q1
q1q1 |2

]

× (δfq
pf

q
k(1− fq

p′)(1− fq
k′)− (−δfq

p)(1− fq
k)f

q
p′f

q
k′

+ fq
pδf

q
k(1− fq

p′)(1− fq
k′)− (1− fq

p)(−δfq
k)f

q
p′f

q
k′

+ fq
pf

q
k(−δfq

p′)(1− fq
k′)− (1− fq

p)(1− fq
k)δf

q
p′f

q
k′

+ fq
pf

q
k(1− fq

p′)δq
g
k′ − (1− fq

p)(1− fq
k)f

q
p′δf

q
k′)]

× [δ(p̃− p)δqs + δ(p̃− k)δqs − δ(p̃− p′)δqs − δ(p̃− k′)δqs]

}
.

(A3)
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We have explicitly summed over the different fermion
flavours (Nf = 3) and over quarks and anti-quarks.

The other contribution δC
s,(2)
2↔2 [f ](p̃) comes from the

matrix elements that include the medium induced effec-
tive masses from Eqs. (5) and (6) in order to regulate soft
momentum transfer, leading to

δC
s,(2)
2↔2 [f ](p̃) =

1

8νs
(2π)3

∫

pkp′k′

{[
δ|Mgg

gg|2
]
(fg

pf
g
k(1 + fg

p′)(1 + fg
k′)− (1 + fg

p)(1 + fg
k)f

g
p′f

g
k′)

× [δ(p̃− p)δgs + δ(p̃− k)δgs − δ(p̃− p′)δgs − δ(p̃− k′)δgs]

+
[
2δ|Mgg

q1q̄1 |2
]
(fg

pf
g
k(1− fq

p′)(1− fq
k′)− (1 + fg

p)(1 + fg
k)f

q
p′f

q
k′)

× [(2Nf )δ(p̃− p)δgs + (2Nf )δ(p̃− k)δgs − δ(p̃− p′)δqs − δ(p̃− k′)δqs]

+
[
4δ|Mq1g

q1g|2
]
(fq

pf
g
k(1− fq

p′)(1 + fg
k′)− (1− fq

p)(1 + fg
k)f

q
p′f

g
k′)

× [δ(p̃− p)δqs + (2Nf )δ(p̃− k)δgs − δ(p̃− p′)δqs − (2Nf )δ(p̃− k′)δgs]

+
[
2[2(Nf − 1)]δ|Mq1q2

q1q2 |2 + [2(Nf − 1)]δ|Mq1q̄1
q2q̄2 |2 + 2δ|Mq1q̄1

q1q̄1 |2 + δ|Mq1q1
q1q1 |2

]

× (fq
pf

q
k(1− fq

p′)(1− fq
k′)− (1− fq

p)(1− fq
k)f

q
p′f

q
k′)]

× [δ(p̃− p)δqs + δ(p̃− k)δqs − δ(p̃− p′)δqs − δ(p̃− k′)δqs]

}
.

(A4)

The perturbed gluon mass is computed from

δm2
g = 2g2

∫
d3p

(2π)3p
[Ncδfg(p) +

Nf

2
(δfq(p) + δfq̄(p))],

(A5)
analogously δmq. This results in the following perturbed
matrix element, e.g., for gq ↔ gq̄

δ|Mgg
q1q̄1 |2/g4 = 8dFCF

[
CF

u− s

t

(
−ξ2gδm

2
g

q2 + ξ2gm
2
g

)]
.

(A6)

b. 1 ↔ 2-processes

The inelastic kernel reads

Cs
1↔2[f ](p̃) =

=
1

2

1

νs

(2π)3

4πp̃

∑

abc

∫ ∞

0

dpdp′dk′4πγa
bcδ(p− p′ − k′)

× {(fa
pn̂(1± f b

p′n̂)(1± f c
k′n̂))− (f b

p′n̂f
c
k′n̂(1± fa

pn̂)}
× [δ(p̃− p)δas − δ(p̃− p′)δbs − δ(p̃− k′)δcs] .

(A7)
By factoring out the splitting functions we can write the
rates γa

bc for each channel as

γg
gg(p; p

′, k′) =
p4 + p′4 + k′4

p3p′3k′3
Fg(p; p

′, k′), (A8)

γq
qg(p; p

′, k′) =
p2 + p′2

p2p′2k′3
Fq(p; p

′, k′), (A9)

γg
qq(p; p

′, k′) = γq
qg(k

′;−p′, p), (A10)

where scatterings with the soft background are resummed
resulting in an effective vertex [36]. p is the momentum
of the parent parton that splits into two partons with
momentum p′ = xp and k′ = (1 − x)p. The functions
Fs(p; p

′, k′) are given by

Fs(p; p
′, k′) =

νsCsg
2

8(2π)4

∫
d2h

(2π)2
h · ReFs(h; p, p

′, k′),

(A11)
where Fs is found by iteratively solving

2h = iδE(h)Fs(h) + g2T∗

∫
d2q⊥
(2π)2

A(q⊥)

×
{
1

2
(Cs + Cs − CA)[Fs(h)− Fs(h− k′q⊥)]

+
1

2
(Cs + CA − Cs)[Fs(h)− Fs(h− p′q⊥)]

+
1

2
(CA + Cs − Cs)[Fs(h)− Fs(h− pq⊥)]

}
.

