

Nuclear burning

The birth of the Sun and

 its planets

Length scale $\sim \mathbf{1 0}^{-14} \mathbf{~ m}$ Temperature $>\mathbf{1 0}^{\mathbf{7}} \mathbf{K}$ inside stars

Length scale $\sim \mathbf{1 0}^{16} \mathbf{~ m}$ Temperature $<\mathbf{1 0}^{\mathbf{3}} \mathrm{K}$

STARDUST

1. STARDUST

If stardust was destroyed the signature still survived in:

3. BULK-

 ROCKSMeteorite

Which stars

 were present in the Galaxy at the time of the formation of the Sun?How did material distributed inside the protoplanetary disk?

In which

 environment did the Sun formed, and what kind of material it accreted from its molecular cloud?Molécular Cloud

Solar Neighbourhood

Proto-planetary Disk

Example cases

Molécular Cloud
Solar Neighbourhood
Proto-planetary Disk Large (1 kpc). Medium (50 pc) Small (100 AU)

There are also graphite grains, oxide grains (aluminium oxides, spinel, hibonite), silicate grains, nano diamonds and other less abundant types

Silicon Carbide (SiC) grains

Presolar Grain Database

 of single grains (Stephan et al. 2023)

Size 0.1 - $10 \mu \mathrm{~m}$

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Th	Pa	U	Np	Pu	Am								

There are also graphite grains, oxide grains (aluminium oxides, spinel, hibonite), silicate grains, nano diamonds and other less abundant types

Silicon Carbide (SiC) grains

Presolar Grain Database

 of single grains| H | | |
| :---: | :---: | :---: |
| Li_{43} | Be | |
| Na | Mg | |
| K | Ca 192 | Sc |
| Rb | $\begin{aligned} & 5 r \\ & 124 \end{aligned}$ | Y |
| Cs | Ba $\binom{\mathrm{Ba}}{207}$ | La |
| Fr | Ra | Ac | (Stephan et al. 2023)

Size 0.1 - $10 \mu \mathrm{~m}$

2023)								He
m			$\begin{array}{\|l\|} \hline \mathrm{B} \\ \hline 32 \end{array}$	\| C	${ }_{2,544}$	0	F	Ne
			$\underset{576}{ }$	$\underset{\text { 18,56d }}{\text { Si }}$	P	$\underset{\text { S }}{\text { S }}$	Cl	Ar
${ }_{188}^{\mathrm{Ni}}$	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn

Other Data (mostly not single grains)

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Th	Pa	U	Np	Pu	Am								

SiC grains from AGB stars show the slow neutron-capture signature:
e.g., the large ($\approx \mu \mathrm{m}$) grains


```
Profile of the SiC grains from AGB stars show the
13C neutron slow neutron-capture signature:
source?
(Liu et al. 2018)
Metallicity?
(Lugaro, Karakas
    et al. 2018)
Treatment
of mixing?
(Battino et al.
    2019)
    e.g., the large ( }~\mu\textrm{m}\mathrm{ ) grains
*)
```

Profile of the SiC grains from AGB stars show the Nuclear Physics: Neutron captures
${ }^{13} \mathrm{C}$ neutron source? (Liu et al. 2018) Metallicity? (Lugaro, Karakas et al. 2018)

Treatment of mixing? (Battino et al. 2019)
slow neutron-capture signature:
e.g., the large ($\approx \mu \mathrm{m}$) grains

can produce negative $\delta\left({ }^{88} \mathrm{Sr} /{ }^{86} \mathrm{Sr}\right)$ only when $[\mathrm{Ce} / \mathrm{Y}]$ is also negative! (Lugaro et al. 2020)

SiC grains from AGB stars show the Nuclear Physics: Neutron captures slow neutron-capture signature: can produce negative $\delta\left({ }^{88} \mathrm{Sr} /{ }^{86} \mathrm{Sr}\right)$ e.g., the large ($\approx \mu \mathrm{m}$) grains
 only when $[\mathrm{Ce} / \mathrm{Y}]$ is also negative!

The Ba stars with negative [Ce/Y] are predominantly those with positive $[\mathrm{Fe} / \mathrm{H}]$

Profile of the
${ }^{13} \mathrm{C}$ neutron source? (Liu et al. 2018) Metallicity? (Lugaro, Karakas et al. 2018)

Treatment of mixing? (Battino et al. 2019)

Profile of the ${ }^{13} \mathrm{C}$ neutron source? (Liu et al. 2018) Metallicity? (Lugaro, Karakas et al. 2018)

Treatment of mixing? (Battino et al. 2019)

SiC grains from AGB stars show the Nuclear Physics: Neutron captures slow neutron-capture signature: e.g., the large ($\approx \mu \mathrm{m}$) grains
 can produce negative $\delta\left({ }^{88} \mathrm{Sr} /{ }^{86} \mathrm{Sr}\right)$ only when $[\mathrm{Ce} / \mathrm{Y}]$ is also negative!

