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The birth of the Sun and

Nuclear burning its planets

Length scale ~ 104 m Length scale ~ 10" m
Temperature > 107 K Temperature <103 K

inside stars inside a molecular cloud
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Silicon Carbide (SiC) grains

Presolar Grain Database
of single grains

H (Stephan et al. 2023)
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SiC grains from AGB stars show the
slow neutron-capture signature:
e.g., the large (= um) grains

O(88Sr/8eSr)
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Profile of the
13C neutron

source?
(Liu et al. 2018)

Metallicity?
(Lugaro, Karakas
et al. 2018)

Treatment

of mixing?
(Battino et al.
2019)
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Profile of the SiC grains from AGB stars show the Nuclear Physics: Neutron captures
13C neutron slow neutron-capture signature: can produce negative O(88Sr/86Sr)
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Profile of the SiC grains from AGB stars show the Nuclear Physics: Neutron captures
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Profile of the SiC grains from AGB stars show the Nuclear Physics: Neutron captures
13C neutron slow neutron-capture signature: can produce negative O(88Sr/86Sr)
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Age-metallicity relationship in the solar neighborhood
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Nissen et al. 2020: 72 nearby solar-type stars
with very well determined ages show two
distinct sequences. The high metallicity stars
1. Were there at the time of the formation
of the Sun?
2. Did they migrate there later?



Age-metallicity relationship in the solar neighborhood
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Nissen et al. 2020: 72 nearby solar-type stars

with very well determined ages show two

distinct sequences. The high metallicity stars

1. Were there at the time of the formation

of the Sun?
2. Did they migrate there later?

The SiC grains support Scenario 1.

For example, black line: the two-infall galactic
chemical evolution (GCE) model of Spitoni et al.
(2019).
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Chemical Evolution of the Milky Way




Radioactive Chemical Evolution of the Milky Way

Formation of the Sun
(from meteoritic data)
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Sun material: rare events and/or
Formation of the molecular cloud: common short half lives (from stellar

events and/or long half lives (from stellar nucleosynthesis models)
nucleosynthesis and galactic evolution models




Radioactive Chemical Evolution of the Milky Way

Formation of the Sun
(from meteoritic data)
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Radioactive Chemical Evolution of the Milky Way

Formation of the Sun
(from meteoritic data)

" The last neutron

e star merger &
to contribute to
the Sun material

Formation of the molecular cloud,

from s-process 197Pd 13°Cs, and 182Hf
Trueman et al. 2022, Ap) Coteé et al. 2021, Science

from r-process 22| and 24’Cm




Radioactive Chemical Evolution of the Milky Way

Evolution of

the mass

ratio of a

radioactive

to stable

nucleus

1024 %
I Uncertainties from, e.g., mass of
% A gas, star formation rate etc.:
> 107 three different independent
Time of Sun’s formation realizations of the Milky Way

00 25 50 75 100 125 u
Galactic age [Gyr] Coté et al. 2019a, AplJ



Radioactive Chemical Evolution of the Milky Way

Evolution of

the mass

ratio of a

radioactive

to stable Talk by

nucleus Benjamin
Wehmeyer

But stellar ejecta are discrete in time:
using a Monte Carlo method we need to
add a further statistical uncertainty
(median, 1o, 20, full) to each of the
three Galaxies.

\

Time of Sun’s formation

00 25 50 7.5 '10.0 125 15.0 Coté et al. 2019b, ApJ; Yaglie Lopez et al. 2021, Ap)
Time [Gyr]



With 1°07pd, 13°Cs, and 182Hf, 2°>Pb is also produced
by the s process in AGB stars
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Analysis of bulk meteoritic rocks has revealed
small but widespread variations in stable isotope abundances.

Talk by Mattias Ek

1. Anomalies were carried into the Solar System by a “carrier”, a
“physical trap”, probably stardust

2. The stardust was destroyed, and the nuclear signature diluted.
Very small variations ~ 104 - 10", error bars ~ 10°

3. How did the stardust distribute these anomalies is not fully known,
many scenarios are proposed



Example: Molybdenum variations in bulk meteorites

€ 9°Mo [86]

€ %Mo [86]

Nuclear Physics: neutron-capture
cross sections needed!



Example: Molybdenum variations in bulk meteorites
Nuclear Physics: Koehler (2022, PRC) measured

a >>Mo neutron-capture cross section 30%
higher than the standard by Winters and

Macklin (1987, AplJ)
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Lugaro, Ek et al. (2023, EPJA)



Example: Ca, Ti, Cr variations in bulk meteorites
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Nuclear Physics: neutron-capture cross
sections and decay rates needed!

Figure from Rifenacht et al. (2023, GCA)
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Example: Ca, Ti, Cr variations in bulk meteorites
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Nuclear Physics: neutron-capture cross
sections and decay rates needed!

Figure from Rifenacht et al. (2023, GCA)

1 #0Ca: Dillman et al. Phys. Rev. C (2009)

| #2Ca, #3Ca, **Ca: Musgrove et al., Nucl. Phys.
] (1977)

{ 46Ca: Mohr et al., Phys. Rev. C (1999).

1 48Ca: Mohr et al., Phys. Rev. C (1997).

| 46Ti, 47Ti, 48Ti, 4°Ti, >°Ti: Allen et al. Technical
R e R I report AAEC/E402, Australian Atomic Energy

Commission (1977).

>0Ti: Sedyshev et al., Phys. Rev. C (1999).

>0Cr, 23Cr, >*Cr: M. Kenny et al., Technical report
AAEC/E400, Australian Atomic Energy
Commission (1977).

>2Cr: Rohr et al., Phys. Rev. C (1989)

41Ca, #°C, *1Cr : only theoretical (n,y); latest
decay rates from Fuller et al. 1987
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Open-source tools for Nuclear Astro/Cosmochemistry

of the
ROYAL ASTRONOMICAL SOCIETY
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SIMPLE Stellar Interpretation
of Meteoritic data and Plotting
(Pignatari et al., in preparation)
astrohub.uvic.ca/chetec/

developed/supported by ChETEC-INFRA
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Sets of Core-Collapse Supernova Models
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