Impact of newly measured reaction rates on the nucleosynthesis of ²⁶Al in stars

Umberto Battino, The University of Hull, NuGrid Collaboration

"Inaugural workshop on Nuclear Astrochemistry", 29/2/2023, Trento

What is my area of research?

What is my area of research?

Wider relevance to the field I work in

GCE

Siegel et al. *Nature* **569**, 241–244 (2019).

Nuclear impact/ sensitivity studies

²⁶Al in the Galaxy

Charnoz et al. 2015

Link between ²⁶Al radioactivity and habitability

- The dominant process contributing to the very early melting of planetesimals was the decay of ²⁶Al (figure from Lugaro+ 2018).
- Melt even relatively small planetesimals (Lichtenberg+ 2016), modified the mineral content, melted ice to liquid water producing a variety of molecules (Monteux+ 2017).
- Key heat source in the early solarsystem and central role in the thermal evolution of young planetary bodies in the Solar System.

Main production/destruction nuclear reaction

Main production/destruction nuclear reaction

Astrophysical impact

Massive stars

Presolar grains from AGB stars

²⁶Al(n,a/n,p): New measurements at CERN (n_TOF)

- Experimental data only cover low temperatures → Combined with Hauser-Feshbach models data for high T
- Lower rates at lower T \rightarrow less efficient ²⁶Al destruction \rightarrow higher ²⁶Al/²⁷Al ratio in presolar grains
- 6

²⁵Mg(p,γ)²⁶Al

- ²⁶Al in CCSNe is usually produced between explosive Ne and C zones. In our models, this happens at temperatures 1.74 < T/GK < 2.60.
- In this temperature range the rate from Laird+2023 is around a factor of three lower than the rate from JUNA.
- Mainly due to the shifted resonance energy computed taking the difference in electron binding energies before and after the reaction into account as described in Laird+2023. This was not included by Zhang+2023, but can cause an appreciable difference in the resonance energy (and therefore the reaction rate).

²⁵Mg(p,γ)²⁶Al

- ²⁶Al in CCSNe is usually produced between explosive Ne and C zones. In our models, this happens at temperatures 1.74 < T/GK < 2.60.
- In this temperature range the rate from Laird+2023 is around a factor of three lower than the rate from JUNA.
- Mainly due to the shifted resonance energy computed taking the difference in electron binding energies before and after the reaction into account as described in Laird+2023. This was not included by Zhang+2023, but can cause an appreciable difference in the resonance energy (and therefore the reaction rate).

Collective impact on explosive nucleosynthesis

- Abundances in mass fraction of key nuclear species as a function of the internal mass coordinate in the CCSN models exploding with 1.2 and 3×10⁵¹ erg.
- The gray shaded areas represent each explosive burning stage; the vertical dotted line identifies the location of the mass-cut.
- STANDARD: ²⁵Mg(p,γ)²⁶Al and ²⁶Al (p,γ)²⁷Si from Iliadis+2010, ²⁶Al (n,p)²⁶Mg and ²⁶Al(n,a)²³Na from Caughlan & Folwler 1988 and NACRE respectively
- LA-BA: ${}^{25}Mg(p,\gamma){}^{26}AI$ and ${}^{26}AI$ $(p,\gamma){}^{27}Si$ from Laird+2023, ${}^{26}AI$ $(n,p){}^{26}Mg$ and ${}^{26}AI(n,a){}^{23}Na$ from Battino+2023
- JU-LA-BA: Same as LA-BA, but ²⁵Mg(p,γ)²⁶Al from Zhang+2023 (JUNA)

1	Specie	STANDARD	JU-LA-BA	LA-BA
		1.2×10 ⁵¹ erg		
	²⁰ Ne	5.60e-01	5.60e-01	5.60e-01
	²³ Na	1.07e-02	1.07e-02	1.07e-02
	²⁴ Mg	9.32e-02	9.32e-02	9.29e-02
	²⁵ Mg	1.66e-02	1.67e-02	1.70e-02
	²⁶ Mo	1.65e-02	1.64e-02	1.64e-02
	²⁶ A1	7.02e-05	7.17e-05	2.71e-05
	27 Al	1.14e-02	1.14e-02	1.13e-02
	²⁸ Si	2.13e-02	2.14e-02	2.17e-02
	²⁹ Si	3.17e-03	3.16e-03	3.10e-03
	³⁰ Si	1.96e-03	1.95e-03	1.90e-03
	⁶⁰ Fe	1.19e-05	1.21e-05	1.30e-05
		3×10 ⁵¹ erg		
25 Mg(n, γ) 26 Mg ~100 times lower than 26 Al (n,p) 26 Mg and 26 Al(n,a) 23 Na at T/GK > 1	²⁰ Ne	4.79e-01	4.79e-01	4.78e-01
	²³ Na	8.80e-03	8.80e-03	8.77e-03
	²⁴ Mg	9.81e-02	9.77e-02	9.66e-02
	²⁵ Mg	1.44e-02	1.45e-02	1.49e-02
	²⁶ Mg	1.44e-02	1.44e-02	1.43e-02
	²⁶ A1	9.68e-05	9.69e-05	3.60e-05
	²⁷ Al	1.20e-02	1.19e-02	1.18e-02
	²⁸ Si	2.82e-01	2.83e-01	2.84e-01
	²⁹ Si	4.99e-03	4.98e-03	4.95e-03
	³⁰ Si	6.94e-03	6.93e-03	6.82e-03
	⁶⁰ Fe	1.14e-05	1.17e-05	1.30e-05

Table 2. Total explosive ejected yields (in M_☉) of ²⁶Al and other key species of our models for different selections of nuclear reaction rates (see main text for more details).

