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what we have, and what still have not, learnt about jets in OGP



WHAT WE WANT TO UNDERSTAND

° iets in QGP

o parton branching in presence of QGP
o response of QGP to interaction with traversing partons and its contribution to jets
o what is a fair comparison between theory and data
* iets as probes of QGP properties [assumes above is sufficiently understood]
o observable properties of jets that can be robustly related to QGP properties

o QGP response within jets as portal to understand hydrodynamization and how QGP
forms



from QGP response

too simplistic so far
-
must include contribution
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TOOLS AND COFQUNDERS

E mimic UE contamination E UE subtraction irreducibly imperfect

too simplistic so far

must include contribution
from QGP response

some observables UE contaminated E




lesson #0

jets are modified by the QGP

criteria for establishing modification on a jet-by-jet basis remains elusive



lesson #1
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o one jet loses more energy
than the other DUE TO
different traversed amount of

QGP matter
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AU ASYMIMC Y

Milhano and Zapp :: Eur.Phys.J. C76 (2016))

di-jet production points

0.016 distribution of path-length differences
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* small bias towards smaller path-length for leading jets
o however, significant fraction [34%)] of events have longer path-length for leading jet

o consequence of fast medium expansion



AUOE ASYMIMC Y

Milhano and Zapp :: Eur.Phys.J. C76 (2016))

di-jet production points
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Jet energy loss dominated by fluctuations

Milhano and Zapp :: Eur.Phys.J. C76 (2016))

Mass distribution of partons in the initial configuration in p+p
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[analogous results within other approaches]
Chesler, Rajagopal 1511.07567

Rajagopal, Sadofyev, van der Schee 1602.04187
Brewer, Rajagopal, van der Schee 1710.03237
Escobedo, lancu 1609.06104 [hep-ph]
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lesson #1

vacuum like parton showering very important driver of how much
and how a Jet ends up modified



lesson #2



Casalderrey, Hulcher, Milhano, Pablos, Rajagopal :: 1808.07386 [hep-ph]

e different suppression of hadrons and jets was long seen as a ‘puzzle’

o all bona fide MC, and all analytical calculations that treat jets as resulting from evolution
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of a multiparticle state fully account for the different suppression



Casalderrey, Hulcher, Milhano, Pablos, Rajagopal :: 1808.07386 [hep-ph]
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excellent global fit for LHC data :: some tension with RHIC data

high pr hadrons originate from narrow jets [fragmented less] which are less suppressed than inclusive jets

simultaneous description of jet and hadron Raa natural feature of any approach that treats jets as such [ie,
objects resulting from evolution of state with internal structure]



lesson #2

(AGP sees and interacts with constituents of evolving multi-parton
state

UE contamination can have significant effect in substructure observables



lesson #3



MULTIPLE EMISSIONS :: VACUUM ANTENNAS

* bona fide description of parton branching requires understanding of emitters interference
pattern

o qgbar antenna [radiation much softer than both emitters] as a TH lab

..vacuum::

® fransverse separation at formation time

O -

e wavelength of emitted gluon

1 1
)\ N —m— Y —
- kJ_ wb

for AL > T'1 emitted gluon cannot resolve emitters, thus emitted coherently from total
colour charge

large angle radiation suppressed :: angular ordering



MEDIUM ANTENNAS

kJ_,w

® new medium induced colour decorrelation scale
1 1

Amed ~ T Y

kL qL

* such that decorrelation driven by timescale

dN PaN
qq

Mehtar-Tani, Salgado, Tywoniuk :: 1009.2965 [hep-ph]

many, many papers thereafter...
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Mehtar-Tani, Salgado, Tywoniuk :: 1009.2965 [hep-ph]
many, many papers thereafter...

® ggbar colour coherence survival probability

A | —e { L g2 t3} | —e { L r3 }

med — 1 — €X — 75 7 — 1 —€X —

I ! P17 2% P17 122
1, W e time scale for decoherence

dN AN
qq

¢ total decoherence when L > 14

o colour decoherence opens up phase space for emission

w—-0

* large angle radiation [anti-angular ordering]

asCr dw sin@ db

T w 1—-cosb

medium-induced
N radiation

AN, = [©(cosf — cosbyz) — Amed ©O(cos 8,5 — cos0)]

vacuum
radiation T @ To——_

o geometrical separation [in soft limit]

Aned @ O coherence

Amed = 1 decoherence



FROM ANTENNAS 10 JETS
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lesson #3

coherence properties of parton branching are modified by
interaction with QGP

unequivocal observation of effect yet to happen; phenomenological
iImportance of effect unknown; imited implementation in event generators

