QGP Physics from Attractor Perturbations

Xin An

Based on work in progress with M. Spalinski
New Jet Quenching Tools Workshop ECT*, Trento, Italy

Feb 16, 2024
家NCBJ

Motivation

QGP evolution starts far from equilibrium

- Characteristics of heavy-ion collisions:

QGP is well described by hydrodynamics

- Flow collectivity manifests QGP as a nearly perfect fluid.

Hydrodynamics is believed to be applicable near equilibrium

Gale et al, 1301.5893

- And even more:

5-particle
hydrodynamics
Brandstetter et al, 2308.09699

Density distribution in position space

Hydrodynamic attractor

- Attractor plays an important role to explain the success of hydrodynamics even far from equilibrium.

The onset of hydrodynamization starts at very early time
rBRSSS

Boltzmann
AdS/CFT

Florkowski et al, 1707.02282, Romatschke, 1712.05815

- Questions:
- Would attractor wash out everything? No
- Can attractor exist with less symmetries? Yes
- How can we study jet with attractor? This work

Attractors

Fluids in equilibrium: Euler equation

- Stress tensor is homogeneous in LRF.

$$
T_{(0) \mathrm{LRF}}^{\mu \nu}=\left(\begin{array}{llll}
\varepsilon & & & \\
& p & & \\
& & p & \\
& & & p
\end{array}\right) \stackrel{\text { boost }}{ } \quad T_{(0)}^{\mu \nu}=\varepsilon u^{\mu} u^{\nu}+p \Delta^{\mu \nu}
$$

- Euler equation:

$$
\partial_{\mu} T_{(0)}^{\mu \nu}=0 \quad \Longrightarrow \quad \partial_{t} \psi=\nabla \cdot J_{(0)}[\psi] \quad \text { where } \quad \psi=(\mathrm{n}, \varepsilon, \pi, \ldots)
$$

Conserved quantities evolve via advection \& expansion.

Fluids near equilibrium: NS-like equations

- Stress tensor approximated by gradient expansion.

$$
\begin{gathered}
T^{\mu \nu}=T_{(0)}^{\mu \nu}+T_{(1)}^{\mu \nu}+\ldots \\
T_{(1)}^{\mu \nu}=-2 \eta \sigma^{\mu \nu}, \quad \sigma^{\mu \nu}=\frac{1}{2} \Delta^{\mu \alpha} \Delta^{\nu \beta}\left(\partial_{\alpha} u_{\beta}+\partial_{\beta} u_{\alpha}\right)-\frac{1}{3} \partial \cdot u \Delta^{\mu \nu}
\end{gathered}
$$

NB: there are infinite many equilibrium proxies for a non-equilibrium state.

- Navier-Stokes(NS)-like (e.g., Burnett, BRSss, etc.) equations:

$$
\partial_{\mu} T^{\mu \nu}=0 \quad \Longrightarrow \quad \partial_{t} \psi=\nabla \cdot J[\psi, \nabla \psi, \ldots] \quad \text { where } \quad \psi=\left(\mathrm{n}, \varepsilon, \pi_{\mu}, \ldots\right)
$$

Conserved quantities evolve via advection \& expansion, as well as dissipation \& diffusion.

Fluids far from equilibrium: MIS-like equations

- Stress tensor involves non-hydrodynamic DOFs for UV completion. E.g., 0+1D boost-invariant conformal fluids:

$$
T^{\mu \nu}=T_{(0)}^{\mu \nu}+\pi^{\mu \nu}+\ldots=\left(\begin{array}{llll}
\varepsilon & & & \\
& p_{T} & & \\
& & p_{T} & \\
& & p_{L}
\end{array}\right) \quad \begin{array}{ll}
p_{T}=p-\pi / 2, \\
p_{L}=p+\pi & \\
& \\
& \\
& \equiv\left(P_{T}-P_{L}\right) / P \\
\text { NB: } A \text { vanishes in equilibrium } &
\end{array}
$$

- MIS-like (e.g., Maxwell-Cattaneo, DNMR, BDNK etc.) equations:

$$
\begin{array}{cc}
\partial_{\mu} T^{\mu \nu}=0 \quad \Longrightarrow \quad \partial_{t} \psi=\nabla \cdot J[\psi, \pi, \ldots] \quad \text { where } \psi=\left(\mathrm{n}, \varepsilon, \pi_{\mu}, \ldots\right) \\
\mathrm{MIS} & \tau_{\pi} \partial_{\tau} \pi=-\left(\pi-\pi^{(\mathrm{NS})}\right)+\ldots
\end{array}
$$

Fluids far from equilibrium: MIS-like equations

- Coupled equations for conformal system: $\quad \varepsilon=3 p=C_{e} T^{4}, \eta=\frac{4}{3} C_{e} C_{\eta} T^{3}, \tau_{\pi}=C_{\tau} T^{-1}$

$$
\tau T^{\prime}(\tau)+T(\tau)\left(\frac{1}{3}-\frac{A(\tau)}{18}\right)=0, \quad C_{\tau} \tau A^{\prime}(\tau)+\frac{2}{9} C_{\tau} A(\tau)^{2}+\tau T(\tau) A(\tau)-8 C_{\eta}=0
$$

- MIS-like theory does not necessarily capture the early-time QCD physics, but it is still a simple self-consistent theory valid at all times (as opposed to NS which is only valid at late times), thus can shed light on far-from-equilibrium dynamics.