Astrochemistry: The large ($\approx \mu \mathrm{m}$) SiC grains must have formed in AGB stars with metallicity higher than solar

The Ba stars with negative [Ce/Y] are predominantly those with positive [Fe / H]

$$
\delta\left({ }^{138} \mathrm{Ba} /{ }^{136} \mathrm{Ba}\right)
$$

Age-metallicity relationship in the solar neighborhood

Nissen et al. 2020: 72 nearby solar-type stars with very well determined ages show two distinct sequences. The high metallicity stars

1. Were there at the time of the formation
of the Sun?
2. Did they migrate there later?

Age-metallicity relationship in the solar neighborhood

Nissen et al. 2020: 72 nearby solar-type stars with very well determined ages show two distinct sequences. The high metallicity stars 1. Were there at the time of the formation of the Sun?
2. Did they migrate there later?

The SiC grains support Scenario 1.

For example, black line: the two-infall galactic chemical evolution (GCE) model of Spitoni et al. (2019).

Example cases

Molécular Cloud
Solar Neighbourhood
Proto-planetary Disk

Chemical Evolution of the Milky Way

Radioactive Chemical Evolution of the Milky Way

Radioactive Chemical Evolution of the Milky Way

Radioactive Chemical Evolution of the Milky Way

Trueman et al. 2022, ApJ

Radioactive Chemical Evolution of the Milky Way

Evolution of the mass ratio of a radioactive to stable nucleus

Uncertainties from, e.g., mass of gas, star formation rate etc.: three different independent realizations of the Milky Way

Evolution of the mass ratio of a radioactive to stable nucleus

Talk by
Benjamin Wehmeyer

But stellar ejecta are discrete in time: using a Monte Carlo method we need to add a further statistical uncertainty (median, $1 \sigma, 2 \sigma$, full) to each of the three Galaxies.

[^0]With ${ }^{107} \mathrm{Pd},{ }^{135} \mathrm{Cs}$, and ${ }^{182} \mathrm{Hf},{ }^{205} \mathrm{~Pb}$ is also produced by the s process in AGB stars

Nuclear Physics:

1. First experimentally derived decay rates for ${ }^{205} \mathrm{~T}$ I
2. First Accurate ${ }^{205} \mathrm{~Pb}$ and ${ }^{205} \mathrm{Tl}$ decay rates as function of stellar temperature and density!

Example cases

Molécular Cloud
Solar Neighbourhood
Proto-planetary Disk

Analysis of bulk meteoritic rocks has revealed

small but widespread variations in stable isotope abundances.
Talk by Mattias Ek

1. Anomalies were carried into the Solar System by a "carrier", a "physical trap", probably stardust
2. The stardust was destroyed, and the nuclear signature diluted.

Very small variations $\sim 10^{-4}-\mathbf{1 0}^{-5}$, error bars $\sim 10^{-6}$
3. How did the stardust distribute these anomalies is not fully known, many scenarios are proposed

Example: Molybdenum variations in bulk meteorites

Nuclear Physics: neutron-capture cross sections needed!

Example: Molybdenum variations in bulk meteorites

Nuclear Physics: Koehler (2022, PRC) measured a ${ }^{95} \mathrm{Mo}$ neutron-capture cross section 30% higher than the standard by Winters and Macklin (1987, ApJ)

Lugaro, Ek et al. (2023, EPJA)

Example: $\mathrm{Ca}, \mathrm{Ti}, \mathrm{Cr}$ variations in bulk meteorites

Nuclear Physics: neutron-capture cross sections and decay rates needed!

