Attractor behavior of pre-equilibrium transport coefficients

T. Lappi

University of Jyväskylä, Finland

New jet quenching tools to explore equilibrium and non-equilibrium dynamics in heavy-ion collisions, ECT*, Feb 2024

Outline

- Bottom-up thermalization, QCD kinetic theory
- Attractor behavior in pressure
- Calculating transport coefficients in QCD kinetic theory
- Attractor in transport coefficients

This talk:

- Heavy quark diffusion coefficient in heavy-ion collisions via kinetic theory,
 K. Boguslavski, A. Kurkela, T. L., F. Lindenbauer, J. Peuron, arXiv:2303.12520 [hep-ph]
- Jet momentum broadening during initial stages in heavy-ion collisions,
 K. Boguslavski, A. Kurkela, T.L., F. Lindenbauer, J. Peuron, arXiv:2303.12595 [hep-ph]
- Limiting attractors in heavy-ion collisions K. Boguslavski, A. Kurkela, T.L., F. Lindenbauer, J. Peuron, arXiv:2312.11252 [hep-ph]
- Jet quenching parameter in QCD kinetic theory K. Boguslavski, A. Kurkela, T.L., F. Lindenbauer, J. Peuron, arXiv:2312.00447 [hep-ph]
- 1+1D boost invariant expansion

Goal: calculate transport coefficients $\hat{\mathbf{q}}$ and κ in pre-equilibrium phase

Heavy ion collision in spacetime

• Timescales for hard $M \sim m_c, p_T$ probes:

 $1/M \ll 1/Q_{\rm s} \ll t_{\rm therm}$

▶ Hard probes M ~ m_c, p_T created first ⇒ cannot neglect pre-equilibrium
 ▶ Even if thermalization is quick, pre-equilibrium is hot, dense ⇒ large effect

Heavy ion collision in spacetime

• Timescales for hard $M \sim m_c, p_T$ probes:

 $1/M \ll 1/Q_{\rm s} \ll t_{\rm therm}$

▶ Hard probes M ~ m_c, p_T created first ⇒ cannot neglect pre-equilibrium
 ▶ Even if thermalization is quick, pre-equilibrium is hot, dense ⇒ large effect

Bottom-up thermalization

Bottom-up thermalization

Weak coupling QCD description of Glasma \implies QGP Baier, Mueller, Schiff, Son hep-ph/0009237

3 stages

- 1. Overoccupied, classical field stage $(0 \rightarrow \star)$: growing anisotropy of hard $\sim Q_s$ modes
- 2. Bath of soft particles develops (* \rightarrow •)
- 3. Radiative breakup of hard particles ($\bullet \rightarrow \mathbf{v}$)

$$\tau_{\rm BMSS} = \alpha_{\rm s}^{-13/5} {\rm Q}_{\rm s}^{-1}$$

Can be tracked with AMY kinetic theory:

$$-\frac{\mathsf{d}}{\mathsf{d}\tau}f_{\mathbf{p}} = \mathcal{C}^{2\leftrightarrow 2}[f_{\mathbf{p}}] + \mathcal{C}^{1\leftrightarrow 2}[f_{\mathbf{p}}] + \mathcal{C}^{\exp}[f_{\mathbf{p}}].$$

Different initial conditions converge (ξ : initial anisotropy, $\lambda = 4\pi N_{\rm C} \alpha_{\rm S}$)

Approach to hydro

- Bjorken hydro $\varepsilon \sim 1/\tau^{4/3}$
- Most of pre-equilibrium: $\varepsilon \sim 1/\tau$

• T_{id} = bkwd extrapolated ideal hydro • $T_{e} \sim \sqrt[4]{e}$

Attractors

Two "limiting attractors"

$$\tau_{R}(\lambda,\tau)=\frac{4\pi\frac{\eta}{s}}{T_{\varepsilon}}$$

(T_{ε} from energy density)

- Isotropization rate near equilibrium
- "Hydro attractor" in literature

$$\tau_{\rm BMSS} = \alpha_{\rm s}^{-13/5}/Q_{\rm s}$$

- Weak coupling QCD thermalization
- Timescale for rough isotropy (Then hydro attractor takes over)

How different are the timescales?

