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current and future work




Chiral anomaly

Chiral anomaly breaks the axial symmetry (v — %)) of the system, creating a non
axial current.
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Weyl and Dirac
Semimetals

The effects of the
chiral anomaly have
been seen in Weyl
semimetals via the
chiral magnetic
effect

We are currently
working on
implications due to
the quantum hall
effect

Chiral magnetic effect in ZrTes
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Testing for the chiral anomaly

» One way of studying the effects for chiral media is through the interaction
between a fast moving particle and a chiral medium.

» While traveling through the media the particle can lose energy via
collisional or radiative energy loss

» We will focus mainly on the collisional energy loss for this presentation

» This has a number of advantages in various areas such as QGP and Axionic Cherenkov radiati
matter




Quark-Gluon Plasma

One such advantage comes from globally chiral neutral media such as
Quark-Gluon Plasma:

the enhancement due to the presence of any chiral
magnetic effect for the rate of energy loss of a particle
makes it sensitive to local chiral imbalances in the plasma.

overall the jets produced will be chiral neutral, however
chirality of the radiated photons may oscillate depending on
the local chiral imbalances in the plasma.




Axions and dark matter

Axions and axionic matter are highly related to the chiral anomaly and may serve
as a dark matter candidate.
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The study of the radiation produced in cosmic rays may shed light on the
existence of such matter




Maxwe l l ,S eq U ati O n S https://journals.aps.org/prl/is

The effect of the anomaly in QED can phenomenologically described using the
pseudoscalar field ©.

Lyvics = .CQE[} + CAQ(I)E - E

In terms of b* = (by, —b) = ca0"0 = ca(0, —V0)
arXiv:1206.1868v3

V.E= p-b-B

VXB—% = J+bB+bxE
V.B-0 Chiral ~ Quantum hall
VXE+¥:U effect

We will focus on homogeneous media (b=0) in the next part of the
talk




Collisional energy loss

we analyze the collisional energy loss via the Fermi model in our paper “Collisional e
loss and the chiral magnetic effect” https://arxiv.org

Consider a point charge traveling in the z-direction perpendicular to impact parameter b t
medium with induced current j,=o, B, (by = 0, ) such that

- = q6(z —vt)d(b) —quzé(z —vt)é( b) M =(0,0)

We can solve the modified Maxwell equations for the individual electric and magnetic compone
VxB=0 D+o0, B+ quzi(z—vt)d( b)
V- -D =¢qi(z—vt)i(b)
V xE=-0B
V-B=0
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Electromagnetic Components https:/ /arxiv.

» The solution is a superposition of helicity states A = +1

dzlﬂ_dw . . q2 ceX. A\k
B £ — tk-r—iwt Ak
(r, 1) / (27)3 € z; Ak k? +w?(1/v2 —€) — Aok

Phidw 4., 1g2 - €3
E £ — ik-r—iwt Ak
e P

The integrals over angles can be cumbersome, however, an analysis after
integration reveals an instability of the fields, here are two such examples.

q iw eiwz/v 2 7;Wz/ru

Bat) = o S S e = D ) — 2] Kbk Biu(r) = 5h o > (=1)
1 2 1 5

v=1

1 e
For s = w? (_ — e(w)) k=" — X 4 (—1)”JX\/w2e -

V2 2
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Collisional energy loss https://arxi

The rate of energy loss for the particle can be computed from the modified Maxwell's
equations as the flux of the Poynting vector out of a cylinder of radius “a” coaxial with th
particle path.

0.100f oy =0.19eV

0.001} ? :

d‘E - OO * * Y
L= 2ma (EyB, — E.By)dt = 2aRe (EpwBl, — EBj,)dw 105 [

z —00 0 :

10°7 +

1079}

100

The spectrum of electron with v = 100 in a semimetal with parameters I' = 0.025 eV and m = 0.5 MeV.

w4 give bounds to the enhancement due to the anomaly.

After integrating over dE 2 " 1 :
frequency in the T 4(1 5 (wﬁ In — + 172093) gwen.ftl.as?a
ultrarelativistic limit o T Wp permitiivity
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Power and ReCOil https://arxiv.

Once the rate of energy loss is identified, it can be used to find the rate of chiral radiati
emitted in the proper limit

dw  dzwdwlasoo 47 |2 v?2 2w Q202 e
2 ;2~2
And the total radiated power P = j_ Xj
T

The previous results neglect recoil. Once this effect is taken into account, one obtains th
modified results

T}/ quant q2 $2 m2 q2 ovE
_ s e Pqua.nt _ 1 XK
dw (47)2w {JX ( y T 1) E :E} and A 3

Recoil therefore reduced the total radiated power’s dependence on energy




QCD and QGP

Our results can be readily generalized to
the strong interactions which dominate
the particle energy loss in QGP

where g is the strong coupling. The
plasma frequency ®, is

obtained from wp by replacing e — /Nc
g. G, is proportional to

the QCD anomaly coefficient ¢, = N f
g?/(16m?2).

