Anisotropic Jet Broadening and the $R_{AA} \times v_2$ Puzzle

Supported in part by DoE Grant (DE-SC0024560) Supported in part by a start-up grand from NMSU

J. Bahder

In collaboration with Hasan Rahman, Dr. Matthew Sievert, and Dr. Ivan Vitev

ECT* 14th February, 2024

Coupled Observables & the $R_{AA} \times v_2$ Puzzle

- Coupled descriptions are more discriminating
 - a simultaneous description of the observables with a single model
- pQCD models of $R_{AA} \times v_2$
 - Enduring challenge...
 - Success: $p_T > 10 \text{ GeV}$
 - Failure: 1 GeV < p_T < 10 GeV
 - Underpredicted anisotropic flow for well-behaved R_{AA}
 - Something is missing!

Jet Broadening – Isotropic vs Anisotropic

- Difference in setup constraints on external gluon field
- Isotropic
 - Jet quark moves lightcone (+), medium guark moves lightcone (-)
- Anisotropic
 - Jet quark moves lightcone (+), medium quark moves with medium flow
- Two vector directions associated with the medium Flow Ο
 - Gradients 0

Anisotropic Jet Broadening: "Jet Drift"

Anisotropic Jet Broadening: Flow-Gradient Mediated

Energy suppressed

Flow enhanced and flow direction modulated

- Mixed Flow-Gradient-Mediated Drift
 - Phenomenology follows flow-mediated drift
 - Small effect in isolation, couples to enhance flowmediated drift
- A backseat player for now

Elliptical Media =?= Elliptic Modulation

$$T(x,y) = T_0 \exp\left[-\frac{x^2}{2\sigma_x^2}\right] \exp\left[-\frac{y^2}{2\sigma_y^2}\right]$$
$$\vec{u}(x,y) = u_0 \sqrt{\sigma_y \sigma_x} \left(\frac{x}{\sigma_x^2} \hat{i} + \frac{y}{\sigma_y^2} \hat{j}\right) \exp\left[-\frac{x^2}{2\sigma_x^2}\right] \exp\left[-\frac{y^2}{2\sigma_y^2}\right]$$
$$W(b) = 2\sigma_x = 2R - b.$$

$$H(b) = 2\sigma_y = \sqrt{4R^2 - b^2}$$

- 2D Gaussian Temperature & Flow
- Take an angular sweep of hard partons,
- Compute R_{AA} and v₂ for various p_T ○ Drop all scale factors (no physical scale for medium)

Drift Couples to Event Geometry

- Drift strength arbitrarily scaled for visual effect
 - Jet p_T dependence accurate
- Elliptic modulation: additional v₂!
 - Drift is strongest at low $p_{\rm T}$, matching missing $v_{\rm 2}$
 - (1/E) log(E) behavior in p_T

• Review:

- \circ Missing v₂, p_T < 10 GeV
- \circ Jet Drift enhances v₂ , p_T < 10 GeV
- \circ ... Suspicious, no?

wavefront" $| 10 \quad 20 \quad 30 \quad 40 \quad 50$ $p_{T} [GeV]$ $\langle q_{GLV}(\tau) \rangle = -\frac{C_R \alpha_s}{\pi} \int_{\tau_0}^{\infty} d\tau \frac{\mu^2(\tau)}{\lambda(\tau)} \left(\tau - \tau_0\right) \ln\left(\frac{E(\tau)}{\mu(\tau)}\right)$

Vitev: (arXiv:0012092)

The Well-Trodden: Elliptic Flow from Energy Loss

- Need an energy loss model to address $R_{AA}(x) v_2$ puzzle

 \circ Jet quenching responsible for elliptic flow - $p_{T} > 10$ GeV

- Implement analytic approximation to first-order GLV energy loss
- Jet quenching goes roughly quadratically in pathlength

 Enhances energy suppressed drift at late times

• Largest flow values likely seen by jets at late times near plasma "wavefront"

