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Initial setup

Regime of interest

Large nuclei: A1, A2 � 1.

Mid-rapidity back to back pair {Jet− γ}.
Mostly transverse momenta pJ ∼ pγ ∼ Q
Observable: azimuthal decorrelation (⇔
Momentum imbalance) δϕ

Scaling δϕ ∼ Qy/Q� 1, with Qy

semihard scale Qy � ΛQCD
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Initial setup

Goals:

Prove to the best of our knowledge from
�rst principle factorization for DY and
jet-γ in AA collisions.

Compute the leading order correction in
αS to the azimuthal decorrelation due to
cold nuclear e�ects.

Computed using single scattering, further
resumed.

Result:

Factorization of the hard process with the
medium-modi�ed initial state parton
distribution and medium-modi�ed jet
function.
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Part 1: Baseline



Baseline: Factorization of the bare process

A1

A2

A1

A2

Hard
x

Hard

x′

Setup:

Working in coordinate space.

Describe colliding nuclei states by
introducing the Wigner function.
For the plus moving A1, and q

+ � P+,
we have

WA1(P, b) =

∫
dq+d2q

(2π)32P+
e−

i
2
q+b−+iq·b

× 〈P + q/2|A1〉〈A1|P − q/2〉

= ρ̂A1(b−, b)2(2π)3δ3(P − P1)

⇒ Introduce the color charge density ρ̂.

This is the McLerran-Venugopalan model.
Nucleons are assumed uncorrelated, and
partons within are recoilless classical
sources of the gluon �eld.
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Baseline: Factorization of the bare process

A1

A2

A1

A2

Hard
x

Hard

x′

Observable:

Hard process: inner propagators far
o�-shell
=⇒ Those propagators shrink to points
(wrt to any other separation involved)

Sum over all possible nucleon yields the
impact parameter dependent cross section
for the observable O
Involve the parton distributions of
nucleons within the nuclei, and the
partonic cross section σ̂ij→k`

dσ(0)

d2bdO = 2

∫
d4XρA1(X−, X)ρA2(X+, X − b)

∑
ij

∫
dξ1dξ2fi(ξ1)fj(ξ2)

dσ̂ij→k`
dO (1)

using X = 1
2
(x+ x′)

F. Cougoulic February 12 - 16, 2024 8 / 19



Part 2: Medium implementation



Medium Implementation: Glauber gluons

Add and extra scattering center / nucleon

Real diagram

· · · · · ·
y

w

y′

w′

Background �eld obtained following the
MV model

Sources: fast parton moving in the
direction of either A1 or A2. Focus only
on A2 in this presentation

Expectation value of the 2 points
correlator 〈A(w)A(w′)〉 in coordinate
space, over all possible nucleon
con�gurations

Glauber gluon: propagator dominated by
the transverse momenta k2 −→ −k2

Features of interest:

Integrate out the �nal state parton after emission of the red gluons.
−→ Sets the time at y to be the same as y′

Glauber gluon are instantaneous:
−→ Sets the time at w to be the same as w′ =⇒ Locality w.r.t. time

Remains the dependence on the transverse separations.
=⇒ Encoded by model dependent (dim-reg / IR cuto� / dipoles, ...) functions, which we
denote by F1(w − y)F1(w′ − y′).
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Medium Implementation: Glauber gluons

Virtual diagrams

· · · · · ·
y

w

y′

w′

· · · · · ·
y

w

y′

w′

Done many times before, some key points:

See BDMPS-Z / GLV / ...

Result similar to the real diagram

Only two changes: (1) Relative sign wrt the real diagram, and (2) the transverse phase
changes
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Part 3: Recovering a factorization formula



Recovering a factorization formula: basic tools

Feynman propagator in coordinate space at high energy

DF (x) −→
∫
dpnj

2π

1

2pnj
e
− i
ni·nj

p
nj xni

θ(xnj )× ni · nj
4πi xnj

exp

(
i

2

ni · nj
2

pnj

xnj
x2ij

)
(2)

using gµν =
n
µ
i n

ν
j+n

µ
j n

ν
i

ni·nj
− g⊥ij and vni ≡ v · ni.

