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Motivation



QGP evolution starts far from equilibrium
• Characteristics of heavy-ion collisions:
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Speed ∼ 1

short

small

few

fast

Size  fm∼ 10

Energy  GeV∼ 10 − 104

Particles ∼ 102 − 104

Collision time  fm∼ 0.01 − 1

high

History of the little bang

     initial stage       QGP          hadronic                 freezeout

static fluid

Static fluid & static fluctuations
Stephanov, 2011
Mroczek, Acuna, Noronha-Hostler, Parotto, Ratti & Stephanov, 2020
see also talk by Karthein (Tue)
…

Static or uniformly varying fluid & dynamic fluctuations
Berdnikov & Rajagopal 1999
Mukherjee, Venugopalan & Yin, 2015
Nahrgang, Bluhm, Schafer & Bass, 2019
XA, Basar, Stephanov & Yee, 2020
see also talk by Pradeep (Tue), Sogabe (Wed)
…
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Collision events at LHC

Is there a CP between QGP and hadron gas phases?

Q2: Is there phase coexistence, i.e., 1st order transition? Likely.

Unfortunately, lattice QCD cannot reach beyond µB ⇠ 2T .

Hadron Gas
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The Phases of QCD

1st Order Phase Transition
Critical
Point?

But 1st order transition (and thus C.P.) is ubiquitous in models of QCD:
NJL, RM, Holography, Strong coupl. Lattice QCD, . . .

M. Stephanov QCD Critical Point ASU 2020 10 / 36



QGP is well described by hydrodynamics
• Flow collectivity manifests QGP as a nearly perfect fluid.
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static fluid

Static fluid & static fluctuations
Stephanov, 2011
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see also talk by Karthein (Tue)
…

Static or uniformly varying fluid & dynamic fluctuations
Berdnikov & Rajagopal 1999
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LHC energies [20]. The agreement with experimental results from LHC shown in
Fig. 6 is particularly striking.
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Fig. 6. Left: Root-mean-square anisotropic flow coe�cients hv2ni1/2 in the IP-Glasma model [20],
computed as a function of centrality, compared to experimental data of vn{2}, n 2 {2, 3, 4},
by the ALICE collaboration [182] (points). Right: Root-mean-square anisotropic flow coe�cients
hv2ni1/2 as a function of transverse momentum, compared to experimental data by the ATLAS
collaboration using the event plane (EP) method [22] (points). Bands indicate statistical errors.

This agreement indicates that initial state fluctuations in the deposited energy
density, translated by hydrodynamic evolution into anisotropies in the particle pro-
duction, are the main ingredient to explain the measured flow coe�cients.

Because of this feature, some e↵ort has been concentrated on characterizing the
initial state in a way that ties it directly to the measured flow. The simplest way of
doing so is to compare the initial eccentricities of the system

"n =

p
hrn cos(n�)i2 + hrn sin(n�)i2

hrni (13)

to the final flow harmonics vn. However, in particular for v4 and higher harmonics,
the nonlinear nature of hydrodynamics becomes important [183] and more accurate
predictors for flow coe�cients involve both linear and nonlinear terms, e.g. v5 has
contributions from "5 and "2"3, and it was shown [184] that the nonlinear term
becomes more dominant with increasing viscosity.

The fact that linear terms are damped more by viscosity leads to a growing
correlation of di↵erent event planes

 n =
1

n
arctan

hsin(n�)i
hcos(n�)i , (14)

with increasing viscosity [184], a result that is in line with findings in a di↵erent
work [185], where experimental data on event plane correlations from the ATLAS
collaboration [186] was compared to hydrodynamic calculations in di↵erent scenar-
ios.