Example: $\mathrm{Ca}, \mathrm{Ti}, \mathrm{Cr}$ variations in bulk meteorites

${ }^{40} \mathrm{Ca}$: Dillman et al. Phys. Rev. C (2009)
${ }^{42} \mathrm{Ca},{ }^{43} \mathrm{Ca},{ }^{44} \mathrm{Ca}$: Musgrove et al., Nucl. Phys. (1977)
${ }^{46}$ Ca: Mohr et al., Phys. Rev. C (1999).
${ }^{48} \mathrm{Ca}:$ Mohr et al., Phys. Rev. C (1997).
${ }^{46} \mathrm{Ti},{ }^{47} \mathrm{Ti},{ }^{48} \mathrm{Ti},{ }^{49} \mathrm{Ti},{ }^{50} \mathrm{Ti}$: Allen et al. Technical report AAEC/E402, Australian Atomic Energy Commission (1977).
${ }^{50}$ Ti: Sedyshev et al., Phys. Rev. C (1999).
${ }^{50} \mathrm{Cr},{ }^{53} \mathrm{Cr},{ }^{54} \mathrm{Cr}$: M. Kenny et al., Technical report AAEC/E400, Australian Atomic Energy
Commission (1977).
${ }^{52}$ Cr: Rohr et al., Phys. Rev. C (1989)
${ }^{41} \mathrm{Ca},{ }^{45} \mathrm{C},{ }^{51} \mathrm{Cr}$: only theoretical (n, γ); latest decay rates from Fuller et al. 1987

Summary of example cases

Molécular Cloud
Solar Neighbourhood
Proto-planetary Disk

Scale

Type

Last neutron star merger and time between birth of molecular cloud and birth of the Sun
Meteoritic rocks

Open-source tools for Nuclear Astro/Cosmochemistry

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY
MNRAS 524, 6295-6330 (2023)
https://doi.org/10.1093/mnras/stad2167
Advance Access publication 2023 July 21

The chemical evolution of the solar neighbourhood for planet-hosting stars

Marco Pignatari, ${ }^{1,2,3,4,5 \star}$ Thomas C. L. Trueman, ${ }^{1,3,4}$ Kate A. Womack ${ }^{\oplus}$, ${ }^{3}$ Brad K. Gibson, ${ }^{3,5}$ Benoit Côté, ${ }^{1,4,5,6}$ Diego Turrini, ${ }^{7,8,9}$ Christopher Sneden, ${ }^{10}$ Stephen J. Mojzsis, ${ }^{1,2,11}$ Richard J. Stancliffe, ${ }^{4,12}$ Paul Fong, ${ }^{3,4}$ Thomas V. Lawson ${ }^{\oplus}$, $, 4,43$ James D. Keegans, ${ }^{4,14}$ Kate Pilkington, ${ }^{15}$ Jean-Claude Passy, ${ }^{16}$ Timothy C. Beers ${ }^{5,17}$ and Maria Lugaro ${ }^{1,2,18,19}$

OMEGA+ One-zone Model for the Evolution of GAlaxies (Côté et al. 2017) nugrid.github.io/NuPyCEE/

Draft version February 27, 2024
Typeset using ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ twocolumn style in AASTeX631
SIMPLE Stellar Interpretation of Meteoritic data and Plotting (Pignatari et al., in preparation) astrohub.uvic.ca/chetec/

Stellar Interpretation of Meteoritic Data and Plotting (SIMPLE): Isotope Mixing Lines for Seven Sets of Core-Collapse Supernova Models
Marco Pignatari, ${ }^{1,2,3}$ Georgy V. Makhatadze, ${ }^{4,1,2}$ Gábor G. Balázs, ${ }^{1,2,5}$ Mattias Ek, ${ }^{6}$ Alessandro Chieffi, ${ }^{7}$ Carla Frolich, ${ }^{7}$ Chris Fryer, ${ }^{7}$ Falk Herwig, ${ }^{7}$ Thomas Lawson, ${ }^{3}$ Marco Limongi, ${ }^{7}$ Thomas Rauscher, ${ }^{7}$ Lorenzo Roberti, ${ }^{1,2}$ Maria Schönbächler, ${ }^{6}$ Andre Sieverding, ${ }^{7}$ Reto Trappitsch, ${ }^{7}$ and Maria Lugaro ${ }^{1,2,5,8}$

Thanks to all the collaborators and students!

Lugaro, Maria; Pignatari, Marco; Côté, Benoit; Yagüe López, Andrés; Brinkman, Hannah; Cseh, Borbála; Den Hartogh, Jacqueline; Doherty, Carolyn; Lawson, Thomas; Pető, Mária; Soós, Benjámin; Trueman, Thomas; Világos, Blanka; Molnar Laszlo, Plachy Emese; Szányi Balász; Bányai, Evelin; Balázs, Gábor; Karakas, Amanda (Monash, Australia); Kobayashi, Chiaki (Hertfordshire, UK); Schoenbachler Maria and Ek Mattias (ETH Zurich), Makhatadze Georgy (IPGP, Paris)

[^0]: Côté et al. 2019b, ApJ; Yagüe López et al. 2021, ApJ