When recoil is accounted for

~2
wp

https://arxiv.

Cdr 4m?

dE_ gQC’F (

dE
dz

anom
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Inhomogeneous media

Jeremy Hansen, Kazuki lkeda, Dmitri E. Kharzeev, Qiang Li, and Ki

» Up to this point have considered only the chiral magnetic effect, we will now consider
hall effect do the current

jan =bx E

» This gives rise to the rate of photon emission as computed by my collaborator

dw o’ E?
= ) E'—E
dQddw 167 ; @+ )EE’wQEij e; €;

! / ! / 2
deje; [pipj +pip; +0i;(EE —p-p —m )] https://arxiv.org/abs/1809.08181

» An important part of the rate of emission stems from the effect on the photon’s energy whic
obeys Fresnel’s equation

|E§Ej — E?(sij + WEEij' =3 Where E‘ij — Eaij—iﬁijkbk/w

» The permittivity is described using the Fermi model

e~ 1/(14+w,/w?)




Dispersion Relation

» the full solution to the Fresnel’s equation gives

b2w? sin(B)2 — Mw\/bﬂwﬂ sin(B)* + 4(w? — w2)? cos(B)?

2(w? — w2)

wz—.f?:wg—l-

» Energy loss is maximum when the radiated particle
(k) is aligned to the chiral displacement (b) such that

W~k = w2 — bw, B=0

» When the anomaly is perpendicular to the outgoing

radiation it gives no contribution for w>w,since RS
2 o I
w — k= wy, + 5 5 O
2(w? — wp) .

» This stems from the kinematic constraint

.....................

4m2w? + (W — F)AEE —m®) +w? — k) =0
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High energy

After integrating over angles one finds the  Alternatively, one can find the angular dis
intensity of radiation per frequency as an for the intensity of radiation by integratin

increasing function of chiral displacement  frequencies
aw  af 1

dP ¥ E? B —
— = ;9( m; —m) for f = Abcosf3 dQ 2w 9?2 +m?2/E?
dw
di an
o (W cm) [
- b=3.8eV
10
1~ b =0.19 eV
0.100 ¢ b=0.01cV
0010 TN e
0.001 -
1074 ¢
100 1000  10* 105 100 qo7 wClem

Intensity spectrum of Chiral Cherenkov radiation for Angular distribution of Chiral Cherenkov radiation.
electrons of energy F = 3 MeV, = 0 in a Weyl semimetal, E=3McV,B8=0,b=3.9cV.

dotted line: bremsstrahlung in Co3zSn2Ss.




High energy limit

» After integrating over angles and frequencies,
and converting the rate of radiation produced to
the rate of energy loss on obtains the total
radiated power

p_ af?E*  ab®cos® fE?
- 2m?2 2m?

» The two loops have opposite polarization

Chiral Cherenkov radiation intensity for incidence angle (/).
E=3MeV,b=39eV.
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Radiative energy loss

In addition to the collision energy loss, the anomaly
may impact radiative energy loss as well JL

For an in-depth discussion refer to our papers q

https://doi.org/10.1103/PhysRevD.105.116008

https://doi.org/10.1103/PhysRevD.108.076007

In particular, we consider how the anomaly modifies the photon propagator such that

Dy, (q) = —i T+ iCupob 4" + byb,
Hv q4_|_b2q2_(b_q)2

https://arxiv.org/abs/hep-ph/04061

And the impact of the anomaly on the corresponding dispersion for a homogeneous
medium
w? = k? + k? = k? — Abolk|

In case we find that under the right conditions, we find that the rate of energy los
may be enhanced by the chiral anomaly


https://doi.org/10.1103/PhysRevD.105.116008
https://doi.org/10.1103/PhysRevD.108.076007

Multiple Scattering

» For the Radiative energy loss we have neglected coherence effects due to
multiple scattering, however for an accurate description of energy loss this
can not be ignored

» For multiple scattering medium effects such as Cherenkov radiation is often
neglected as small arXiv:hep-ph/9604327vl

» Our study, however, shows that medium effects due to the chiral anomaly can
be significant given the right conditions and should not be neglected
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QCD

We wish to extend our
treatment to the realm
of QCD. In which we
consider collisional and
radiative energy loss
for quark scattering
and gluon radiation.

In particular we
consider the impact of
the anomaly on a
quark radiating a
gluon, and a gluon
radiating a gluon
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Summary

» The presence of a finite chiral conductivity has a potentially significant
effect on the collisional and radiative energy loss including Weyl semimetals
and QGP.

