

The effect of medium flow and anisotropy on jet quenching

Xoán Mayo López, IGFAE (USC)

14th February 2024, Trento

Mainly based on <u>2309.00683</u>

xoan.mayo.lopez@usc.es

- Modification of jet properties encodes information about the QGP characteristics and evolution

Jet tomography

• Jet tomography: Jets as differential probes of the spatio-temporal structure of the thermal matter in HIC

Do jets feel the transverse flow and anisotropies of the QGP?

Focus on leading perturbative processes: Two processes that modify jets.

Single particle broadening

Theoretical formulation of jet quenching requires several assumptions to make it tractable. Some of the are

- Ekional expansion; only sub-eikonal length enhanced terms are kept
- Medium is modeled by a background field
- In the simplest scenario the medium is static and homogeneous

Medium induced gluon radiation

The medium is modeled by a field created by a classical current of sources

The stochastic field can be written as

$$gA^{a\mu}(q) = \sum_{i} g^{\mu 0} e^{-iq \cdot x_i} t_i^a v_i(q) (2\pi) \delta(q)$$

Background color field

Heavy sources

 $q_0)$

controls the jet-medium interaction

controls de inhomogeneity

The medium is modeled by a field created by a classical current of sources

The stochastic field can be written as

$$gA^{a\mu}(q) = \sum_{i} u_i^{\mu} e^{-iq \cdot x_i} t_i^a v_i(q) (2\pi) \delta(q_0 - q_0)$$

Background color field

 $u_{\mu} = (1, \, \boldsymbol{u}, \, u_z)_{\mu}$

controls the jet-medium interaction controls de inhomogeneity velocity of the sources

The medium is modeled by a field created by a classical current of sources

The stochastic field can be written as

$$gA^{a\mu}(q) = \sum_{i} u_i^{\mu} e^{-iq \cdot x_i} t_i^a v_i(q) (2\pi) \delta(q_0 - q_0)$$

Background color field

Background color field

raction

Stochastic field \longrightarrow need to specify the average over its configurations \longrightarrow Gaussian statistics

Medium average

$$x_i t_i^a v_i(q) (2\pi) \delta(q_0 - \boldsymbol{q} \cdot \boldsymbol{u} - q_z u_z)$$

Transversely homogeneous matter :

$$g(\boldsymbol{x}, z) \simeq g(z)$$

Transversely inhomogeneous matter :

$$g(\boldsymbol{x}, z) \simeq g(z) + \boldsymbol{\nabla}_{\alpha} g(z) \, \boldsymbol{x}_{\alpha}$$

Gradients in the average

Hydrodynamic variables, g(x, z), encode the matter structure: $g(x, z) \equiv -\rho(x, z) - \mu^2(x, z) - u(x, z) - u_z(x, z)$

$$\int_{\boldsymbol{x}} g(z) e^{-i(\boldsymbol{q} \pm \bar{\boldsymbol{q}}) \cdot \boldsymbol{x}} = g(z) (2\pi)^2 \,\delta^{(2)}(\boldsymbol{q} \pm \bar{\boldsymbol{q}})$$

$$\int_{\boldsymbol{x}} \boldsymbol{\nabla}_{\alpha} g(z) \, \boldsymbol{x}_{\alpha} \, e^{-i(\boldsymbol{q} \pm \bar{\boldsymbol{q}}) \cdot \boldsymbol{x}} = i \boldsymbol{\nabla}_{\alpha} g(z) \, (2\pi)^2 \frac{\partial}{\partial (\boldsymbol{q} \pm \bar{\boldsymbol{q}})_{\alpha}} \, \delta^{(2)}(\boldsymbol{q})$$

Gradients in the average

Lekaveckas, Rajagopal <u>1311.5577</u> Rajagopal, Sadofyev <u>1505.07379</u> and more...