Gale et al, 1301.5893

5-particle 
hydrodynamics


Brandstetter et al, 2308.09699
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FIG. 1. Hydrodynamic expansion. We prepare 5+5 strongly interacting spin up and down atoms (black/white dots) in
the ground state of an elliptically shaped trap. We measure their positions (a-c) or momenta (e-g). The two dimensional
histograms show the density distribution, obtained from averaging over many experimental realizations of the same quantum
state. The initial system has an elliptic density distribution in real space and a round Fermi surface in momentum space (see
a and e). We study the expansion after switching off the trap (b-c, f-g) and observe the inversion of the inital aspect ratio in
real space and the build up of momentum anisotropy. The dashed black circle in e-g shows the Fermi momentum calculated
from the real space peak density. d Root mean square of the atom positions �rx, �ry as a function of tint. The expectation
assuming ideal hydrodynamic evolution of the corresponding many-body system with the same initial density is shown as a
reference (red lines). h Root mean square value �px, �py of the momenta of the atoms as a function of tint. The triangles show
the Fermi momentum k̃F, rescaled to the geometric mean of �px, �py at initial time tint = 0 µs. The connecting lines serve as a
guide to the eye. In the inset, the difference of �p2x and �p2y shows the build up of momentum anisotropy during the interacting
expansion. The ideal hydrodynamic expansion (red line) and the asymptotic long term limit derived from the real space data
(red dashed line) provide a reference. The error bars of the long term limit are shown by the shaded region. All error bars
show the 95% confidence interval, determined using a bootstrapping technique.

Methods). We prepare a discrete many-body quantum
state, composed of N spin up and N spin down atoms
(denoted N+N) in the ground state, utilizing a technique
developed in previous works [22, 23].

The typical length scales of our system are on the or-
der of the harmonic oscillator length, which is given by
lx,y
HO =

p
~/m!x,y ⇡ (1.1, 0.7)µm, where m is the mass of

a 6Li atom. We estimate the typical interparticle spac-
ing from the peak density n0 = (k0F)

2/(4⇡) of the non-
interacting system, with the Fermi wave vector defined
as k0

F =
p
2mEF/~. Here EF is the Fermi energy of the

non-interacting system, determined by the highest filled
energy level of the OT (see Methods). The mean inter-
particle spacing is 1/

p
n0 ⇡ 1.3 µm. These length scales

are estimated for the non-interacting system, but are on
the same order of magnitude in the interacting case. The
unitary limit constrains the minimum mean free path to
be on the order of the interparticle spacing.

The strength of the attractive interactions can be
tuned using the magnetic Feshbach resonance [24]. It

is quantified by the dimensionless interaction parameter
ln(k0

Fa2D), that relates the initial interparticle spacing
(proportional to the inverse of the Fermi wave vector k0

F)
to the 2D scattering length a2D [25, 26].

After preparing the system, we remove the horizontal
confinement, while keeping the vertical 2D confinement.
We let the atoms expand for an interacting expansion
time tint. At tint, we instantaneously switch off inter-
actions by a two-photon Raman transition [27]. Subse-
quently, we apply matterwave magnification techniques,
to image either the momenta [27] or the positions [28] of
the atoms at tint. For the longest interacting expansion
time (tint = 9ms), the system has expanded enough for
the atoms to be resolvable without matterwave magnifi-
cation.

We make use of a fluorescence imaging scheme to ob-
tain single atom and spin resolved images [29]. Each im-
age represents a projection of the wave function on N+N
positions or momenta. We obtain the 2D density from
approximately 1000 images for each setting (see Meth-

Density distribution in position space

• And even more:

Hydrodynamics is believed to be 
applicable near equilibrium



Hydrodynamic attractor
• Attractor plays an important role to explain the success of hydrodynamics 

even far from equilibrium.
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FIG. 1. Numerical results for energy density evolution as a function of inverse gradient strength ⌧T for conformal Bjorken
flow in three di↵erent microscopic theories. Note that for Boltzmann and AdS/CFT, the numerical solutions shown are low
dimensional projections from an infinite dimensional space of initial conditions. See text for details.

such that the ambiguity in the Borel transform of the
transseries part with m = m0 is exactly canceled by
⌦m0+1(⌧T ) for the part with m = m0 + 1. This pro-
gram has successfully been performed for rBRSSS in
Ref. [15, 34]. The final result for the Borel trans-
form of ⌧@⌧ ln ✏ can be written in the form ⌧@⌧ ln ✏ =
(⌧@⌧ ln ✏)att + (⌧@⌧ ln ✏)non�hydro, consisting of a non-
analytic “attractor” solution defined for arbitrary ⌧T
to which the non-hydrodynamic part decays to on a
timescale ⌧T ' z�1

0 .