- Weak coupling: timescales different
- Viscous hydro (relevant scale τ_R) follows from EKT (relevant scale τ_{BMSS}) Contradiction? No!
- $\lambda \ll 1 \implies \tau_R \ll \tau_{BMSS}$ First spend long time in BMSS regime then short time on hydro attractor

(τ_R depends on τ , because $\varepsilon(\tau)$ changes)

BMSS regime can matter more than hydro attractor for hard probes. We plot on log scale. E.g. if $\hat{q} \sim \epsilon(\tau) \sim 1/\tau$ $0.1 \text{fm} < \tau < 1 \text{fm}$ and $1 \text{fm} < \tau < 10 \text{fm}$ contribute equally to $\int d\tau \hat{q}(\tau)$

Transport coefficients $\hat{\mathbf{q}}$ and κ

Transport coefficients pre-equilibrium

$$\begin{array}{c} \hat{\mathbf{q}} \\ \kappa \end{array} \right\} = \frac{\mathsf{d} \left\langle \mathsf{q}_{\perp}^2 \right\rangle}{\mathsf{d}t} \quad \left\{ \begin{array}{c} \mathsf{jet} \left(p = \infty \right) \\ \mathsf{H.Q.} \left(m = \infty \right) \end{array} \right.$$

Recent interest: glasma phase
 E.g. A. lpp et al 2001.10001, 2009.14206
 Avramescu et al 2303.05599
 Carrington et al 2112.06812, 2202.00357, 2304.03241, 2001.05074
 Pooja Khowal et al 2110.14610
 M. Ruggieri et al 2203.06712
 Y. Sun et al. 1902.06254
 K. Boguslavski et al 2005.02418

 Aim: complete the picture from the glasma to hydrodynamics

More details in F. Lindenbauer's talk

Calculating transport coefficients

Momentum broadening from interactions with medium particles:

$$\hat{\mathbf{q}}_{\kappa} \sim \int_{\mathbf{k}\mathbf{k}'\mathbf{p}'} rac{\mathcal{Q}_{T}^{2}}{E_{\mathbf{p}}} (2\pi)^{4} \delta^{4}(P+K-P'-K') \left|\mathcal{M}\right|^{2} f(\mathbf{k}) \left(1+f(\mathbf{k}')\right),$$

• κ : heavy quark $P = (M, \mathbf{0}), M \to \infty$

• \hat{q} : energetic jet $P^2 = 0, p \to \infty$ (need cutoff $\hat{q} \sim \ln \Lambda_{\perp}$)

These limits: medium properties, not probe

Result: κ

Compare to thermal system with same $\ensuremath{\varepsilon}$ (Landau matching,

thermal with same m_D or T_* is much further)

- Enhancement first (overoccupied)
- Then suppression (underoccupied)
- Larger $\lambda = 4\pi N_c \alpha_s$: behavior smoothed out

13/20 (ロ > 《큔 > 《코 > 《코 > 코)= 이익은

Result: \hat{q}

- Large cutoff Λ_⊥: Enhancement first, then suppression
- Smaller Λ_⊥: smoother, overall enhancement

- $\varepsilon \sim 1/\tau$ large
- At end of BMSS **v**: $\hat{q} \approx JETSCAPE$ estimate (can match by tuning Λ_{\perp})

Anisotropy

- ► Inital overoccupied: $\kappa_T > \kappa_L$, $\hat{q}_T > \hat{q}_L \implies$ Bose enhancement, Glasma
- ▶ Then underoccupied $\kappa_T < \kappa_L$, $\hat{q}_T < \hat{q}_L \implies$ Anisotropy of f

Attractors for \hat{q} and κ

κ anisotropy, 2 attractors

Anisotropy of κ , scaling with the two attractor timescales

Weak coupling BMSS is a better description, over larger range in au

$\hat{\mathrm{q}}$ anisotropy, 2 attractors

Anisotropy of $\hat{\mathbf{q}}$, scaling with the two attractor timescales

Weak coupling BMSS is a better description, over larger range in au

Extrapolating to weak and strong coupling

How do we construct the attractor curves?

- Take fixed value of $\tau/\tau_{\rm BMSS}$ or $\tau/\tau_{\rm R}$
- Linear fit in λ or $1/\lambda$, separately for each τ .
- ► For BMSS also provide a parametrization of the τ -dependence (" $\lambda \rightarrow 0$ fit" in plot)

Conclusions

- Pre-equilibrium stage short, but hot ⇒ Effect on hard observables?
- QCD kinetic theory: trace system from glasma to hydro
 and calculate transport coefficients
- Introduced concept of limiting attractors
 - Hydro attractor: close to equilibrium, works better at strong coupling
 - BMSS attractor: most of pre-equilibrium weak coupling

20/20 미 > < 큔 > < 코 > < 코 > 코 = 의 역 ()

Relevant microscopic scales

- Occupation number f
- Coupling α_s
- Anisotropy $\delta \sim \sqrt{\frac{\langle \rho_z^2 \rangle}{\langle \rho_7^2 \rangle}}$
- \blacktriangleright Hard scale ${\cal P}_{T}^{2}\sim {\cal Q}_{s}^{2}$
- From these estimate
 - Energy density $\varepsilon \sim \delta Q_s^4 f$
 - Debye scale $m_D^2 \sim \alpha_{\rm s} \delta \ Q_{\rm s}^2 f$
 - Soft mode eff. temperature $T_* \sim Q_s(f+1)$
 - $\blacktriangleright \kappa \sim m_D^2 T_*$

Understanding the systematics

(Light: T_*, m_D from EKT, dashed: f, δ from EKT)