Two diagrams to compute

Single-Born contribution

$$\langle |M|^2 \rangle = \langle |M_0^2| \rangle +$$

Some assumption

- $\mu\Delta z \gg 1$ Dilute and extended medium
- Only first subeikonal corrections are kept

Broadening amplitude

Double-Born contribution

 $\vdash \langle |M_1|^2 \rangle + \langle M_2 M_0^* \rangle + \langle M_2^* M_0 \rangle$

Broadening amplitude

Working accuracy

Final parton distribution

$$= \frac{1}{2(2\pi)^3} \langle |M|^2 \rangle$$

$$E\frac{d\mathcal{N}}{d^2p\,dE} = E\frac{d\mathcal{N}^{(0)}}{d^2p\,dE} + \mathcal{C}\int_0^L dz \int_{\boldsymbol{q}} \left\{ \left[1 - \hat{\boldsymbol{g}}_\alpha \,\frac{(\boldsymbol{u}E - \boldsymbol{p} + \boldsymbol{q})_\alpha \,z}{(1 - u_z)E} \right] \left[1 + \boldsymbol{u} \cdot \boldsymbol{\Gamma}(\boldsymbol{q}) \right] E\frac{d\mathcal{N}^{(0)}}{d^2(\boldsymbol{p} - \boldsymbol{q})\,dE} - \left[1 - \hat{\boldsymbol{g}}_\alpha \,\frac{(\boldsymbol{u}E - \boldsymbol{p})_\alpha \,z}{(1 - u_z)E} \right] \left[1 + \boldsymbol{u} \cdot \boldsymbol{\Gamma}_{DB}(\boldsymbol{q}) \right] E\frac{d\mathcal{N}^{(0)}}{d^2p\,dE}$$

Initial distribution

 $E\frac{d\mathcal{N}^0}{d^2pdE} \equiv \frac{1}{2(2\pi)^3} |J(E,\boldsymbol{p})|^2$

Final parton distribution

Cofinanciado por la Unión Europea

$$E\frac{d\mathcal{N}}{d^2p\,dE} = E\frac{d\mathcal{N}^{(0)}}{d^2p\,dE} + \mathcal{C}\int_0^L dz \int_{\boldsymbol{q}} \left\{ \left[1 - \hat{\boldsymbol{g}}_{\alpha} \frac{(\boldsymbol{u}E - \boldsymbol{p} + \boldsymbol{q})_{\alpha} z}{(1 - u_z)E} \right] \left[1 + \boldsymbol{u} \cdot \boldsymbol{\Gamma}(\boldsymbol{q}) \right] E\frac{d\mathcal{N}^{(0)}}{d^2(\boldsymbol{p} - \boldsymbol{q})\,dE} - \left[1 - \hat{\boldsymbol{g}}_{\alpha} \frac{(\boldsymbol{u}E - \boldsymbol{p})_{\alpha} z}{(1 - u_z)E} \right] \left[1 + \boldsymbol{u} \cdot \boldsymbol{\Gamma}_{DB}(\boldsymbol{q}) \right] E\frac{d\mathcal{N}^{(0)}}{d^2p\,dE}$$

Initial distribution

$$E\frac{d\mathcal{N}^0}{d^2pdE} \equiv \frac{1}{2(2\pi)^3} |J(I)|^2$$

Final parton distribution

Flow corrections

Gradient corrections

 $|(E, \boldsymbol{p})|^2$

$$\hat{\boldsymbol{g}}_{\alpha} = \sum_{g} \left(\boldsymbol{\nabla}_{\alpha} g \frac{\delta}{\delta g} \right)$$

$$Flow corrections$$

$$\hat{\boldsymbol{g}}_{\alpha} = \sum_{g} \left(\boldsymbol{\nabla}_{\alpha} g \frac{\delta}{\delta g} \right)$$