Hydrodynamic attractors

- In terms of $w=\tau T$, equation for pressure anisotropy $A(w) \equiv\left(P_{T}-P_{L}\right) / P$ decouples:

$$
C_{\tau}\left(1+\frac{A(w)}{12}\right) w A^{\prime}(w)+\frac{1}{3} C_{\tau} A(w)^{2}+\frac{3}{2} w A(w)-12 C_{\eta}=0
$$

decoupled 1st order nonlinear \& inhomogeneous ODE
with asymptotic solutions

$$
A(w)=\frac{C_{0}}{w^{4}}(1+\mathscr{O}(w))+6 \sqrt{C_{\eta} / C_{\tau}}+\mathcal{O}(w), \quad w \rightarrow 0
$$

longitudinal expansion dominates + early-time attractor

Heller et al, 1503.07514; Jankowski et al, 2303.09414

$$
A(w)=\frac{8 C_{\eta}}{w}\left(1+\frac{2 C_{\tau}}{3 w}+\mathcal{O}\left(w^{-2}\right)\right)+C_{\infty} e^{-\frac{3 w}{2 C_{\tau}} w^{\frac{C_{\eta}}{C_{\tau}}}}\left(1+\mathcal{O}\left(w^{-1}\right)\right)+\ldots, \quad w \rightarrow \infty
$$

[^0]
Alternative formulation of attractors

- In the presence of additional scales other than T, τ is more convenient as dynamic variable than $w=\tau T$.
- Early-time attractor solutions:
μ : integration constant; $\quad \alpha=\sqrt{C_{\eta} / C_{\tau}}$

$$
T(\tau) \sim \mu(\mu \tau)^{-\frac{1-\alpha}{3}}\left(1+\sum_{n=1}^{\infty} t_{n}^{(0)}(\mu \tau)^{\frac{n}{3}(2+\alpha)}\right)
$$

$$
A(\tau) \sim 6 \alpha\left(1+\sum_{n=1}^{\infty} a_{n}^{(0)}(\mu \tau)^{\frac{n}{3}(2+\alpha)}\right)
$$

- Later-time asymptotic solutions
Λ, C_{∞} : independent integration constant

$$
\begin{aligned}
& T(\tau) \sim \Lambda(\Lambda \tau)^{-\frac{1}{3}}\left(1+\sum_{n=1}^{\infty} t_{n}^{(\infty)}(\Lambda \tau)^{-\frac{2}{3} n}\right)+C_{\infty}(\Lambda \tau)^{-\frac{2}{3}\left(1-\alpha^{2}\right)} e^{-\frac{3}{2 C_{\tau}}(\Lambda \tau)^{2 / 3}}\left(1+\mathcal{O}\left((\Lambda \tau)^{-2 / 3}\right)\right)+\ldots \\
& A(\tau) \sim 8 C_{\eta}(\Lambda \tau)^{-\frac{2}{3}}\left(1+\sum_{n=1}^{\infty} a_{n}^{(\infty)}(\Lambda \tau)^{-\frac{2}{3} n}\right)+C_{\infty}^{\prime}(\Lambda \tau)^{-\frac{1}{3}+\alpha^{2}} e^{-\frac{3}{2 C_{\tau}}(\Lambda \tau)^{2 / 3}}\left(1+\mathcal{O}\left((\Lambda \tau)^{-2 / 3}\right)\right)+\ldots
\end{aligned}
$$

hydrodynamic attractor + non-hydrodynamic (transseries) modes.

Early-time attractor in phase space

- Generic solutions rapidly approach the attractor surface in phase space ($\tau T^{\prime}, T, \tau$) at early time.

Perturbations

Linearization

- Linearization of MIS theory around the attractor: x_{A} etal, 2312.17237

$$
\partial_{\nu} T^{\mu \nu}=\partial_{\nu}\left(T_{\text {attractor }}^{\mu \nu}+\delta T^{\mu \nu}\right)=0 \quad \longrightarrow \quad\left\{\begin{array}{l}
\partial_{\nu} T_{\text {attractor }}^{\mu \nu}=0 \\
\partial_{\nu} \delta T^{\mu \nu}=0
\end{array}\right.
$$

- 6 independent fields:

$$
\phi=\left(\delta T, \delta \theta, \delta \omega, \delta \pi_{11}, \delta \pi_{22}, \delta \pi_{12}\right)(\tau, \mathbf{x})
$$

where $\delta \theta \equiv \partial_{i} \delta u_{i}$ and $\delta \omega \equiv \epsilon_{i j} \partial_{i} \delta u_{j}, i=1,2 . \quad \delta \omega$ decouples from $\delta \theta$ and δT.
The translation invariance symmetry in transverse plane is broken.