Note that obtaining non-analytic solutions from diver-
gent perturbative series’ has recently generated consider-
able interest under the name of “resurgence” [15, 16, 34].

Finding Hydrodynamic Attractors Identifying
the hydrodynamic attractor solution from the Borel re-
summation program of the hydrodynamic gradient series
is possible, but somewhat tedious. Fortunately, it is pos-
sible to obtain the same attractor solution more directly
from the equations of motion via the analogue of a slow-
roll approximation, cf. Refs. [15, 35] (see Supplemental
Material for details). In Fig. 1, results from solving the
rBRSSS equations of motions for a range of initial con-
ditions (“numerical”) are as shown together with zeroth,
first and second order hydrodynamic gradient series re-
sults from Eq. (2). It can be observed that the numerical
solutions converge to the hydrodynamic results for mod-
erate gradient strength. One also observes from Fig. 1
that the numerical results trend to the unique attractor

solution even before matching the gradient series results.
This attractor solution is nothing else but the result of
the Borel transformation of the divergent transseries as
reported in Ref. [15].
Hydrodynamic Attractor in Kinetic Theory It

is tempting to look for hydrodynamic attractors in other
microscopic theories, such as kinetic theory in the relax-
ation time approximation. This theory is defined by a
single particle distribution function f(t,x,p) obeying

pµ@µf � ��
µ⌫p

µp⌫
@

@p�
f = �f � f eq

⌧⇡
, (3)

where here ��
µ⌫ are the Christo↵el symbols associated

with the Bjorken flow geometry and the equilibrium dis-
tribution function may be taken to be f eq = ep

µuµ/T .
Here uµ is again the time-like eigenvector of hTµ⌫i =R d3p

(2⇡)3
pµp⌫

p f(x, p) and T is the non-equilibrium tempera-

ture defined from the time-like eigenvalue of hTµ⌫i, which

for a single massless Boltzmann particle is T =
⇣

⇡2✏
6

⌘1/4
.

Note that for a conformal system one can again write
⌧⇡ = C⇡T�1 with C⇡ a constant. Solving Eq. (3) nu-
merically, representative results for ⌧@⌧ ln ✏ are shown in
Fig. 1 (note that ⌧@⌧ ln ✏  �1 because the e↵ective lon-
gitudinal pressure PL = ✏ (1 + ⌧@⌧ ln ✏) in kinetic theory
can never be negative for f > 0).
One observes the same basic structure as in rBRSSS,

indicating the presence of a hydrodynamic attractor at

Florkowski et al, 1707.02282, Romatschke, 1712.05815

Initial information 
largely suppressed 

at later time

The onset of 
hydrodynamization 

starts at very early time

• Questions:

Would attractor wash out everything? No

Can attractor exist with less symmetries? Yes 

How can we study jet with attractor? This work



Attractors



Fluids in equilibrium: Euler equation

7

• Stress tensor is homogeneous in LRF.

Tμν
(0)LRF =

ε
p

p
p

⟶ Tμν
(0) = εuμuν + pΔμν

∂μTμν
(0) = 0 ⟹ ∂t ψ = ∇ ⋅ J(0) [ψ] where ψ = ( n, ε, π, …)

Conserved quantities evolve via advection & expansion.

boost

• Euler equation:



Fluids near equilibrium: NS-like equations

8

• Stress tensor approximated by gradient expansion.

Tμν = Tμν
(0) + Tμν

(1) + …

Tμν
(1) = − 2ησμν, σμν =

1
2

ΔμαΔνβ(∂αuβ + ∂βuα) −
1
3

∂ ⋅ uΔμν

∂μTμν = 0 ⟹ ∂t ψ = ∇ ⋅ J [ψ, ∇ψ, …] where ψ = ( n, ε, πμ, …)

Conserved quantities evolve via advection & expansion, as well as dissipation & diffusion.