$$Gradient corrections$$

$$\int_{a}^{b} dz \int_{a} dz \int_{a} \left\{ \left[1 - \hat{\boldsymbol{g}}_{\alpha} \frac{(\boldsymbol{u} E - \boldsymbol{p} + \boldsymbol{q})_{\alpha} z}{(1 - u_{z})E} \right] \left[1 + \boldsymbol{u} \cdot \boldsymbol{\Gamma}(\boldsymbol{q}) \right] E \frac{d\mathcal{N}^{(0)}}{d^{2}(\boldsymbol{p} - \boldsymbol{q}) dE}$$

$$- \left[1 - \hat{\boldsymbol{g}}_{\alpha} \frac{(\boldsymbol{u} E - \boldsymbol{p})_{\alpha} z}{(1 - u_{z})E} \right] \left[1 + \boldsymbol{u} \cdot \boldsymbol{\Gamma}_{DB}(\boldsymbol{q}) \right] E \frac{d\mathcal{N}^{(0)}}{d^{2}\boldsymbol{p} dE}$$

Initial distribution

$$E\frac{d\mathcal{N}^0}{d^2pdE} \equiv \frac{1}{2(2\pi)^3} |J(I)|^2$$

Final parton distribution

 $(E, \boldsymbol{p})|^2$

$$\langle \boldsymbol{p}_{\alpha_1}...\boldsymbol{p}_{\alpha_n} \rangle \equiv \frac{\int_{\boldsymbol{p}} (\boldsymbol{p}_{\alpha_1}...\boldsymbol{p}_{\alpha_n}) E \frac{d\mathcal{N}}{d^2 p \, dE}}{\int_{\boldsymbol{p}} E \frac{d\mathcal{N}^{(0)}}{d^2 p \, dE}}$$

Moments of the final distribution

and E

$$E\frac{d\mathcal{N}^{(0)}}{d^2p\,dE} = \frac{f(E)}{2\pi w^2}e^{-\frac{p^2}{2w^2}}$$

D

$$\langle \boldsymbol{p}_{\alpha_{1}} \dots \boldsymbol{p}_{\alpha_{n}} \rangle \equiv \frac{\int_{\boldsymbol{p}} (\boldsymbol{p}_{\alpha_{1}} \dots \boldsymbol{p}_{\alpha_{n}}) E \frac{dN}{d^{2}p \, dE}}{\int_{\boldsymbol{p}} E \frac{dN^{(0)}}{d^{2}p \, dE}} \quad \text{and} \quad E \frac{dN^{(0)}}{d^{2}p \, dE} = \frac{f(E)}{2\pi w^{2}} e^{-\frac{p^{2}}{2w^{2}}} e^{$$

Definition of the moments
$$\langle \boldsymbol{p}_{\alpha_{1}} \cdots \boldsymbol{p}_{\alpha_{n}} \rangle \equiv \frac{\int_{\boldsymbol{p}} (\boldsymbol{p}_{\alpha_{1}} \cdots \boldsymbol{p}_{\alpha_{n}}) E \frac{dN}{d^{2}p \, dE}}{\int_{\boldsymbol{p}} E \frac{dN^{(0)}}{d^{2}p \, dE}}$$
 and $E \frac{dN^{(0)}}{d^{2}p \, dE} = \frac{f(E)}{2\pi w^{2}} e^{-\frac{p^{2}}{2w^{2}}}$
Leading odd moments
 $\langle \boldsymbol{p}_{\alpha} \rangle = -\frac{1}{2} \mathcal{C} \int_{0}^{L} dz \left[1 - z \hat{\boldsymbol{g}} \cdot \frac{\boldsymbol{u}}{1 - u_{z}} \right] \rho(z) \frac{\boldsymbol{u}_{\alpha}}{(1 - u_{z})E} \int_{\boldsymbol{q}} \boldsymbol{q}^{2} \left[E \frac{f'(E)}{f(E)} + \boldsymbol{q}^{2} \frac{\partial}{\partial \boldsymbol{q}^{2}} \right] [v(\boldsymbol{q}^{2})]^{2}$
 $\langle \boldsymbol{p}_{\alpha} \boldsymbol{p}^{2} \rangle = \mathcal{C} \int_{0}^{L} dz \int_{\boldsymbol{q}} \left\{ 2w^{2} z \hat{\boldsymbol{g}}_{\alpha} \frac{\boldsymbol{q}^{2}}{(1 - u_{z})E} - \frac{1}{2} \left[1 - z \hat{\boldsymbol{g}} \cdot \frac{\boldsymbol{u}}{1 - u_{z}} \right] \frac{\boldsymbol{u}_{\alpha}}{(1 - u_{z})E}$
 $\times \boldsymbol{q}^{2} \left[8w^{2} + (10w^{2} + \boldsymbol{q}^{2}) \, \boldsymbol{q}^{2} \frac{\partial}{\partial \boldsymbol{q}^{2}} + (4w^{2} + \boldsymbol{q}^{2}) \, E \frac{f'(E)}{f(E)} \right] \right\} \rho(z) [v(\boldsymbol{q}^{2})]^{2}$
 $\uparrow 1 + 1$