- effect understood analytically in 2010 !
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* propagating particles [what will be a jet] modify the QGP they traverse and
modification of QGP reconstructed as part of jet

o inclusion of QGP response in MC improves agreement with data | "
p(r) = jet Z Py
o first evidence for importance of QGP response was seen in MC pLARk’“J‘g’fﬁf;Mr]

o QGP response of full shower remains untractable in [semi-]analytic calculations



lesson #4

(GP response to traversal by partons Is an unavoidable and
Important component of jets in HI collisions

MC essential to study effects of QGP response given that analytical
understanding remains limited
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QGP res
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Milhano, Wiedemann, Zapp :: 1707.04142 [hep-ph]

e distance between main prongs of jet declustered
with SoftDrop [largest hard splitting angle]

o clear QGP response signal

o HOWEVER: effect also present for unmodified
jet [no interaction with QGP] embedded in HI
event and background subtracted

o QGP response signal overlaps with
contamination from imperfect background
subtraction :: effect is NOT observable
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not all observed modifications are duetoquenching . . .

P(A 1)

0-10%, Vs=5.02 TeV, R=0.4, pjTe '>120 GeV, Injet|<1 .6, ptTrk>0.7 GeV
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DOI: 10.1007/JHEP05(2018)006 Ar

Gongalves and Milhano :: in preparation

* imperfect background subtraction mimics
many quenching-looking effects

o here, true quenching predicted by
JEWEL is blue/red difference
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lesson #39

not all observed modifications of Hl wrt pp
can be attributed to jet quenching

MC essential to decide what is quenching and what is not



lesson #6



the anatomy of a recent result *

* now borrowed from ‘The anatomy of a Fall’, Justine Triet’s 2023 film

* observation of acoplanarity broadening due to QGP response

©)

ALICE )

CERN-EP-20223-189
29 August 20223

Observation of medium-induced yield enhancement and acoplanarity

broadening of low-pt jets from measurements in pp and central Pb-Pb
collisions at /snny = 5.02 TeV

ALICE Collaboration™

Abstract

The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle
jets recoiling from a high transverse momentum (high pr) hadron trigger in proton—proton and cen-
tral Pb—Pb collisions at \/sxny = 5.02 TeV. A data-driven statistical method is used to mitigate the
large uncorrelated background in central Pb—Pb collisions. Recoil jet distributions are reported for jet
resolution parameter R = 0.2, 0.4, and 0.5 in the range 7 < priet < 140 GeV /c and trigger—recoil jet
azimuthal separation /2 < A@ < m. The measurements exhibit a marked medium-induced jet yield
enhancement at low pr and at large azimuthal deviation from A@ ~ 7m. The enhancement is charac-
terized by its dependence on A@, which has a slope that differs from zero by 4.70. Comparisons to
model calculations incorporating different formulations of jet quenching are reported. These com-
parisons indicate that the observed yield enhancement arises from the response of the QGP medium
to jet propagation.



* strong deviation of low pr jets from back-to-back trigger hadron

o effect consistent with being due to QGP response

this is a AA/pp ratio
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mynotes of CautIOn.

e interpretation of agreement of MC calculation with data requires detailed scrutiny
o in hadron-jet coincidences, the trigger [the hadron] also loses energy

e same cut for hadron prin pp and AA correspond to different hard process initial
conditions :: observable is a ratio of samples born differently :: on-average correction
possible but not done in experimental analysis

e effects of imperfect background subtraction could be very sizeable for low pr jets ::
ALICE analysis very careful here :: check also with embedded pp

* i am [very personal limitation] not very comfortable with such low pr ‘jets’

¢ i would only be comfortable with claiming the observation of azimuthal deviation of jets
after excluding plausible confounding origins for observed effect
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lesson #6

MC essential to learn about the QGP with jets

MC/data agreement insufficient to draw robust conclusions



WHAT WE HAVE, AND HAVE NOT YET, UNDERSTOOD

° iets in QGP

o parton branching in presence of QGP [including effects of QGP gradients]
o response of QGP to interaction with traversing partons and its contribution to jets
¢ several implementations; few analytical results for inclusion in jets
o what is a fair comparison between theory and data [but not yet doing it systematically]
® iets as probes of QGP properties [assumes above is sufficiently understood]
o observable properties of jets that can be robustly related to QGP properties 2
o QGP response within jets as portal to understand hydrodynamization and how QGP forms
* how hydrodynamized is QGP response 2
* is there enough information in a modified jet to identify it as such jet-by-jet 2

o how to use that information
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