- The EOM for the dynamic system:
where $M=M(\tau, \mathbf{k})$.

$$
\partial_{\tau} \hat{\phi}_{i}(\tau, \mathbf{k})=M_{i j} \hat{\phi}_{j}(\tau, \mathbf{k})
$$

[^1]
Mode-by-mode analysis

- Suppression for large k modes and off-attractor perturbations.
- Upper cutoff of k set by suppression, lower cutoff of k set by system size.

Transverse dependence

- Transverse information is encoded in a finite set of Fourier modes (FFT).

temperature density plot

Observables

Late-time asymptotics

- Late-time asymptotic solutions perturbed around attractor: xAetal, 2321.1237

$$
\begin{aligned}
& \delta \hat{T}=C_{1}(\Lambda \tau)^{a_{1}} e^{-\frac{3}{2 c_{\tau}}(\Lambda \tau)^{2 / 3}}+C_{2}(\Lambda \tau)^{a_{2}} e^{-\frac{1}{2 \tau_{c} c_{\tau}} C_{\tau}(\Lambda \tau)^{2 / 3}}+e^{-\frac{\alpha^{2}}{2 \alpha_{\alpha} C_{\tau}}(\Lambda \tau)^{2 / 3}}(\Lambda \tau)^{a_{3}}\left(C_{3} e^{-i c_{\alpha} k \tau}+C_{4} e^{i c_{\alpha} k \tau}\right) \\
& \delta \hat{\theta}=C_{1}^{\prime}(\Lambda \tau)^{a_{1}-1} e^{-\frac{3}{2 c_{\tau}}(\Lambda \tau)^{2 / 3}}+C_{2}^{\prime}(\Lambda \tau)^{a_{2}-\frac{1}{3}} e^{-\frac{1}{2 \frac{2}{2} c_{\tau}}(\Lambda \tau)^{2 / 3}}+e^{-\frac{a^{2}}{2 \alpha_{\alpha} c_{\tau}}(\Lambda \tau)^{2 / 3}}(\Lambda \tau)^{a_{3}}\left(C_{3}^{\prime} e^{-i c_{\alpha} k \tau}+C_{4}^{\prime} e^{i c_{\alpha} k \tau}\right)
\end{aligned}
$$

$$
\delta \hat{\omega}=e^{-\frac{3}{4 c_{\tau}}(\Lambda \tau)^{2 / 3}}(\Lambda \tau)^{a_{4}}\left(C_{5} e^{-i \alpha k \tau}+C_{6} e^{i \alpha k \tau}\right)
$$

$\Lambda, C_{1}, \ldots, C_{6}$: integration constants

$$
c_{\alpha}=\sqrt{\left(1+4 \alpha^{2}\right) / 3}
$$

$$
a_{1}=-\frac{2}{3}\left(1-\alpha^{2}\right), \quad a_{2}=\frac{2 \alpha^{2}}{27 c_{\alpha}^{4}}\left(1-16 \alpha^{2}-\frac{2 \Lambda^{2}}{C_{\tau}^{3} c_{\alpha^{4}} k^{2}}\right), \quad a_{3}=\frac{1}{54 c_{\alpha}^{4}}\left(1+8 \alpha^{2}+64 \alpha^{4}+32 \alpha^{6}+\frac{4 \alpha^{2} \Lambda^{2}}{C_{\tau}^{3} c_{\alpha}^{4} k^{2}}\right)
$$

- The attractor is stable against transverse dynamics;
- Observables are extracted from the asymptotic data of $\left(\delta \hat{T}, \delta \hat{\theta}, \delta \hat{\omega}, \delta \hat{\pi}_{i j}\right)$ determined by $\left(C_{1}, \ldots, C_{6}\right)(\mathbf{k})$.

Late-time asymptotics

The analytic solutions fit the numerics in a wide range of time.