• Navier-Stokes(NS)-like (e.g., Burnett, BRSSS, etc.) equations:

NB: there are infinite many equilibrium proxies 
for a non-equilibrium state.



Fluids far from equilibrium: MIS-like equations

9

• Stress tensor involves non-hydrodynamic DOFs for UV completion. 
E.g., 0+1D boost-invariant conformal fluids:

Tμν = Tμν
(0) + πμν + … =

ε
pT

pT
pL

pT = p − π/2,
pL = p + π

• MIS-like (e.g., Maxwell-Cattaneo, DNMR, BDNK etc.) equations:

τπ∂τ π = − (π − π(NS)) + …

NB:  vanishes in equilibriumA

MIS

A ≡ (PT − PL)/P

π ≡ πη
η

∂μTμν = 0 ⟹ ∂t ψ = ∇ ⋅ J [ψ, π, …] where ψ = ( n, ε, πμ, …)



Fluids far from equilibrium: MIS-like equations

10

• Coupled equations for conformal system:

τT′ (τ) + T(τ)( 1
3

−
A(τ)
18 ) = 0, CττA′ (τ) +

2
9

CτA(τ)2 + τT(τ)A(τ) − 8Cη = 0

ε = 3p = CeT4, η =
4
3

CeCηT3, τπ = CτT−1

Aleksas Mazeliauskas aleksas.eu

QCD thermalisation

2

High-energy limit αs≪1 of QCD 

Berges, Heller, AM, Venugopalan RMP (2021)

● Initial conditions: highly occupied gluons 5elds
● Intermediate times: quark and gluon quasi-particles 

Courtesy of A. Mazeliauskas

• MIS-like theory does not necessarily capture the early-time QCD physics, but it 
is still a simple self-consistent theory valid at all times (as opposed to NS which 
is only valid at late times), thus can shed light on far-from-equilibrium dynamics.

MIS

NS



Hydrodynamic attractors

11

• In terms of , equation for pressure anisotropy  decouples:w = τT A(w) ≡ (PT − PL)/P

Cτ (1 +
A(w)
12 ) wA′ (w) +

1
3

CτA(w)2 +
3
2

wA(w) − 12Cη = 0

with asymptotic solutions

decoupled 1st order nonlinear & inhomogeneous ODE

A(w) =
8Cη

w (1 +
2Cτ

3w
+ 𝒪(w−2)) + C∞ e− 3w

2Cτ w
Cη
Cτ (1 + 𝒪(w−1)) + …, w → ∞

0.0 0.5 1.0 1.5 2.0

-1

0

1

2

3

4

5

Figure 4: Some solutions of Eq. (38) (blue lines) plotted together with the attractor (red line);
the dashed magenta line represents second order viscous hydrodynamics.

of the hydrodynamic attractor expected near equilibrium into the early-time, nonequilibrium

region.

It is physically important that solutions initialised o↵ the attractor approach it rapidly while

the pressure anisotropy is high and the system is still far from equilibrium. This fact leads to a

potential explanation of the early thermalisation puzzle, as we will argue in the following. Note

also that solutions which start out below the attractor are initially driven away from equilibrium

toward the attractor. As discussed further below, this is a consequence of the strong longitudinal

expansion.

The emerging picture is that for a given range of initial conditions, apart from an initial

transient, the function A(w) quickly approaches a universal attractor A?(w) which is determined

by the microscopic theory under consideration. We assume that the physically interesting range

of initial conditions is in the basin of attraction of this unique attractor. This suggests that

it should be a good approximation to replace the form of the pressure anisotropy A(w), as it

appears in Eq. (37), by the attractor A?(w):

T (w) ⇡ �A?(w,w0)T (w0) . (41)

25

Heller et al, 1503.07514; Jankowski et al, 2303.09414

A(w) =
C0

w4 (1 + 𝒪(w)) + 6 Cη/Cτ + 𝒪(w) , w → 0

late-time (hydrodynamic) attractor + non-hydrodynamic (transseries) modes.

longitudinal expansion dominates + early-time attractor



Alternative formulation of attractors
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• In the presence of additional scales other than ,  is more convenient as 
dynamic variable than .