» In both the collisional and radiative energy losses chiral magnetics and hall
effects can have interesting and varying impacts, most notable in the
dispersion relation for produced radiation

» Currently we are expanding our treatment to QCD. This may be seen most
notably in the dispersion relation of the gluon, and three gluon vertex in the
ultra-relativistic limit.




Radiative energy loss

For the radiative energy loss we consider this
process JL

With corresponding matrix element and differential q
cross section

M=) (1, Uf :k’fﬁ_”;zmq) + A) (p"’_‘kfﬁ_’";z fia) ulo

https://arxiv.org/abs/2203.13134

The anomaly modifies the photon propagator in the following way

D, (q) = —i T+ 16pob 4" + byb,
Hv qﬁl_l_quZ_(b_q)Z
https://arxiv.org/abs/hep-ph/0406128




Source current

Using the photon propagator in chiral
medium in the static limit

i
Dyo(q) = —
(q) = 2
Doi(q) = Doi(q) =0,
10 €; 'qu €4 'qu
Dij(q) = ——5—5 — —— + =
i(9) > —b}  bo(g>—b5)  bog?

Given how the source current couples to
the propagator, the anomaly most
apparently impacts the energy loss via
magnetic moment

To find the vector potential we use the stati
current

Jx) = e'é(x),

Electric Monopole

J(x) =V x (Mé(x))
Magnetic Moment

Giving rise to

A%q) =€'/q’

1 .
Al(gF - e [t{Mx q)" +

%{M- aq’ — a’M)
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Magnet]C moment https://arxiv.org

In the a material a good approximation that is often assumed is that th
magnetic moment is stochastically oriented such that

(mi) = 0, (MiM;) =5 0y
This allows us to separate the contributions of due the electric charge and magnetic mo

that
IM|* = IM|* + IM,|*

Focusing on the contribution due to the magnetic moment, one will find that the cross-
section depends on the averaged product of vector potentials

2
<A*(q)AJ*(q)> - S(qu_ b%)z [(5‘1} quJ) (q + b{]) Zibofijqu

Which gives a resonance like behavior a at q=b,
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Magnetic moment

The problem with the expression for the differential cross-section is that it

diverges at q = b,. As such its behavior must be regulated in some way. This can be
accomplished by taking account of the finite resonance width.

1 1
AP — (002 @+ 0F—(b-q) + il

This is related to the photon decay width W as r2=2 bo|q|W = 2byW
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Magnetic moment

Regulating the divergence at q=b, with the finite resonate width I" in the ultra-relativisti
semi-soft photon limit, we can derive the following approximation for the differential

