Jet quenching and medium response measurements using electroweak bosons

Yeonju Go

Brookhaven National Laboratory

NEW JET QUENCHING TOOLS TO EXPLORE EQUILIBRIUM AND NON-EQUILIBRIUM DYNAMICS IN HEAVY-ION COLLISIONS

ECT*, Trento, Italy Feb. 12-16 2024

Electroweak bosons in heavy ion collisions

Photons, Z, W bosons carry no color charge
 do not strongly interact with the QGP

Electroweak bosons provide initial, unmodified information of hard scattering

Electroweak bosons in heavy ion collisions

 Jets associated with electroweak bosons are primarily quark-initiated

quark-initiated jet

Electroweak bosons allow us to study color-charge dependence of jet quenching

JHEP 10 (2021) 038

Color-charge-dependent Jet Quenching

• Comparing photon-tagged jet vs. Inclusive jet → quark- vs. gluon-initiated jets

$$\langle \Delta E_g \rangle \propto \alpha_s C_R \hat{q} L^2$$

Casimir color factor
4/3 for quarks
3 for gluons

q-g Compton scattering

 $\Delta E_{gluon} > \Delta E_{quark}$

Does quark-initiated jets lose less energy than gluon-initiated jets in the medium?

*y***-tagged Jet R_{AA}**

Centrality ordering in RAA

ECT* Jet Workshop @ Trento, Italy / 2024 February 12-16

Yeonju Go (BNL)

PLB 846 (2023) 138154

• For jet $p_T < ~80$ GeV, photon $p_T > 50$ GeV threshold effect

*y***-tagged Jet R_{AA}**

Centrality ordering in RAA

ECT* Jet Workshop @ Trento, Italy / 2024 February 12-16

Yeonju Go (BNL)

PLB 846 (2023) 138154

• For jet $p_T < \sim 80$ GeV, photon $p_T > 50$ GeV threshold effect

y-jets vs. inclusive jets: p_T spectra in pp

Yeonju Go (BNL)

y-jets vs. inclusive jets: p_T spectra in pp

Yeonju Go (BNL)

y-jets vs. inclusive jets: Isospin & nPDF effect

• **Isospin Effect**: effect from the different upand down-quark composition of the nucleus compared to the proton

Yeonju Go (BNL)

y-jets vs. inclusive jets: Isospin & nPDF effect

• **Isospin Effect**: effect from the different upand down-quark composition of the nucleus compared to free proton PDFs compared to the proton

Yeonju Go (BNL)

y-jets vs. inclusive jets: Isospin effect

PLB 846 (2023) 138154

nPDF only effect; event-by-event weighting

 $\sigma^{\text{modified}}/\sigma^{\text{nominal}} = \left(\sigma_{pp} \times R_A(x_1, f_1, Q^2) \times R_A(x_2, f_2, Q^2)\right)/\sigma_{pp}$

The nPDF (EPPS16) effect is similar for both photon-tagged jets and inclusive jets

y-jets vs. inclusive jets: Isospin effect

PLB 846 (2023) 138154

nPDF only effect; event-by-event weighting

 $\sigma^{\text{modified}}/\sigma^{\text{nominal}} = \left(\sigma_{pp} \times R_A(x_1, f_1, Q^2) \times R_A(x_2, f_2, Q^2)\right)/\sigma_{pp}$

- The nPDF (EPPS16) effect is similar for both photon-tagged jets and inclusive jets
- Isospin only effect; Z protons and (A-Z) neutrons

$$\sigma^{\text{modified}}/\sigma^{\text{nominal}} = \left(Z^2 \sigma_{pp} + 2Z(A - Z)\sigma_{pn} + (A - Z)^2 \sigma_{nn}\right)/A$$

The isospin effect reduces the production rate of photon-tagged jets in Pb+Pb collisions, while the production rate of inclusive jets remains unaffected.

y-jets vs. inclusive jets: Other Effects

- In summary, the other effects besides the difference in energy loss:
 - ➡ the p_T spectrum in pp effect increases photon-tagged jets R_{AA} by ~5-10% T
 - the isospin effect decreases photon-tagged jets RAA by ~10-20%

The combined effects (excluding the energy loss) decrease photon-tagged jet R_{AA} (by ~5-10%)