Remarks:

For usual plus-minus movers: usual light cone coordinates.

Starts being interesting when the mover are not parallel. Think of an initial parton in the ez
direction and a produced parton moving in the ex direction.
The transverse part is wrt the two directions ni and nj .

In the high energy limit: Gaussian in transverse space becomes a Dirac delta.

xnj plays the role of time.
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Recovering a factorization formula: Initial state

A1

A2

A1

A2

Hard
x

Hard

x′

y

w

y′

w′

Real diagram

Need to integrate over w and w′ positions.

Use the time ordering from the Feynman
propagator:
(X − w)+ > 0 and (X − w′)+ > 0

Average the bg �elds 〈A(w)A(w′)〉, use
the locality in time of the 2pts function.

Iterating

Recurssive use of the locality of the 2pts
function and the time ordering in the
Feynman propagator (eikonal limit).

Building up a Wilson line along the
plus-direction.

Alternatively Recast into a medium-modi�ed initial distribution
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Recovering a factorization formula: Final state

A1

A2

A1

A2

Hard
x

Hard

x′

y

w

y′

w′

Metric

Use ni = n3, in the plane transverse to
the beam direction.

For the interaction with the minus moving
nucleon, use nj = n1

Feynman propagator is proportional to
θ(x+). With this choice, we use the same
time as the previous case.

Real diagram

Need to integrate over w and w′ positions.

From Feynman propagators:
w+ −X+ > 0 and w′+ −X+ > 0

Use the properties of the bg �eld average,
and iterate to build-up a Wilson line in
the n3 direction.

Alternatively Recast into a medium-modi�ed jet function:
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Recovering a factorization formula: Interference

A1

A2

A1

A2

Hard
x

Hard

x′

y

w

y′

w′

Short answer

Using the same metric, ni = n3 and
nj = n1, same time v+

Integrate over w and w′

From the propagators DF (X − w),
⇒ we have X+ > w+

From The propagator DF (w′ −X),
⇒ we have w′+ > X+

Perform the average over the bg �elds.
It sets w+ = w′+ −→ No support

Due to the lack of support, interference diagrams vanish
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Summary and Prospects

Summary: consider A1A2 → J + γ. Schematic result

A2

σ̂hard

i ∈ A1

i ∈ A1

k ∈ J

k ∈ J

WL

WL†

A1

σ̂hard

j ∈ A2

j ∈ A2

k ∈ J

k ∈ J

WL

WL†

Alternatively

Initial distribution of parton i ∈ A1 modi�ed by the cold medium A2

Initial distribution of parton j ∈ A2 modi�ed by the cold medium A1

Jet function of parton k is modi�ed by cold medium A1 and cold medium A2

F. Cougoulic February 12 - 16, 2024 17 / 19



Summary and Prospects

One very last equation:

dσ
(1)
A1A2→Jγ

d2bdη3dη4dpT dQ
y
T

=
−1

2

∫
d4XρA1(X−, X)ρA2(X+, X − b)

∫
dy

2π
e−iyQ

y
T y2

×
∑
ijk

[ ∫ X+

dW+
dσ

(0)
ij→kγ

dη3dη4dpT

∣∣∣∣∣
X+−W+

q̂i/A2
(W+, X − b, |y|)

+

∫ X−

dW−
dσ

(0)
ij→kγ

dη3dη4dpT

∣∣∣∣∣
X−−W−

q̂j/A1
(W+, X, |y|)′

+

∫
X+

dW+
dσ

(0)
ij→kγ

dη3dη4dpT

∣∣∣∣∣
W+−X+

q̂k/A2
(W+, XW+−X+

n+
3

, |y|)

+

∫
X−

dW−
dσ

(0)
ij→kγ

dη3dη4dpT

∣∣∣∣∣
W−−X−

q̂k/A1
(W−, XW−−X−

n−3
, |y|)

]
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Summary and Prospects

Prospects: - higher order in αS (add more gluons for more fun!)

Introduce radiation. Where is the Sudakov? What about the medium modi�cation?

Finding small-x evolution?

Can we distinguish? Is there overlap?

Some random diagrams:

A1

A2

A1

A2

Hard Hard

A1

A2
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A2

Hard Hard
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