(A12)

The background fluctuations A(q⊥) are treated in the
isotropic screening approximation

A(q⊥) =
1

q2
⊥

− 1

q2
⊥ + 2m2

g

. (A13)

The energy difference δE is given by

δE(h; p, p′, k′) ≡ m2
g

2k′
+

m2
s

2p′
+

m2
s

2p
+

h2

2pk′p′
, (A14)

and T∗ is the effective temperature

T∗ ≡ 1

νgm2
g

∑

s

νsg
2Cs

∫
d3p

(2π)3
fs(p)(1± fs(p)). (A15)
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We rewrite Eq. (A12) using the inverse Fourier transform

Fs(b) =

∫
d2h

(2π)2
eib·hFs(h), (A16)

and the rescaled variables b → b̃ = mgpb and F → F̃s =
1

mgp
1

2pp′k′Fs. From Eq. (A12), we know that Fs ∼ h.

Since δE is invariant under h → −h, it follows that F̃s ∼
b̃. Therefore we can write F̃s(b̃) = b̃fs(b̃) and obtain a

Schrödinger-like equation for fs(b̃)

0 =

(
∂b̃2 +

3

b
∂b̃ −

M2
s (x)

m2
g

)
fs(b̃)

+ iη
1

2

(
[2Cs − CA]C((1− x)b̃)

+CAC(xb̃) + CAC(b̃)
)
fs(b̃),

(A17)

where we have defined η = x(1 − x)λT∗p/mg and the
effective mass

M2
s (x) = xm2

g + (1− x)2m2
s. (A18)

The collision kernel C is given by

C(b̃) =

∫
d2q⊥
(2π)2

A(q⊥)
[
1− eiq⊥·b̃/mg

]
(A19)

=
1

2

[
K0

(
b̃
mD

mg

)
+ γE + log

(
b̃
mD

2mg

)]
. (A20)

The boundary conditions of Eq. (A19) are given by [71]

f(b̃)
b̃→0
=

1

πb̃2
, (A21)

f(b̃)
b̃→∞
= 0. (A22)

Solving for fs(b̃), we can relate it to Fs(p; p
′, k′) via

Fs(p; p
′, k′) =

νsCsg
2

(2π)4
m2

gp
3p′k′Imfs(0). (A23)

In practice, Eq. (A12) is solved in two limits between
which the solution is interpolated. In the Bethe-Heitler
(BH) limit where the radiated gluon is very soft (small x

or η ≪ 1), we obtain

Imfs(0) =
1

CA

[
(2Cs − CA)Q

(
(1− x)

m2
D

M2
s (x)

)

+CAQ
(
x

m2
D

M2
s (x)

)
+ CAQ

(
m2

D

M2
s (x)

)]
,

≡ fs,BH

(A24)
with the function

Q(r) =
1

8π2

[
i(r − 2) [Li2 (r−)− Li2 (r+)]√

(4− r)r
− log(r) + 2

]
,

(A25)
where r± = 1 − r

2 ± i
2

√
(4− r)r. Taking the opposite

LPM-limit for η ≫ 1 we get [72]

Imfs(0) =
1

8π3/2

1

CA

{
(2Cs − CA) (1− x)2 ln

(
ξ
√
2η

(1− x)2
+ 1

)

+CAx
2 ln

(
ξ
√
2η

x2
+ 1

)
+ CA ln

(
ξ
√
2η

1
+ 1

)}1/2

,

≡ fs,LPM

(A26)
with ξ = e2−γE+π/4 ≈ 9.099164. The interpolating func-
tion for Imfs(0) can then be expressed as

Imfs(0) =
[√

η + 1− 1
]{ 1

1 + η
fs,BH +

η

1 + η
fs,LPM

}
.

(A27)
Analogously to the elastic kernel Cs

2↔2, the inelastic ker-
nel receives two contributions upon linearisation

δCs
1↔2[f ](p̃) = δC

s,(1)
1↔2 [f ](p̃) + δC

s,(2)
1↔2 [f ](p̃), (A28)

where δCs
1↔2[f ](p̃) accounts for the perturbation of the

loss and gain terms. For the linearisation of the rates γa
bc

in δC
s,(2)
1↔2 [f ](p̃) one takes into account

δη = η

(
δT∗
T∗

− δm2
g

m2
g

)
. (A29)

Additionally, in the BH-limit, one has to consider the
perturbation of the effective masses δM2

s (x) which, in
particular, only contribute to the channels that involve
quarks.

4 Not to be confused with the anisotropy parameter in Eq. (14)
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