Assuming the same amount of energy loss (but w/ different isospin + p_T spectrum effects) btw the inclusive jets vs γ-tagged jets

AAA

inclusive jet p_T or γ -tagged jet p_T

y-jets vs. inclusive jets R_{AA}: q/g Energy Loss

- For p_T < ~200 GeV, R_{AA} (y-jets) > R_{AA} (inclusive jets) indicates that quark-initiated jets lose less energy than gluon-initiated jets

Yeonju Go (BNL)

y-jets vs. inclusive jets R_{AA}: q/g Energy Loss

• For $p_T > \sim 200$ GeV, R_{AA} (y-jets) $\sim R_{AA}$ (inclusive jets), why?

- Isospin effect becomes larger
- Quark-initiated jet fraction becomes similar btw y-jets and inclusive jets 2.

Yeonju Go (BNL)

ECT* Jet Workshop @ Trento, Italy / 2024 February 12-16

11

y-jets vs. inclusive jets R_{AA}: q/g Energy Loss

Isospin effect becomes larger

Quark-initiated jet fraction becomes similar btw y-jets and inclusive jets 2.

Yeonju Go (BNL)

ECT* Jet Workshop @ Trento, Italy / 2024 February 12-16

11

y-jets vs. inclusive jets R_{AA}: q/g Energy Loss

Isospin effect becomes larger

Quark-initiated jet fraction becomes similar btw y-jets and inclusive jets 2.

Yeonju Go (BNL)

Fractional Energy Loss, Sloss

- \Rightarrow S_{loss} and Δp_T are less affected by the p_T spectrum in pp collisions

$$\Delta p_{\mathrm{T}} = p_{\mathrm{T}}^{pp} - p_{\mathrm{T}}^{\mathrm{Pb+Pb}} \quad \text{when} \quad \frac{1}{\langle T_{\mathrm{AA}} \rangle} \frac{1}{N_{\mathrm{evt}}} \frac{\mathrm{d}^{2} N^{\mathrm{Pb+Pb}} \left(p_{\mathrm{T}}^{\mathrm{Pb+Pb}} = p_{\mathrm{T}}^{pp} - \Delta p_{\mathrm{T}} \right)}{\mathrm{d} p_{\mathrm{T}}^{\mathrm{Pb+Pb}} \mathrm{d} \eta} = \frac{\mathrm{d}^{2} \sigma^{pp} \left(p_{\mathrm{T}}^{pp} \right)}{\mathrm{d} p_{\mathrm{T}}^{pp} \mathrm{d} \eta} \times \left[1 + \frac{\mathrm{d} \Delta p_{\mathrm{T}}}{\mathrm{d} p_{\mathrm{T}}^{pp}} \right]$$

$$S_{loss}(p_{\mathrm{T}}^{pp}) \equiv \frac{\Delta p_{\mathrm{T}}}{p_{\mathrm{T}}^{pp}}$$

$$Pb+Pb \qquad \Delta p_{\mathrm{T}} = p_{\mathrm{T}}^{pp} - p_{\mathrm{T}}^{\mathrm{Pb+Pb}}$$

$$R_{\mathrm{AA}} = \frac{Y_{\mathrm{Pb+Pb}}}{T}$$

• limitation of R_{AA} : a steeper p_T distribution in pp (before jet quenching) will result in lower R_{AA} • The S_{loss} (and Δp_T) was originally defined and further detailed by the PHENIX Collaboration Nucl. Phys. A 757 (2005) 184,

Phys. Rev. C 76 (2007) 034904, JHEP 09 (2001) 033

Fractional Energy Loss, Sloss

PLB 846 (2023) 138154

- For < ~200 GeV, S_{loss} and Δp_T of γ-jets are significantly smaller than inclusive jets
- The isospin(+nPDF)-corrected S_{loss} and Δp_T even strengthen the evidence that

quark-initiated jets lose less energy than gluon-initiated jets

Theory Comparison: RAA

- Inclusive jet: data is well described by all calculations
- Photon-tagged jet: data is generally higher than many of the calculations
- Theory predictions include color-charge dependence of the parton-QGP interaction

PLB 846 (2023) 138154

• For both data and calculations, generally, $R_{AA}^{\gamma-jet}/R_{AA}^{inclusive jet} > 1$ at $R_{AA} < \sim 200$ GeV

y-jet Cross Section in pp: Data vs. MC

Yeonju Go (BNL)