Observables

- Momentum anisotropy

$$
A_{T} \equiv \frac{\left\langle T_{11}-T_{22}\right\rangle_{\perp}}{\left\langle T_{11}+T_{22}\right\rangle_{\perp}}=\frac{12\left\langle\delta u_{1}^{2}-\delta u_{2}^{2}\right\rangle_{\perp}+9\left\langle\delta \hat{\pi}_{11}-\delta \hat{\pi}_{22}\right\rangle_{\perp}}{2(3+A)} .
$$

- Cooper-Frye formula

$$
\begin{aligned}
\frac{d N}{p_{\perp} d p_{\perp} d \phi d y} & =\frac{1}{(2 \pi)^{3}} \int d^{3} \sigma_{\mu} p^{\mu} f(x, p) \quad \hat{m}_{\perp} \equiv \frac{V}{T}, \quad \hat{p}_{\perp} \equiv \frac{p_{\perp}}{T}, \quad K_{n}: \text { Bessel fur } \\
& =\frac{m_{\perp} \tau_{f} R^{2}}{8 \pi^{2}}\left\{2 K_{1}\left(\hat{m}_{\perp}\right)+\frac{1}{12}\left[\hat{p}_{\perp}^{2} K_{1}\left(\hat{m}_{\perp}\right)-2 \hat{m}_{\perp} K_{2}\left(\hat{m}_{\perp}\right)\right] A+\text { perturbations }\right\}
\end{aligned}
$$

where $f(x, p)=e^{u \cdot \hat{p}}\left(1+\epsilon_{\mu \nu} \hat{p}^{\mu} \hat{p}^{\nu}\right)$ with $\epsilon_{\mu \nu}=\pi_{\mu \nu} / 2(\epsilon+p)$.

Observables

- Momentum anisotropy

- Multiplicity distribution

Jets

Jet-medium interaction

- The total energy of jet and fluid system is conserved:

$$
\partial_{\nu} T^{\mu \nu}=\partial_{\nu}\left(T_{\text {attractor }}^{\mu \nu}+\delta T^{\mu \nu}+T_{\text {jet }}^{\mu \nu}\right)=0
$$

- Effect of jet-medium interaction described by perturbations: $x_{\text {Aetal, in progeress }}$

$$
\left\{\begin{array}{l}
\partial_{\nu} T_{\text {attractor }}^{\mu \nu}=0, \\
\partial_{\nu} \delta T^{\mu \nu}=-\partial_{\nu} T_{\text {jet }}^{\mu \nu}=J^{\mu}
\end{array}\right.
$$

Jet parton as a source

- Boost-invariant and knife-shape jet parton

$$
J^{\mu}=f^{\mu}\left(\tau \gamma_{s}\right)^{-1} \delta^{(2)}\left(\mathbf{x}-\mathbf{x}_{s}(\tau)\right)
$$

effective drag force $f^{\mu}=\frac{d E}{d t} u^{\mu}$

Boost-invariant assumption

- captures main effects qualitatively
- corresponds to the longest wavelength modes along rapidity that are more relevant
- Energy loss of a quark in a strongly coupled plasma

$$
\text { light quark: } \frac{d E}{d \tau}=\frac{4 E_{\text {in }} \tau^{2}}{\pi \ell_{\text {stop }}^{2} \sqrt{\ell_{\text {stop }}^{2}-\tau^{2}}}
$$

Particular solutions due to jet

- Inhomogeneous EOM

$$
\partial_{\tau} \hat{\phi}_{i}(\tau, \mathbf{k})=M_{i j} \hat{\phi}_{j}(\tau, \mathbf{k})+J_{i}(\tau, \mathbf{k})
$$

- The late-time solutions can be found by Wronskian:

$$
\delta \hat{\phi}(\tau, \mathbf{k})=\sum_{i=1}^{4} C_{i}(k) \delta \hat{\phi}_{i}(\tau, \mathbf{k})+\delta \hat{\phi}_{p}(\tau, \mathbf{k})
$$

One can show the particular solutions have the power-law behavior, e.g.,

$$
\delta \hat{T}_{p}(\tau, \mathbf{k}) \propto \frac{i \sqrt{\lambda} v_{s}^{2} C_{\eta} e^{-i \mathbf{k} \cdot \mathbf{x}_{s}(\tau)}}{\left(4 C_{\eta}+C_{\tau}\left(1-3\left(\hat{k} \cdot v_{s}\right)^{2}\right)\right) k} \tau^{-1 / 3}\left(1+\mathcal{O}\left(\tau^{-1 / 3}\right)\right) \quad \text { (heavy quark) }
$$

Jet wake

- The transverse tomography with jet wake based on FFT:

Conclusion

Recap

- Transverse dynamics and jet-medium interaction are described by perturbations around attractor.
- Problem reduces to a set of linear ODEs which can be analyzed semianalytically.
- Physical observables (including jet) are captured by a finite set of asymptotic data.

Outlook

- Jet physics after freezeout. see all talks on observables on Monday
- Stochastic fluctuations.
- Other approaches, e.g., kinetic approach. see also Aleksas's talk

[^0]: late-time (hydrodynamic) attractor + non-hydrodynamic (transseries) modes.

[^1]: 1st-order linear homogeneous ODE system with nonconstant coefficients.