$$\begin{aligned} \text{efinition of the moments} \quad \langle p_{\alpha_{1}} \dots p_{\alpha_{n}} \rangle &\equiv \frac{\int_{p} (p_{\alpha_{1}} \dots p_{\alpha_{n}}) E \frac{dN}{d^{2}p \, dE}}{\int_{p} E \frac{dN^{(0)}}{d^{2}p \, dE}} \quad \text{and} \quad E \frac{dN^{(0)}}{d^{2}p \, dE} &= \frac{f(E)}{2\pi w^{2}} e^{-\frac{p^{2}}{2w^{2}}} \end{aligned}$$

$$\begin{aligned} \text{Leading odd moments} \\ \langle p_{\alpha} \rangle &= -\frac{1}{2} \mathcal{C} \int_{0}^{L} dz \left[1 - z \hat{\boldsymbol{g}} \cdot \frac{\boldsymbol{u}}{1 - u_{z}} \right] \rho(z) \frac{\boldsymbol{u}_{\alpha}}{(1 - u_{z})E} \int_{q} q^{2} \left[E \frac{f'(E)}{f(E)} + q^{2} \frac{\partial}{\partial q^{2}} \right] [v(q^{2})]^{2} \end{aligned}$$

$$\begin{aligned} \text{Along the flow} \\ \langle p_{\alpha} p^{2} \rangle &= \mathcal{C} \int_{0}^{L} dz \int_{q} \left\{ 2w^{2} z \hat{\boldsymbol{g}}_{\alpha} \frac{q^{2}}{(1 - u_{z})E} - \frac{1}{2} \left[1 - z \hat{\boldsymbol{g}} \cdot \frac{\boldsymbol{u}}{1 - u_{z}} \right] \frac{\boldsymbol{u}_{\alpha}}{(1 - u_{z})E} \right. \end{aligned}$$

$$\begin{aligned} \text{Along the gradiential} \\ \times q^{2} \left[8w^{2} + (10w^{2} + q^{2}) q^{2} \frac{\partial}{\partial q^{2}} + (4w^{2} + q^{2}) E \frac{f'(E)}{f(E)} \right] \right\} \rho(z) [v(q^{2})]^{2} \end{aligned}$$

Moments of the final distribution

9

lients

Leading odd moments

$$\langle \boldsymbol{p}_{lpha_1}...\boldsymbol{p}_{lpha_n}
angle\equivrac{\int_{oldsymbol{p}}(oldsymbol{p}_{lpha_1}...}{\int_{oldsymbol{p}}}$$

Jets do feel flow and anisotropies

Moments of the final distribution

Leading odd moments

$$\langle \boldsymbol{p}_{lpha_1}...\boldsymbol{p}_{lpha_n}
angle\equivrac{\int_{\boldsymbol{p}}(\boldsymbol{p}_{lpha_1}...)}{\int_{\boldsymbol{p}}}$$

