
Energy loss in 
chiral media



Overview 

 What is chiral matter

 Sources of chiral imbalance 

 Possible experimental applications

 Source of high-intensity radiation and leads to energy loss

 Collisional energy loss 

 Brief discussion of radiative energy loss

 current and future work
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Chiral anomaly

Sources of chiral imbalance may come from changes 
in 𝑁𝑁𝑐𝑐𝑐𝑐

QCD Vacuum

Chiral anomaly breaks the axial symmetry (                ) of the system, creating a none conserved 
axial current.
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Weyl and Dirac 
Semimetals

The effects of the 
chiral anomaly have 
been seen in Weyl 
semimetals via the 
chiral magnetic 
effect

We are currently 
working on 
implications due to 
the quantum hall 
effect  
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Testing for the chiral anomaly 

 One way of studying the effects for chiral media is through the interaction 
between a fast moving particle and a chiral medium.

 While traveling through the media the particle can lose energy via 
collisional or radiative energy loss

 We will focus mainly on the collisional energy loss for this presentation

 This has a number of advantages in various areas such as QGP and Axionic
matter

Cherenkov radiation
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Quark-Gluon Plasma
One such advantage comes from globally chiral neutral media such as 
Quark-Gluon Plasma: 

the enhancement due to the presence of any chiral 
magnetic effect for the rate of energy loss of a particle 
makes it sensitive to local chiral imbalances in the plasma.

overall the jets produced will be chiral neutral, however 
chirality of the radiated photons may oscillate depending on 
the local chiral imbalances in the plasma.
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Axions and dark matter

Axions and axionic matter are highly related to the chiral anomaly and may serve 
as a dark matter candidate. 

The study of the radiation produced in cosmic rays may shed light on the 
existence of such matter
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Maxwell’s equations
The effect of the anomaly in QED can phenomenologically described using the 
pseudoscalar field  ϴ.

In terms of

Chiral 
magnetic 
effect

Quantum hall 
effect

We will focus on homogeneous media (b=0) in the next part of the 
talk

https://journals.aps.org/prl/issues/58/18

arXiv:1206.1868v3
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Collisional energy loss

Consider a point charge traveling in the z-direction perpendicular to impact parameter b through a 
medium with induced current 𝑗𝑗A=σχ B, (𝒃𝒃𝟎𝟎 = σχ ) such that 

𝑏𝑏μ = (σχ, 0)

we analyze the collisional energy loss via the Fermi model in our paper “Collisional energy 
loss and the chiral magnetic effect”

We can solve the modified Maxwell equations for the individual electric and magnetic components

https://arxiv.org/abs/2012.06089
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Electromagnetic Components  
 The solution is a superposition of helicity states λ = ±1

For

The integrals over angles can be cumbersome, however, an analysis after 
integration reveals an instability of the fields, here are two such examples.
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E

https://arxiv.org/abs/2012.06089
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Collisional energy loss
The rate of energy loss for the particle can be computed from the modified Maxwell's 
equations as the flux of the Poynting vector out of a cylinder of radius “a” coaxial with the 
particle path.

given plasma 
permittivity 

After integrating over 
frequency in the 
ultrarelativistic limit 

https://arxiv.org/abs/2012.06089
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Power and Recoil

Once the rate of energy loss is identified, it can be used to find the rate of chiral radiation 
emitted in the proper limit 

And the total radiated power

The previous results neglect recoil. Once this effect is taken into account, one obtains the 
modified results

and

Recoil therefore reduced the total radiated power’s dependence on energy

https://arxiv.org/abs/2012.06089
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QCD and QGP

Our results can be readily generalized to 
the strong interactions which dominate 
the particle energy loss in QGP

where g is the strong coupling. The 
plasma frequency  �ωp is
obtained from ωp by replacing e → √Nc 
g. �σχ is proportional to
the QCD anomaly coefficient �cA = N f 
g2/(16π2).