- MC generators (Pythia, Sherpa, Herwig)
 - do not describe the data well for either p_T spectrum or the total cross section
 - If theory predictions use one of these MC generators, the differences in cross section in pp between the data and predictions needs to be considered

PLB 846 (2023) 138154

- Lower x_{Jy} in Pb+Pb; jet energy loss

anti-k_T jet R = 0.3, $p_T^{jet} > 30 \text{ GeV/c}$ $|\eta^{jet}| < 1.6, |\eta^{\gamma}| < 1.44, \Delta \phi_{j\gamma} > \frac{7\pi}{8}$

PLB 785 (2018) 14

• x_{Jy} in photon p_T bins \rightarrow dominated by the leading order contribution of photon production

Fragmentation Photons: Data vs. MC

- x_{Jy} in photon p_T bins \rightarrow dominated by the leading order contribution
- Potential mis-modeling of the fraction of direct and fragmentation photons in MC

• x_{Jy} in jet p_T bins \rightarrow at higher jet p_T bin, the larger fragmentation photon (higher order) contribution

Medium Response Incurred by Jets

Yeonju Go (BNL)

Mutual Interaction: Medium

- As jets are modified by medium, the medium is also affected by jets!
- By energy and momentum conservation, lost jet energy
 into medium

- Typical structures formed; Mach cone, sonic boom, shock wave, wake, diffusion wake, ... enhancement in jet direction
 - depletion opposite jet direction

Yeonju Go (BNL)

PRL 103, 152303 (2009)

Why is medium response important to understand?

- $\eta/s = 3/4\pi$ $\eta/s = 1/4\pi$

Why is medium response important to understand?

- $\eta/s = 1/4\pi$ $\eta/s = 3/4\pi$

- In-medium thermalization information e.g. $E_{\rm med}$, $D_{\rm diff}$, $\tau_{\rm th}$
- Medium response affects the extraction of jet transport coefficient can be related to local gluon density distribution of the medium

Why is medium response important to understand?

- $\eta/s = 1/4\pi$ $\eta/s = 3/4\pi$

Redistribution of Particles Around Jets

 $\Delta \phi(\operatorname{ch}, Z) > 3\pi/4$

• Enhancement of low p_T particles at large angles w.r.t jet axis

Yeonju Go (BNL)

Redistribution of Particles Around Jets

• Enhancement of low p_T particles at large angles w.r.t jet axis

Yeonju Go (BNL)

Redistribution of Particles Around Jets

Yeonju Go (BNL)

Diffusion Wake Using Boson-jets

response \rightarrow hard to disentangle ...

• Modification in jet direction are convoluted with *in-medium parton shower modification* and *medium*

Diffusion Wake Using Boson-jets

- **response** \rightarrow hard to disentangle ...
- **Diffusion wake** (depletion) effect using jet-hadron correlations in boson-jet events;
 - shower modification or wake caused by the other jet in the opposite direction

• Modification in jet direction are convoluted with *in-medium parton shower modification* and *medium*

unlike di-jet events, a jet associated a boson e.g. photon is NOT contaminated by in-medium parton

Diffusion Wake Using Boson-jets

- **response** \rightarrow hard to disentangle ...

PRL127, 082301 (2021)

Yeonju Go (BNL)

bCen C@0t970 8		CenCe0t750%70%							
	20 2	2001	IOI	!-J E		3	<u>2</u> 0	20S	
GeV/c					(
àeV/c ∵ ∶	1 5 -	15			-		1 5	15	
from mult	pae	on i	ntera	ction	(M₿				
		10			Ž		יוע+ ע	10	
	Т 5	5			0	5	О 5 м	5	
	Ž	0			-	Z	Ž	5	
) 122301	0	0					0	0	
512252	.50	30.5	0.5	11.5 1	.2	.5 2	2.30	30.5	0.5
(radiad)	6	6	$\Delta \phi_{t}$	$\Delta \phi(\mathbf{r}_{k})$	ad/rac	(k	6	6	Δ
		Λ	ť	····, <u> </u>	_		\sim	Λ	
	D	4				0	d	4	
	2	2			_	2	4	2	
		0					Д Д	0	
		0			٢		ባባ	0	
	-2] -	-2					-2	-2	
		Λ					Л	٨	
.5 2 2.5	エ缶 30	-4 0 .5	0.5	11.5 1	.2 2	.5 2	-4 2 .3 0	-4 3 0 .5	0.5
(rad)			Λφ	λd(ra	adrad	<u>-</u>			Λ
Ζ			Ψt	rk,Z ^r trk,	Z	- /			