Agreement with previous results

Moments of the final distribution

Sadofyev et al. <u>2104.09513</u> Barata et al. 2202.08847 Andres et al. <u>2207.07141</u>

$$\langle \boldsymbol{p}_{\alpha_1}...\boldsymbol{p}_{\alpha_n} \rangle \equiv \frac{\int_{\boldsymbol{p}} (\boldsymbol{p}_{\alpha_1}...\boldsymbol{p}_{\alpha_n}) E \frac{d\mathcal{N}}{d^2 p \, dE}}{\int_{\boldsymbol{p}} E \frac{d\mathcal{N}^{(0)}}{d^2 p \, dE}} \qquad \text{and} \qquad E \frac{d\mathcal{N}^{(0)}}{d^2 p \, dE} = \frac{f(E)}{2\pi w^2} e^{-\frac{\boldsymbol{p}^2}{2w^2}}$$

Quadratic moment of the distribution

Moments of the final distribution

$$\left[1 - z\,\hat{\boldsymbol{g}}\cdot\frac{\boldsymbol{u}}{1 - u_z}\right]\rho(z)\,\int_{\boldsymbol{q}}\,\boldsymbol{q}^2\,[v(\boldsymbol{q}^2)]^2$$

$$\frac{1}{u_z} \int \mathcal{C}\rho(z) \int_{\boldsymbol{q}} \boldsymbol{q}^2 \left[v(\boldsymbol{q}^2) \right]^2$$

$$\langle \boldsymbol{p}_{\alpha_1} \dots \boldsymbol{p}_{\alpha_n} \rangle \equiv \frac{\int_{\boldsymbol{p}} (\boldsymbol{p}_{\alpha_1} \dots \boldsymbol{p}_{\alpha_n}) E \frac{d\mathcal{N}}{d^2 p \, dE}}{\int_{\boldsymbol{p}} E \frac{d\mathcal{N}^{(0)}}{d^2 p \, dE}} \qquad \text{and} \qquad E \frac{d\mathcal{N}^{(0)}}{d^2 p \, dE} = \frac{f(E)}{2\pi w^2} e^{-\frac{\boldsymbol{p}^2}{2w^2}}$$

Quadratic moment of the distribution

Moments of the final distribution

$$\left[1 - z\,\hat{\boldsymbol{g}}\cdot\frac{\boldsymbol{u}}{1 - u_z}\right]\rho(z)\,\int_{\boldsymbol{q}}\,\boldsymbol{q}^2\,[v(\boldsymbol{q}^2)]^2$$

$$\frac{1}{l_z} \int \hat{q}_0(z)$$

11

Cofinanciado por la Unión Europea

$$\hat{q}(z) = \left[1 - z\,\hat{g}\cdot\frac{u}{1 - u_z}\right]\,\hat{q}_0(z)$$

Only gradients of temperature to leading logarithm

• Everything z - independent

$$\hat{q}L = \left[1 - \frac{L}{2} \frac{\boldsymbol{\nabla}\rho}{\rho} \cdot \frac{\boldsymbol{u}}{1 - u_z}\right] \hat{q}_0 L$$

Chosen parameters

$$L \simeq 5 fm \qquad \left| \frac{\nabla T}{T^2} \right| \simeq 0.05$$
$$T \simeq 0.3 \, GeV \qquad u \simeq 0.7 \, c \qquad \text{about} \quad \frac{\pi}{4} \text{ to the}$$

Estimation of the effect

e z-axis

$$\hat{q}(z) = \left[1 - z\,\hat{g}\cdot\frac{u}{1 - u_z}\right]\,\hat{q}_0(z)$$

Only gradients of temperature to leading logarithm

• Everything z - independent

$$\hat{q}L = \begin{bmatrix} 1 - \frac{L}{2} \frac{3\left|\frac{\boldsymbol{\nabla}T}{T^2}\right| T \left|\boldsymbol{u}\right| \cos(\theta)}{1 - u_z} \end{bmatrix} \hat{q}_0 L$$