Vision to Study Realistic Drift

Test effect of addition of jet drift to realistic event-by-event jet-medium simulations on R_{AA} (x) v₂ puzzle

- Realistic 2+1D model of QGP temperature and flow
- Perturbative energy loss model
- Perturbative drift model
- Differential treatment of jet trajectories
- Fragmentation to observable particles
- Experimental-Type R_{AA} and v₂ measurements

Medium Model

- Initial HIC Conditions (Trento)
 - Initial energy densities
- Free streaming
 - Generating initial flow in the preequilibrium phase from gradients
- Hydrodynamics (VISHNU)
 - Relativistic Fluid Eqs. -> EMT Conservation
- Freezeout

Duke QCD – "hic-

eventgen"

Cooper-Frye particlization
sampler
"hic-even"

Chun Shen / OSU / VISHNU Collaboration

JMA Jet Model

- Jet Physics Wrapper overtop "hic-eventgen"
- Partonic Scattering Inputs (Pythia & CNM Theory)
 - Jet production from pp hard partonic scatterings
 - Theoretical cold nuclear matter effects from saturation theory
- Parton Propagation in QGP (EL & Drift Theory)
 - Jet energy loss & drift applied to pA products
- Fragmentation
 - Event-by-event Sampling of Fragmentation Functions for hadron momentum fraction

Pythia Hard Scattering & Theoretical CNM Effects

Fragmentation

Jet Distribution & Cronin Effect

- pp jet distribution from <u>Pythia</u> pp collisions @ 5.02 TeV
- All events 2->2 partonic hard products
 - Dijets (before QGP effects)
 - Light quarks & gluons
 - Access to dijet observables
- RpA computed from saturation theory
 - <u>(arXiv: 0307037)</u>
 - Two parameter, flexible form
 - Needs modification for gluon jets...
 - Especially important for drift!

JMA Jet Trajectories

- Hard partons not "jets"
 - Uncontrolled factorization of hadronization from jet-medium int.
- Jet trajectories
 - Binary collision density weighting of production points
 - Computed within QGP phase of hydro backgrounds
 - EL & Drift cut off at T < 155 MeV

On Free Parameters

- DukeQCD "hic-eventgen" medium model parameters set by Bayesian parameter estimation
 - (arXiv:1804.06469)
- Jet spectra set by choice of scattering & CNM theory
 - Pythia tuned to pp data
 - 2 parameter CNM analytic model
- Jet-medium interaction theory fully defined by coupling
- Fragmentation
 - Choice of fragmentation functions
 - Very non-trivial

Effect Strengths - EL

- Compare JMA (right) to perturbative simulation results in Woods-Saxon Glauber models (left)
 - Mismatch to simple analyses
 - Red Flag!
 - Wait to see R_{AA}
 - More details shortly

Effect Strengths – Flow & Flow-Grad Drift

- No other perturbative simulation for comparison
- We will evaluate when we talk v₂ !

Note y-axes scale difference left to right panel

Typical Deflections

- Some deflections are experimentally measurable! (0.1 rad ~= 5.7 deg)
 - Anecdotally: experimentalists have said 5 deg is measureable
 - Note: Deflections binned in *partonic* pT
- Large numbers of hard partons experience measurable drift deflection!
- Fragmentation seems to wash out much of the effect

R_{AA} Insights - Partonic

- General behavior in the right ballpark
 - Scale of suppression reduced after fragmentation
- "Low end" of hard pT R_AA structure
 - Probably some sort of nonperturbative / other physics driving R_AA
 - Small upturn due to CNM effects

CMS: <u>https://doi.org/10.17182/hepdata.77101.v2</u>

R_{AA} Insights - Hadronic

- Coupling g=2 under-predicts suppression
 - Coupling scans in progress, g=2.2 eyeballed
- Centrality scaling accurate-ish, but seems to get worse in peripheral bins