T τ
w = τT

• Early-time attractor solutions:

T(τ) ∼ μ(μτ)− 1 − α
3 (1 +

∞

∑
n=1

t(0)
n (μτ) n

3 (2+α)), A(τ) ∼ 6α (1 +
∞

∑
n=1

a(0)
n (μτ) n

3 (2+α))
: integration constant;    μ α = Cη/Cτ

• Later-time asymptotic solutions

T(τ) ∼ Λ(Λτ)− 1
3 (1 +

∞

∑
n=1

t(∞)
n (Λτ)− 2

3 n) + C∞(Λτ)− 2
3 (1−α2) e− 3

2Cτ
(Λτ)2/3 (1 + 𝒪((Λτ)−2/3)) + …

A(τ) ∼ 8Cη(Λτ)− 2
3 (1 +

∞

∑
n=1

a(∞)
n (Λτ)− 2

3 n) + C′ ∞(Λτ)− 1
3 +α2e− 3

2Cτ
(Λτ)2/3 (1 + 𝒪((Λτ)−2/3)) + …

: independent integration constantΛ, C∞

hydrodynamic attractor + non-hydrodynamic (transseries) modes.



Early-time attractor in phase space
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• Generic solutions rapidly approach the attractor surface in phase space 
 at early time. (τT′ , T, τ)



Perturbations



Linearization
• Linearization of MIS theory around the attractor: XA et al, 2312.17237
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• The EOM for the dynamic system:

ϕ = (δT, δθ, δω, δπ11, δπ22, δπ12)(τ, x)

   where  and , .δθ ≡ ∂iδui δω ≡ ϵij∂iδuj i = 1,2

∂τ
̂ϕi (τ, k) = Mij

̂ϕj (τ, k)

The translation invariance symmetry in transverse plane is broken.

   where .M = M(τ, k)
1st-order linear homogeneous ODE system with nonconstant coefficients.

• 6 independent fields:

∂νTμν = ∂ν(Tμν
attractor + δTμν) = 0 ⟶ {

∂νT
μν
attractor = 0,

∂νδTμν = 0.

 decouples from  and .δω δθ δT



Mode-by-mode analysis 

16

Suppression for large  modes and off-attractor perturbations.

Upper cutoff of  set by suppression, lower cutoff of  set by system size.

k
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Transverse dependence
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b

τ

temperature density plot

• Transverse information is encoded in a finite set of Fourier modes (FFT).

position space

wavenumber space



Observables



Late-time asymptotics

19

• Late-time asymptotic solutions perturbed around attractor: XA et al, 2312.17237

: integration constants
Λ, C1, …, C6

δ ̂T = C1(Λτ)a1 e− 3
2Cτ

(Λτ)2/3
+ C2(Λτ)a2 e− 1

2c2αCτ
(Λτ)2/3

+ e− α2
c2αCτ

(Λτ)2/3

(Λτ)a3(C3 e−icαkτ + C4 eicαkτ)

δ ̂θ = C′ 1(Λτ)a1−1 e− 3
2Cτ

(Λτ)2/3
+ C′ 2(Λτ)a2− 1

3 e− 1
2c2αCτ

(Λτ)2/3

+ e− α2
c2αCτ

(Λτ)2/3

(Λτ)a3(C′ 3 e−icαkτ + C′ 4 eicαkτ)

δω̂ = e− 3
4Cτ

(Λτ)2/3
(Λτ)a4(C5 e−iαkτ + C6 eiαkτ)

The attractor is stable against transverse dynamics; 

Observables are extracted from the asymptotic data of  determined by .(δ ̂T, δ ̂θ, δω̂, δ ̂πij) (C1, …, C6)(k)

a1 = −
2
3

(1 − α2), a2 =
2α2

27c4
α (1 − 16α2 −

2Λ2

C3
τ c4

αk2 ), a3 =
1

54c4
α (1 + 8α2 + 64α4 + 32α6 +

4α2Λ2

C3
τ c4

αk2 )
cα = (1 + 4α2)/3



Late-time asymptotics
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The analytic solutions fit the numerics in a wide range of time.
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Observables 
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• Momentum anisotropy 

AT ≡
⟨T11 − T22⟩⊥

⟨T11 + T22⟩⊥
=

12⟨δu2
1 − δu2

2⟩⊥ + 9⟨δ ̂π11 − δ ̂π22⟩⊥

2(3 + A)
.