Chosen parameters

$$\begin{split} L \simeq 5\,fm & \left|\frac{\boldsymbol{\nabla}T}{T^2}\right| \simeq 0.05\\ T \simeq 0.3\,GeV & u \simeq 0.7\,c & \text{about }\frac{\pi}{4} \text{ to th} \end{split}$$

Estimation of the effect

ne z-axis

$$\hat{q}(z) = \left[1 - z\,\hat{g}\cdot\frac{u}{1 - u_z}\right]\,\hat{q}_0(z)$$

• Only gradients of temperature to leading logarithm

• Everything z - independent

$$\hat{q}L = \begin{bmatrix} 1 - \frac{L}{2} \frac{3\left|\frac{\boldsymbol{\nabla}T}{T^2}\right| T \left|\boldsymbol{u}\right| \cos(\theta)}{1 - u_z} \end{bmatrix} \hat{q}_0 L$$

Chosen parameters

$$\begin{split} L \simeq 5\,fm & \left|\frac{\mathbf{\nabla}T}{T^2}\right| \simeq 0.05\\ T \simeq 0.3\,GeV & u \simeq 0.7\,c & \text{about } \frac{\pi}{4} \text{ to the z-axis} \end{split}$$

Estimation of the effect

- Only gradients of temperature to leading logarithm
- Everything z independent

Chosen parameters

$$\begin{split} L &\simeq 5 \, fm & \left| \frac{\nabla T}{T^2} \right| \simeq 0.05 \\ T &\simeq 0.3 \, GeV & u &\simeq 0.7 \, c & \text{about } \frac{\pi}{4} \text{ to the} \end{split}$$

Estimation of the effect

- Full dependence $\rho \equiv \rho(T)$ Other gradients contribute in non trivial way
- z-dependence must be taken into account

The jet quenching parameter is positive

$$\left| z \hat{\boldsymbol{g}} \cdot \frac{\boldsymbol{u}}{1 - u_z} \right| < 1$$
 or gradient expansion brakes $\longrightarrow \hat{q}(z) = \left[1 - z \, \hat{\boldsymbol{g}} \cdot \frac{\boldsymbol{u}}{1 - u_z} \right] \hat{q}_o(z)$

Keeping full dependence x on in a crude estimate

$$\rho(\boldsymbol{x}, z) \longrightarrow \rho\left(-\frac{\boldsymbol{u}}{1-u_z}z, z\right) \simeq \left[1-z\frac{\boldsymbol{\nabla}\rho}{\rho} \cdot \frac{\boldsymbol{u}}{1-u_z}\right]\rho(z)$$

Positivity of the jet quenching parameter

Z

Flowing anisotropic medium anisotropic broadening \Rightarrow

Directional effects due to transverse gradient and flow

Odd moments of the distribution are non-zero and along gradients and flow

Novel multiplicative effect on even moments not energy suppressed

• The jet quenching parameter gets a multiplicative correction

$$\hat{q}(z) = \left[1 - z\,\hat{g}\cdot\frac{u}{1 - u_z}\right]\,\hat{q}_0(z)$$

Broadening: to take home

Focus on leading perturbative processes: Two processes that modify jets.

Medium-induced radiation

Medium induced gluon radiation

Ressummed spectrum with transverse gradients

Asymmetric medium-induced gluon spectrum

Ressummed spectrum with transverse flow

Ressummed medium-induced radiation

Barata et al. <u>2304.03712</u>

Coming soon

Ressummed spectrum with transverse gradients

Asymmetric medium-induced gluon spectrum

Ressummed spectrum with transverse flow

Ressummed medium-induced radiation

Barata et al. <u>2304.03712</u>

Coming soon

There are 9 possible diagrams

SB and DB diagrams add up to 12 different contributions

Medium-induced radiation

 $E \, \frac{d\mathcal{N}^{(1)}}{d^2 k \, dx \, d^2 p \, dE} \equiv$

Static matter with full gluon kinematics

Extending the previous result to hard gluon emissions Without ressummation of the interactions Both agree on the correspondent limit