SRLs comparison to ESS

Only 5 out of the 14 SLRs considered here are consistent with their observed ESS values.

Two potential solutions: 1) A different astrophysical scenario able to perform better against observations;
2) An additional pollution event producing more ²⁶Al and less of the overproduced SLRs (such as ⁶⁰Fe) that happened close in time (within ~2.5 Myr) and space to a CCSN.

SRLs comparison to ESS

Only 5 out of the 14 SLRs considered here are consistent with their observed ESS values.

Two potential solutions: 1) A different astrophysical scenario able to perform better against observations;
2) An additional pollution event producing more ²⁶Al and less of the overproduced SLRs (such as ⁶⁰Fe) that happened close in time (within ~2.5 Myr) and space to a CCSN.

Different astrophysical scenario?

Near-Chandrasekhar mass SNIa?

<u>H-accretor</u> \rightarrow but only ~6% of SN Ia from there, see e.g. Johansson et al. (2016))

 $\frac{\text{Slow WD merger}}{\text{→}} \rightarrow \text{Accretion disk formation} \\ \rightarrow \text{Final outcome depends on accretion} \\ \text{rate and WD mass ratio (see e.g.} \\ \text{Piersanti+2003)}$

Core-collapase SN from rotating WR stars?

Rotationally enhanced mass-loss \rightarrow Less ¹H and ¹⁴N to form ²²Ne

 \rightarrow Possibly less ⁶⁰Fe and ¹³⁵Cs?

Different astrophysical scenario?

Near-Chandrasekhar mass SNIa?

<u>H-accretor</u> \rightarrow but only ~6% of SN Ia from there,
Sec e.g. Johansson et al. (2016))Slow WD merger \rightarrow Accretion disk formation
 \rightarrow Final outcome depends on accretion
rate and WD mass ratio (see e.g.
Piersanti+2003)

Core-collapase SN from rotating WR stars?

Rotationally enhanced mass-loss \rightarrow Less ¹H and ¹⁴N to form ²²Ne

 \rightarrow Possibly less ⁶⁰Fe and ¹³⁵Cs?

Trans-Fe element nucleosynthesis on near-Chandrasekhar SNIa progenitors

Battino et al.; EPJ Web Conf., 260 (2022)

Summary

- We presented new reactivities for the ²⁶Al(n, p)²⁶Mg and ²⁶Al(n, α)²³Na nuclear reactions and tested their effect on stellar nucleosynthesis → significant impact on low-mass AGB nucleosynthesis.
- The measurement of n-capture cross-section of ²⁶Al by n_TOF is smaller at AGB nucleosynthesis temperature → Higher ²⁶Al/²⁷Al → Now possible to explain most of the measured range in SiC with the same stellar code
- We computed the evolution of a high-mass star (20Msun, Z=0.01345) and the nucleosynthetic yields ejected by its explosion at 1.2 and 3×10⁵¹ erg. We included all the updated rates of the relevant nuclear reactions for ²⁶Al nucleosynthesis, i.e. ²⁶Al(n, p)²⁶Mg and ²⁶Al(n, α)²³Na , ²⁶Al(p, γ)²⁷Si and ²⁵Mg(p, γ) ²⁶Al.
- Only minor differences are present between the STANDARD and JU-LA-BA case, while in the LA-BA case we notice a substantial decrease in the ejected amount of ²⁶AI, <u>almost a factor of three</u> compared to the JU-LA-BA case, which is consistent with the difference up to a factor of three between the ²⁵Mg(p, γ) ²⁶AI reaction rates by Laird+2023 and Zhang+2023.
- Only 5 out of the 14 SLRs considered here are consistent with their observed ESS values, but different progenitors need to be explored (e.g. rotating WR stars or SNIa) → How critical was this for life on Earth?
- Large stellar uncertainties still affect ²⁶Al production for CCSN (and AGB stars),
- Full results in **Battino et al. 2023** (MNRAS 520,2436–2444) and **Battino et al. 2024** (submitted to MDPI Universe)

New rates available on ChANUREPS

(http://chanureps.chetec-infra.eu/)

²⁶Al_g(n,p)²⁶Mg

Battino et al. 2023

This ²⁶Al(n,p)²⁶Mg nuclear reaction rate has been obtained by combining experimental results and theoretical predictions of the respective ground state reaction cross-sections. Its evaluation is primarily based on the recent high-precision measurement at the nTOF-CERN facility and is supplemented by theoretical calculations and a previous experiment (Trautvetter et al. 1986) at higher neutron energies.

Link to the paper

Download "26Al_np" Al26np.txt – Downloaded 1 time – 2.88 KB

Massive stars

M=15 Msun; Z=0.02

5

Massive stars

Massive stars

M=15 Msun; Z=0.006

- The final ²⁶Al abundance in mass fraction is varying by about a factor of 2.4
- ²⁶Al abundance obtained by Ritter et al. emloying CF88 and NACRE is very close to what is obtained with our lower limits...
- $...^{26}$ Al abundance decreases with our new rates \rightarrow opposite of what happens in AGB stars, as our
- 6 new rates are higher than the older rates at high temperatures typical of CCSN explosions