When recoil is accounted for

https://arxiv.org/abs/2012.06089
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Inhomogeneous media

 Up to this point have considered only the chiral magnetic effect, we will now consider the anomalous 
hall effect do the current

 This gives rise to the rate of photon emission as computed by my collaborator 

 An important part of the rate of emission stems from the effect on the photon’s energy which       
obeys Fresnel’s equation 

 The permittivity is described using the Fermi model 

Where

Jeremy Hansen, Kazuki Ikeda, Dmitri E. Kharzeev, Qiang Li, and Kirill Tuchin in preparation 

https://arxiv.org/abs/1809.08181
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Dispersion Relation

 the full solution to the Fresnel’s equation gives

 Energy loss is maximum when the radiated particle 
(k) is aligned to the chiral displacement (b) such that

 This stems from the kinematic constraint

 When the anomaly is perpendicular to the outgoing 
radiation it gives no contribution for ω>ѡ𝑝𝑝since
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High energy
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After integrating over angles one finds the 
intensity of radiation per frequency as an 
increasing function of chiral displacement

Alternatively, one can find the angular distribution 
for the intensity of radiation  by integrating over 
frequencies

for
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High energy limit

After integrating over angles and frequencies, 
and converting the rate of radiation produced to 
the rate of energy loss on obtains the total 
radiated power 

The two loops have opposite polarization
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Radiative energy loss
In addition to the collision energy loss, the anomaly 
may impact radiative energy loss as well 

For an in-depth discussion refer to our papers

https://doi.org/10.1103/PhysRevD.105.116008

https://doi.org/10.1103/PhysRevD.108.076007

In particular, we consider how the anomaly modifies the photon propagator such that

And the impact of the anomaly on the corresponding dispersion for a homogeneous 
medium 

In case we find that under the right conditions, we find that the rate of energy loss 
may be enhanced by the chiral anomaly

https://arxiv.org/abs/hep-ph/0406128
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Multiple Scattering

 For the Radiative energy loss we have neglected coherence effects due to 
multiple scattering, however for an accurate description of energy loss this 
can not be ignored

 For multiple scattering medium effects such as Cherenkov radiation is often 
neglected as small

 Our study, however, shows that medium effects due to the chiral anomaly can 
be significant given the right conditions and should not be neglected

arXiv:hep-ph/9604327v1
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QCD

 We wish to extend our 
treatment to the realm 
of QCD. In which we 
consider collisional and 
radiative energy loss 
for quark scattering 
and gluon radiation.

 In particular we 
consider the impact of 
the anomaly on a 
quark radiating a 
gluon, and a gluon 
radiating a gluon  
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Summary

 The presence of a finite chiral conductivity has a potentially significant 
effect on the collisional and radiative energy loss including Weyl semimetals 
and QGP.

 In both the collisional and radiative energy losses chiral magnetics and hall 
effects can have interesting and varying impacts, most notable in the 
dispersion relation for produced radiation

 Currently we are expanding our treatment to QCD. This may be seen most 
notably in the dispersion relation of the gluon, and three gluon vertex in the 
ultra-relativistic limit.
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Radiative energy loss
For the radiative energy loss we consider this 
process

With corresponding matrix element and differential 
cross section

The anomaly modifies the photon propagator in the following way

https://arxiv.org/abs/hep-ph/0406128

https://arxiv.org/abs/2203.13134
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Source current
To find the vector potential we use the static 
currentUsing the photon propagator in chiral 

medium in the static limit

Giving rise to

Electric Monopole Magnetic Moment

Given how the source current couples to 
the propagator, the anomaly most 
apparently impacts the energy loss via 
magnetic moment

https://arxiv.org/abs/2203.13134
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Magnetic moment

In the a material a good approximation that is often assumed is that the 
magnetic moment is stochastically oriented such that 

This allows us to separate the contributions of due the electric charge and magnetic moment such 
that 

Focusing on the contribution due to the magnetic moment, one will find that the cross-
section depends on the averaged product of vector potentials

Which gives a resonance like behavior a at q=𝑏𝑏0

https://arxiv.org/abs/2203.13134
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Magnetic moment

The problem with the expression for the differential cross-section is that it 
diverges at q = 𝑏𝑏0. As such its behavior must be regulated in some way. This can be 
accomplished by taking account of the finite resonance width.