Limits of the final parton distribution

$$\equiv \frac{1}{[2(2\pi)^3]^2} \frac{1}{x(1-x)} \langle |\mathcal{R}_{N=1}|^2 \rangle$$

 $E \, \frac{d\mathcal{N}^{(1)}}{d^2 k \, dx \, d^2 p \, dE} \equiv$

Static matter with full gluon kinematics

Extending the previous result to hard gluon emissions Without ressummation of the interactions Both agree on the correspondent limit

$$E \frac{d\mathcal{N}^{(1)}}{d^2 k \, dx \, d^2 p \, dE} = \frac{g^2 \, C_F}{(2\pi)^3 \, x} \left(E \, \frac{d\mathcal{N}^{(0)}}{d^2 p \, dE} \right) \int_0^L dz \, \int_{\mathbf{q}} \rho(z) \, [v(\mathbf{q}^2)]^2$$

$$\times \left\{ \frac{2 \, \mathbf{k} \cdot \mathbf{q}}{\mathbf{k}^2 (\mathbf{k} - \mathbf{q})^2} \left(1 - \cos\left(\frac{(\mathbf{k} - \mathbf{q})^2}{2xE} z\right) \right) \left(1 + \frac{\hat{\mathbf{g}} \cdot (\mathbf{k} - \mathbf{q})}{2xE} z \right) - \frac{\hat{\mathbf{g}} \cdot \mathbf{k}}{\mathbf{k}^2} \left[\frac{z}{xE} - \frac{1}{\mathbf{k}^2} \sin\left(\frac{\mathbf{k}^2}{2xE} z\right) \right] \right.$$

$$\left. + \frac{\mathbf{k} \cdot (\mathbf{k} - \mathbf{q})}{\mathbf{k}^2 (\mathbf{k} - \mathbf{q})^2} \left[\frac{\hat{\mathbf{g}} \cdot (\mathbf{k} - \mathbf{q})}{xE} z - \hat{\mathbf{g}} \cdot \left(2 \frac{\mathbf{k} - \mathbf{q}}{(\mathbf{k} - \mathbf{q})^2} - \frac{\mathbf{k}}{\mathbf{k} \cdot (\mathbf{k} - \mathbf{q})} \right) \sin\left(\frac{(\mathbf{k} - \mathbf{q})^2}{2xE} z\right) \right] \right\}$$

Limits of the final parton distribution

$$\equiv \frac{1}{\left[2(2\pi)^3\right]^2} \frac{1}{x(1-x)} \left< |\mathcal{R}_{N=1}|^2 \right>$$

• Flow-c

Le

$$E \frac{d\mathcal{N}^{(1)}}{d^2k \, dx \, d^2p \, dE} \equiv \frac{1}{\left[2(2\pi)^3\right]^2} \frac{1}{x(1-x)} \left\langle |\mathcal{R}_{N=1}|^2 \right\rangle$$
gradient mixture effect
GLV spectrum
Gradient x flow corre
$$\omega \frac{dI}{d^2k \, d\omega} = \frac{g^2 C_F}{(2\pi)^2} \int_0^L dz \int_q \left[1 - \hat{g} \cdot u \, z\right] \frac{2 \, k \cdot q}{k^2 (k-q)^2} \left[1 - \cos\left(\frac{(k-q)^2}{2xE} \, z\right)\right] \rho(z) \, [v(q^2)]^2$$

Multiplicative modification of the radiation rate

Limits of the final parton distribution

ections

Multiplicative modification of the radiation rate \Rightarrow Modification of the induced energy loss

 $E = 50 \,\mathrm{GeV}$

Limits of the final parton distribution

 $E = 100 \,\mathrm{GeV}$

To take home

- Jets do feel the transverse flow and anisotropy, and get bended and distorted
- The transverse flow and anisotropy do affect the medium-induced radiation, modifying the jet substructure
- The interplay between flow and anisotropies modify the amount of quenching of a jet
- These effects can be probed in experiment, leading towards actual jet tomography

Simple physical picture