• Cooper-Frye formula

dN
p⊥dp⊥dϕdy

=
1

(2π)3 ∫ d3σμpμ f(x, p)

=
m⊥τf R2

8π2 {2K1(m̂⊥) +
1
12 [ ̂p2

⊥K1(m̂⊥) − 2m̂⊥K2(m̂⊥)] A + perturbations}
where  with .f(x, p) = eu⋅ ̂p(1 + ϵμν ̂pμ ̂pν) ϵμν = πμν/2(ϵ + p)

m̂⊥ ≡
m2 + p2

⊥

T
, ̂p⊥ ≡

p⊥

T
, Kn : Bessel function



Observables 
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• Momentum anisotropy 

• Multiplicity distribution
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Jet-medium interaction
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• The total energy of jet and fluid system is conserved:

∂νTμν = ∂ν ( Tμν
attractor + δTμν + Tμν

jet ) = 0

{
∂νT

μν
attractor = 0,

∂νδTμν = − ∂νT
μν
jet = Jμ .

• Effect of jet-medium interaction described by perturbations: XA et al, in progress

Chaudhuri et al, 0503028

Casalderrey-Solana et al, 0602183

Chesler et al, 0712.0050

Neufeld et al, 0802.2254

Qin et al, 0903.2255

Yan et al, 1707.09519

Casalderrey-Solana et al, 2010.01140

…



Jet parton as a source
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• Boost-invariant and knife-shape jet parton

Jμ = fμ (τγs)−1δ(2)(x − xs(τ))

fμ =
dE
dt

uμ

dE
dt

=
π
2

λγsv2
s T2 .

z

t

τ = τ0

xs(τ) = (x0 + vs(τ − τ0))Θ(τ − τ0)

z

• Energy loss of a quark in a strongly coupled plasma

Boost-invariant assumption


• captures main effects qualitatively

• corresponds to the longest 

wavelength modes along rapidity 
that are more relevant 

Chesler et al, 1402.6756

parton trajectories (example)
effective drag force

dE
dτ

=
4Einτ2

πℓ2
stop ℓ2

stop − τ2
.heavy quark:

Herzog et al, 0605158

light quark:



Particular solutions due to jet
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• Inhomogeneous EOM

δ ̂Tp(τ, k) ∝
i λv2

s Cηe−ik⋅xs(τ)

(4Cη + Cτ(1 − 3( ̂k ⋅ vs)2))k
τ−1/3(1 + 𝒪(τ−1/3))

∂τ
̂ϕi (τ, k) = Mij

̂ϕj (τ, k) + Ji(τ, k)

• The late-time solutions can be found by Wronskian:

δ ̂ϕ(τ, k) =
4

∑
i=1

Ci(k) δ ̂ϕi(τ, k) + δ ̂ϕp(τ, k)

One can show the particular solutions have the power-law behavior, e.g.,

(heavy quark)



Jet wake 
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• The transverse tomography with jet wake based on FFT:

10 fm8 fm6 fm



Conclusion



• Transverse dynamics and jet-medium interaction are described by 
perturbations around attractor.


• Problem reduces to a set of linear ODEs which can be analyzed semi-
analytically.


• Physical observables (including jet) are captured by a finite set of 
asymptotic data.

29

• Jet physics after freezeout. see all talks on observables on Monday 


• Stochastic fluctuations.


• Other approaches, e.g., kinetic approach. see also Aleksas’s talk

Outlook

Recap 