Multi Parton Interaction (MPI)

Multi Parton Interaction additional "semi-hard" parton-parton scattering from the incoming nucleons; underlying events in pp collisions

3D Jet-Hadron Correlation in Photon-Jet Events

CoLBT model predicts
 Jet-hadron (Δφ, Δη) ~ (π,0) in γ-jet events
 Unambiguous diffusion wake signal

PRL 130, 052301 (2023)

Yeonju Go (BNL)

3D Jet-Hadron Correlation in Photon-Jet Events

Unambiguous diffusion wake signal

PRL 130, 052301 (2023)

Yeonju Go (BNL)

Diffusion Wake: Dependence on Jet Energy Loss

PRL 130, 052301 (2023)

 $x_{\rm J\gamma} = p_{\rm T}^{\rm jet} / p_{\rm T}^{\gamma}$

- $d^2 N^{\text{jet-track}}$
- per-(photon, jet) yield ($\frac{1}{N^{\gamma-jet}} \frac{d Y}{d\Delta \eta d\Delta \phi} = Y_{corr}$) as a funct Y_{corr} : jet-track pairs from the signal (photon-jet) events
 - Y_{uncorr} : pairs from mixed events; jets from signal events and tracks from MB events

Yeonju Go (BNL)

$\Delta\eta$ (jet, track) distributions in Pb+Pb collisions

 $|\Delta\eta$ (jet, track)|

= Y_{corr}) as a function of $|\Delta \eta(\text{jet, track})|$ in three different $x_{J_{\gamma}}$ regions

$\Delta\eta$ (jet, track) distributions in Pb+Pb collisions

• Y_{uncorr} : pairs from mixed events; jets from signal events and tracks from MB events

Yeonju Go (BNL)

Relative Yield Ratio Y_{corr}/Y_{uncorr}

 No clear diffusion wake signal found within uncertainties for all three $x_{I_{\nu}}$ regions J

Relative Yield Ratio Y_{corr}/Y_{uncorr}

Double Ratio (Y_{corr}/Y_{uncorr})

Yeonju Go (BNL)

$$x_{J\gamma} = 0.3 - 0.6 / (Y_{corr} / Y_{uncorr})_{x_{J\gamma}} = 0.8 - 0.6 - 0.$$

29

Probability Distribution of Diffusion Wake

- correlated bin-by-bin

• All results are consistent with no signal, i.e., $a_{dw}=0$, within approximately 1σ Yeonju Go (BNL) ECT* Jet Workshop @ Trento, Italy / 2024 February 12-16

Diffusion Wake Amplitude Diffusion Wake

$$a_0 + a_{dw} \cdot e^{-|\Delta \eta(\text{jet,track})|^2/(2)}$$

Diffusion Wake Double Ratio Amplitude

Diffusion Wake Double Ratio Amplitude

• Medium excitation \rightarrow change the chemical composition of particles via parton coalescence

• Medium excitation \rightarrow change the chemical composition of particles via parton coalescence

• Medium excitation \rightarrow change the chemical composition of particles via parton coalescence

 No significant modification of in Au+Au within uncertainties in data Iarger datasets + larger radius would be valuable

Yeonju Go (BNL)

• Medium excitation \rightarrow change the chemical composition of particles via parton coalescence

Summary & Discussion

- Jet-medium interaction is inherently complex utilizing observables with varying sensitivities to distinct physics effects is crucial for disentangling phenomena e.g.
 - in-medium parton shower vs. medium response
 - quark vs. gluon jet quenching

See talk by Krishna, Hannah

Summary & Discussion

- Jet-medium interaction is inherently complex utilizing observables with varying sensitivities to distinct physics effects is crucial for disentangling phenomena e.g.
 - in-medium parton shower vs. medium response See talk by Krishna, Hannah
 - quark vs. gluon jet quenching
- Jets produced with electroweak (EW) bosons have advantages of access to initial hard scattering
 - quark tagging