NM STATE 19

CMS: <u>https://doi.org/10.17182/hepdata.77101.v2</u>

v₂ Insights - Partonic

- Elliptic modulation of hard partons is clear and systematic at low pT
- Drift effects show nontrivial enhancement over energy loss alone in partonic distribution
- Absolute scale uncertain...
 - Needs convergence testing
 - Affected by fragmentation, CNM, etc.

v₂ Insights - Hadronic

- Drift enhancement of elliptic flow of charged hadrons is still clear and systematic at low pT
 - Scale dependent on FF choice, coupling, & sensitive to variation with MC sampling changes
 - Systematics robust & similar to expected effects

CMS: https://doi.org/10.17182/hepdata.77603

• Secretly, this is not the correct quantity to compare to data...

Future: Parameter Fits

- g from high pt
 - Min-bias & max-drift centralities
 - log fit of high pt region
- CNM params from low pt
 - Fixed coupling...
 - Bayesian inference against $R_{A\!A}$ and v_2 data

Future: Competing Timescales & Hadron Gas

- Jets see substantial pathlengths in hadron gas phase
- Plan to form theory of partonhadron interaction via Parton Distribution Functions (PDFs) for hadrons
 - Potential parton-hadron drift-like interactions
- Possible to have postfragmentation deflection
 - Potential hadron-hadron drift-like interactions

Future: New Observables

- "JMA" machinery is robust
- Drift likely has implications for many other observables
 - Jet shapes
 - See "Jet Drift-Like" effect from Lorentz Boost with medium (arXiv:0405301)
 - Jet wake asymmetries!
 - E3C wake imaging could see asymmetric wake!
 - Wake may couple to parton level larger drift
 - Elliptic modulation correlators? Other ideas?

The Bottom Line:

"Jet Drift" (Asymmetric Broadening) enhances hard particle v_2 for $p_T < 10$ GeV!

Discriminating Power is Very Limited

What's wrong?

Observables are essentially model agnostic!

- R_{AA} Nuclear modification factor
 - Can be fit with many competing models
- v_n^{hard} Flow harmonics
 - Easy to fudge by scaling quenching
- Acoplanarities
 - Excessive background noise
 - Often impossible to even distinguish broadening from narrowing!

Medium Gluon Field Potentials

Jet Spectrum & Cronin Effect

- RpA computed from saturation theory
 - <u>(arXiv: 0307037</u>)
 - Two parameter, flexible form

$$= \frac{\underline{k}^4}{Q_{s0}^2} \left\{ -\frac{1}{\underline{k}^2} + \frac{2}{\underline{k}^2} e^{-\underline{k}^2/Q_{s0}^2} + \frac{1}{Q_{s0}^2} e^{-\underline{k}^2/Q_{s0}^2} \left[\ln \frac{Q_{s0}^4}{4\Lambda^2 \underline{k}^2} + \operatorname{Ei}\left(\frac{\underline{k}^2}{Q_{s0}^2}\right) \right] \right\}$$

- Qs0 saturation scale
- Lambda infrared cutoff

Fragmentation

- Fragmentation functions describe probability distribution for hadron momentum, given parton momentum
- "JAM20-SIDIS_FF_pion_nlo"
 - (<u>arXiv: 2101.04664</u>)
- Simple sampling... Complicated implications for Drift
 - Fragmentation downshifts p_T of hard particles
 - Shifts domain of strong drift even farther down

Questions Raised by Hyro

- "Velocity spill" may be reflective of problems with event-edge velocity accuracy
 - Most important region for drift!

Future: Simple Models

E.G. Woods-Saxon Density Glauber model

$$T_A(\vec{x}_\perp) = \int dz \rho(\vec{r}) = \int dz \frac{\rho_0}{1 + \exp\left(\frac{\vec{r} - R}{a}\right)}$$

 $n_{bc}(\vec{x}_{\perp}) \propto T_A(\vec{x}_{\perp}) T_A(\vec{x}_{\perp}) \propto \left[S(\vec{x}_{\perp})\right]^2 \propto \left[T(\vec{x}_{\perp})\right]^6$ $T(\vec{x}_{\perp}) \propto \left(\int dz \rho(\vec{r} + \vec{b}/2) \int dz \rho(\vec{r} - \vec{b}/2)\right)^{1/6}$

- Step-wise build-up of realistic optical Glauber models
- Gives insights into parts of medium model that affect drift & EL
- Time consuming...