cross section integrated over directions. do m2e
dw €
doy, 2 [3b 4! o 4€2  2b3m
dw = 3(27m)3w [W hl(mzuﬁ) +1n mz T szze(wo —w) ~ <.
109 "7l
~~~~~ Monopole
2¢2by 1o Tl \
wy = —F""—"—F .
where  wo Seby + 2 T
10° = magnetic moment b i(().()[llm S
This can be compared to the 1000 " Sy
traditional expression from the : =0 e ﬁ
mono-pole contribution in this 100 T
limit . . .
doe Z?eb (l 2¢2 1) ) 1074 0.001 0.01
~ n— — —
37,2 .
dw  122m)°miw \ mw 2 photon bremsstrahlung cross section

for m = m,, I' = 0,018, ¢ = 100m, and M = My
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Electric Charge

https://arxiv.org/abs/23

The coulomb contribution gains a resonant behavior due to the effect of the anomaly on
the dispersion relation of the photon (photon gains an effective mass)

w? = k% + k? = k? — \pg|k|

This effect can be seen in the equation for the matrix element

M = ¢é? u(p )(ﬁkkfﬁJ‘Lﬁi;A(‘ﬂ Alq )P ﬁ+k2¢m)ﬂ(13)

This resonant behavior has two significant cutoffs, the Debye mass u, and the chiral
relaxation time t of the medium
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Regulating the divergences

https://arxiv.org/

» The divergence in the fermion propagator can be regulated by the chiral relaxation
time t. For K equal to the four dot between the fermion and the out going radiatio
we have

1 1
20k — k? _}2mx—k2+£E/*r’

» The photon propagator is also effected by the chiral anomaly via the dispersion
relation for the out going radiation. In which case the divergence can be screened
through the Debye mass

1 1

—

QZ q2 + ‘u2
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Momentum transfer at high energies

https://arxiv.

» At high energies the resonance in the fermion propagator can be expressed in the
following way

1 1
2p-k— I +iE[t @E(me=w g2 1)

» The minimum momentum transfer can be approximated similarly and inherits the same
resonant behavior as the fermion propagator

1 [m*(@w—w*) wE |2
2 ~— 6?
1 0’ E? [m? (0 — *) 2
_ v 240

4 E* |wE(E - o)

» This suggests that the photon propagator can be regulated similarly to the fermion
propagator 2

2 2 2

C2O+ gtk
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Electric Charge

do '
do(bpA > 0) 3w m?m3by dopp dw ° w* wo
dw T2 1n2E dw
e 1014

Electric Monopole

For frequencies less than

Abo E2 100.00}

B AboE + m? magnetic moment | T Tmeeeeaqeo.
0.2 0.4 0.6 0.8

w*

-~
.....................
-

in the high energy limit
bo = 0.1m, jp = 10"3bg, 71 = 0.1by, E = 10m, Z = 33, M = My, I = 0.1b
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Debye Mass

In the high-temperature limit such that y is much larger than the mass of the incoming
particle, that effect of the anomaly can be screened out

1077 1073 0.001 0.100 €
contribution: bn = 107%m. E = 10°m. u = 10m. 7' =T = 0.1bn. Z = 33.




32

Energy Loss

https://arxiv.o

For our calculation, we assume that the photon formation time is much shorter than
the mean free path €. This allows us to neglect quantum interference and express th
rate of energy loss per length in terms number of scatterers per unit volume

n— 1/fo.e3—rez

where ¢ is the elastic scattering cross-section. The rate of energy loss can be

expressed as
daez—mz'r
——=n f dw

In the high energy limit neglecting the magnetic moment contribution,
one can obtain an expression for the rate of energy loss in the unscreened
and screened limits

dE &E[. 2E 1 dE B 2bopT
e = .Ehlrz.!{l“; 3 | 7 E arctan -'-'-fl[rT} dz 16’.’T2£ {ln N 3E }

Unscreened vs screened



Note of interest

For the polarization sum
. . o R 2 ¥

] 1 *] g1
dy) = E epey =0 3

pol

This is due to the fact that the dispersion relation for the photon in the media is give
by

w? = k? + k? = k? — \pg|k|

There is no remaining gauge freedom to transform it to any other form. In particular, d]-j cannot be

replaced with - gjy. As an illustration, consider the amplitude e, -M. Let k be in the z-directio
using the current conservation k - M = 0 we can write

2
W 1 *
D lex MPP = (Mo + [My[* = [Maf? + My + IM-|* — 5[ Mol* # —g" MuM;,

pol




None chiral limit

A good model for the plasma permittivity is given

b
y wg

e=1— P
w? 4 1wl

Where w, is the plasma frequency, and ' is a damping term related to the electrical
conductivity much smaller than w,,

This gives an overall contribution to the rate of energy loss at the pole €=0 as I goes to zero.

deP  qw, 2 /02 _ 52 2 /02 _ 52
- :47W2K0 (awp/v)Re{a\/wp/v —axKl(a\/wp/v —O'X)}




Other sources

» On of the sources of the chiral relaxation time stems from spontaneous
photon emission

e’ [dw @ m*w

S = T ) - *_
Wee f m[bg(m E+) EJ@(@ ©)O(iby)
_ AbyE?
_I’lng—sz

for w*

» In particular when m? > Aby E we find that W ~ ab,/2 acting as a lower
bound for the chiral relaxation time

771 > ab,/2.




Energy Loss polarization dependence

Neglecting the magnetic moment contribution, one can obtain an
expression for the rate of energy loss in the unscreen limit

dE(byi <0 ’E 2E 1 2b,E E
(bpd<0) e [ n(ﬁzm )]

~ In=Z_2_
dz 16222 | " m 3 Om? bo

dE(boA > O) 2E 1 2byE E 2miw*t

In——— 2In— —w*

dz lﬁnzf{ m 3 i 9m? s bo +27(E — ") arctan E(E—m*)}

» the screened limit has a similar behavior except that the effect due to the
anomaly is suppressed similarly to the differiential cross section

dE(bpA>0) _ 1“ B

2E 6byE. E_4E* 2bgur
+— 5+
dz 16):2&" Tu= by u 3E

In—In
dz “16x2f

dE(bﬂA{{}) e’E (IHZE 6b0E E 452)
T by




Inhomogeneous Media

We focus on homogeneous media for the radiative energy loss, however,

implications due to the chiral displacement b that lead to the quantum hall
effect deserve consideration

The effect can be seen in the photon propagator in the static limit

P
iq
Doy = :
P g+ (bxq)?
 (bxgq)i
Dm_q4+(b><tﬂ2’
o i os ., ld"—b-9)lagy b-q,
Dij_ q4+(bX(I)2 {q Jij_l_b‘bj 94 qz (blq]—}_qu‘)

Though resonance behavior is not as readily apparent as in the case of a

homogeneous media, effects due the dispersion relation may have important
implications for future study
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