Summary & Discussion

- Jet-medium interaction is inherently complex utilizing observables with varying sensitivities to distinct physics effects is crucial for disentangling phenomena e.g.
 - in-medium parton shower vs. medium response See talk by Krishna, Hannah
 - quark vs. gluon jet quenching
- Jets produced with electroweak (EW) bosons have advantages of access to initial hard scattering → *quark* tagging
- Jet+EW boson: "golden channel" but rare production rate... will greatly benefit from larger statistics in the future high-luminosity data allowing precise and more differential, multidimensional measurements

Yeonju Go (BNL)

Prompt Photons

• Direct photon

- produced from primary vertex
- Processes : Compton scattering, Annihilation

Prompt Photons

• Direct photon

- produced from primary vertex
- Processes : Compton scattering, Annihilation

• Fragmentation photon

radiated from partons after the primary hard scattering

Prompt Photons

Direct photon

- produced from primary vertex
- Processes : Compton scattering, Annihilation

Fragmentation photon

radiated from partons after the primary hard scattering

• Decay photon

 \Rightarrow decayed from hadrons, such as $\pi^0 \rightarrow \gamma \gamma$

the two decay photons often have small opening angles

 \rightarrow reconstructed as a single high p_T γ

major background

Isolated Photons

Isolated Photons

- Photon Isolation condition
 - suppress significant background photons from neutral meson decay
 - suppress the fragmentation photon contribution and retain the majority of direct photons
- Discrimination between isolated direct and fragmentation photons is arbitrary in experiment

PRC D82 (2010) 014015

ECT* Jet Workshop @ Trento, Italy / 2024 February 12-16

High Energy Hadron Collisions

Yeonju Go (BNL)

Parton Distribution Functions (PDF)

and perturbative partonic cross section

Yeonju Go (BNL)

ECT* Jet Workshop @ Trento, Italy / 2024 February 12-16

• QCD Factorization theorem: hadronic cross section is factorized into PDFs of incoming particles

$|\Delta\eta$ (jet, track) | distributions in pp collisions

- No $x_{J_{\gamma}}$ dependence found within uncertainties
- The data is in agreement with the theory expectation

Event Mixing in Pb+Pb collisions

- Bulk medium property w/o jet can be obtained from event mixing
 - by correlating the photon-jet pair in a signal event with tracks in different minimum-bias (MB) events
 - photon and jet kinematics are exactly the same between the signal event and the mixed event
 - \Rightarrow matching signal and MB events in bins of (ΣE_{T}^{FCal} , Ψ_{2} , z vertex)

Event Mixing: uncorrelated tracks in different MB events

Event Selection & Analysis Procedure of γ **-Jet R**_{AA}

Photons

- → p_T > 50 GeV
- → |η| < 2.37
 </p>
- Prompt Isolated photons (direct+fragmentation photons)

• Jets

- \rightarrow anti-k_T R=0.4
- → 50 < p_T < 316 GeV/c
- → |η| < 2.8
 </p>
- $\Rightarrow \Delta \phi(\gamma, jet) > 7\pi/8$
- all (photon, jet) pairs are considered rather than just leading objects
- Main analysis procedure
 - combinatoric background jet subtraction using event-mixing technique
 - subtraction of jets associated with background-photons using photon purity
 - \rightarrow 2D simultaneous unfolding for photon p_T and jet p_T

Event Selection of Jet Hadron Correlation Analysis

Photons

- → p_T > 50 GeV
- → |η| < 2.37
 </p>
- Prompt Isolated photons (direct+fragmentation photons)

• Jets

- \rightarrow anti-k_T R=0.4
- ⇒ 50 < p_T < 316 GeV/c
- → |η| < 2.5
 </p>
- $\Rightarrow \Delta \phi(\gamma, jet) > 3\pi/4$
- only leading photons and leading jets are considered

Tracks

- → 0.5 < p_T < 2 GeV
- → |η| < 2.5
 </p>
- $\Rightarrow \Delta \phi$ (jet, track) > $\pi/2$

Tracks Jet

ECT* Jet Workshop @ Trento, Italy / 2024 February 12-16

$\Delta \phi > 3\pi/4$

42