Bread & Butter Jet Observables in QGP

- R_{AA} Nuclear modification factor
 - Measurement of jet energy loss (quenching)
- V_n^{hard} Flow harmonics
 - Measurement of event geometry coupling
- Acoplanarities

32

 Measurement of broadening effects "Relative jet cone

Not relevant here...

broadening measures"

QGP Effects"

Ratio of yield in AA

 $v_n e^{in\Psi_n}(p_T, \eta) \equiv \frac{\int_0^{2\pi} d\phi \frac{dN}{d\phi dp_T d\eta} e^{in\phi}}{\int_0^{2\pi} d\phi \frac{dN}{d\phi dp_T d\eta}}$

Essentially just Fourier harmonics of the azimuthal distribution of jets: "Shape of jet azimuthal distribution"

Future: Numerical Energy Loss & Drift

- Currently using analytic approximations for average
- Numerical calculations may change the proportionality of drift to EL strength
 - Distinct from coupling shift
- Analytic approximations do not predict identical mean strength of EL

Elliptic modulation vs v₂

- Particles are correlated
 - Dijet events
- Nontrivial modification to v₂ as measured in experiment
- Mixing of hard and soft $v_{\rm 2}$
- Possible enhancement to v₂

$$v_n e^{in\Psi_n}(p_T, \eta) \equiv \frac{\int_0^{2\pi} d\phi \frac{dN}{d\phi dp_T d\eta} e^{in\phi}}{\int_0^{2\pi} d\phi \frac{dN}{d\phi dp_T d\eta}}$$

$$\frac{dN_{\text{pairs}}}{d^3p^a d^3p^b} = \frac{dN}{d^3p^a} \frac{dN}{d^3p^b} + \delta_2(p^a, p^b)$$

$$\begin{aligned} v_n\{2\}(p_T,\eta) &\equiv \frac{\langle V_{n\Delta}(p_T,\eta,p_T^b,\eta^b) \rangle_{p_T^b,\eta^b}}{\sqrt{\langle V_{n\Delta}(p_T^a,\eta^a,p_T^b,\eta^b) \rangle_{p_T^a,\eta^a,p_T^b,\eta^b}}} \\ &= \frac{\langle v_n(p_T,\eta)\bar{v}_n \cos n(\Psi_n(p_T,\eta)-\bar{\Psi}_n) \rangle}{\sqrt{\langle \bar{v}_n^2 \rangle}} + \langle \delta_{2,n} \rangle \\ &\simeq \sqrt{\langle v_n(p_T,\eta)^2 \rangle}. \end{aligned}$$

ArXiv:1312.5503

Note on "Coalescence" in Fragmentation

- Many in the field believe quark "coalescence" is a source of enhanced v₂ of hard particles
- If coalescence is a significant effect, jet drift may enhance it
- No perturbative QCD model for fragmentation involving coalescence
 - Hard to treat on the same footing as our other jet effects

- Market model is "Lund String" fragmentation
- Curiosity-level tests with Pythia Lund-String fragmentation give evidence of coalescence
 - Enhanced high "z" hadrons with drift
- Plans in the works to do measurements of coalescence significance as function of $\Delta \phi_{jets}$, still not understood

Dataset Info

Quick Note on Error Assessment

- g=2.2: ~13k Events
- Event geometries oversampled by 100x hard processes
- 11 uniformly sampled angles per production point
- ~= 16M parton trajectories / case
- Error estimates have been done with jackknife resampling
- Time consuming to compute, but shown to correlate with number of trajectories.
- Suspect with this dataset we have precision on v2 measurements of +/- < 0.25%, as compared to similarly sized result sets