This is related to the photon decay width W as Γ2 = 2 𝑏𝑏0|𝒒𝒒|𝑊𝑊 ≈ 2𝑏𝑏0𝑊𝑊

https://arxiv.org/abs/2203.13134
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Magnetic moment
Regulating the divergence at q=𝑏𝑏0 with the finite resonate width Γ in the ultra-relativistic 
semi-soft photon limit, we can derive the following approximation for the differential 
cross section integrated over directions.

where

This can be compared to the 
traditional expression from the 
mono-pole contribution in this 
limit

https://arxiv.org/abs/2203.13134
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Electric Charge
The coulomb contribution gains a resonant behavior due to the effect of the anomaly on 
the dispersion relation of the photon (photon gains an effective mass)

This resonant behavior has two significant cutoffs, the Debye mass μ, and the chiral 
relaxation time τ of the medium

This effect can be seen in the equation for the matrix element

https://arxiv.org/abs/2307.05761
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Regulating the divergences

 The photon propagator is also effected by the chiral anomaly via the dispersion 
relation for the out going radiation. In which case the divergence can be screened 
through the Debye mass

 The divergence in the fermion propagator can be regulated by the chiral relaxation 
time τ. For κ equal to the four dot between the fermion and the out going radiation 
we have

https://arxiv.org/abs/2307.05761
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Momentum transfer at high energies

 At high energies the resonance in the fermion propagator can be expressed in the 
following way

 The minimum momentum transfer can be approximated similarly and inherits the same 
resonant behavior as the fermion propagator  

 This suggests that the photon propagator can be regulated similarly to the fermion 
propagator

https://arxiv.org/abs/2307.05761
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Electric Charge

The effect of the anomaly can vary dramatically depending on the size of the Debye mass. Most notably 
the effect is strongest when μ is much smaller than the mass of the incoming particle. When compared 
to radiation due to Bethe-Heitler, the anomaly acts by enhancing the amount of radiation such that 

For frequencies less than 

in the high energy limit  

https://arxiv.org/abs/2307.05761
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Debye Mass
In the high-temperature limit such that μ is much larger than the mass of the incoming 
particle, that effect of the anomaly can be screened out

https://arxiv.org/abs/2307.05761
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Energy Loss
For our calculation, we assume that the photon formation time is much shorter than 
the mean free path ℓ. This allows us to neglect quantum interference and express the 
rate of energy loss per length in terms number of scatterers per unit volume  

where σ is the elastic scattering cross-section. The rate of energy loss can be 
expressed as

In the high energy limit neglecting the magnetic moment contribution, 
one can obtain an expression for the rate of energy loss in the unscreened 
and screened limits

Unscreened vs screened

https://arxiv.org/abs/2307.05761
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Note of interest

This is due to the fact that  the dispersion relation for the photon in the media is given 
by

There is no remaining gauge freedom to transform it to any other form. In particular, dij cannot be 
replaced with − gμν. As an illustration, consider the amplitude e𝑘𝑘 ·M. Let k be in the z-direction, then 
using the current conservation k · M = 0 we can write

For the polarization sum 
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None chiral limit

A good model for the plasma permittivity is given 
by

Where ωp is the plasma frequency, and Γ is a damping term related to the electrical 
conductivity much smaller than ωp.

This gives an overall contribution to the rate of energy loss at the pole ϵ=0 as Γ goes to zero.
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Other sources

 On of the sources of the chiral relaxation time stems from spontaneous 
photon emission

for

 In particular when                     we find that                  acting as a lower 
bound for the chiral relaxation time
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Energy Loss polarization dependence

 the screened limit has a similar behavior except that the effect due to the 
anomaly is suppressed similarly to the differiential cross section

Neglecting the magnetic moment contribution, one can obtain an 
expression for the rate of energy loss in the unscreen limit
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Inhomogeneous Media

We focus on homogeneous media for the radiative energy loss, however, 
implications due to the chiral displacement b that lead to the quantum hall 
effect deserve consideration

The effect can be seen in the photon propagator in the static limit

Though resonance behavior is not as readily apparent as in the case of a 
homogeneous media, effects due the dispersion relation may have important 
implications for future study 37
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