Nuclear burning recorded in meteorites as a tracer of the birth of the Sun and its planets

HUN-REN Magyar Kutatási Hálózat

Lendület/Momentum Program of the Hungarian Academy of Sciences 2014-2020 and 2023-2028

2018-2020 and 2022-2026

2017-2023

2019-2025

mta.hu

Nuclear burning

The birth of the Sun and its planets

Length scale ~ 10⁻¹⁴ m Temperature > 10⁷ K inside stars

Length scale ~ 10¹⁶ m Temperature < 10³ K inside a molecular cloud

STAR-DUST

Which stars were present in the Galaxy at the time of the formation of the Sun?

How did material distributed inside the protoplanetary disk?

In which environment did the Sun formed, and what kind of material it accreted from its molecular cloud?

Figure from Mattias Ek

			Molecular Cloud	
	Sola	ar Neighbourhood		Proto-planetary Disk
Туре	e <u>Scale</u>	Large (1 kpc)	Medium (50 pc)	Small (100 AU)
	≈ 90% from asymptotic giant branch (AGB) stars	\checkmark		
DUST 1. [RADIO-	 ≈ 10% from core-collapse supernovae 	\checkmark	\checkmark	
ACTIVITY 2.	0.1 < half life < 100 Myr			
BULK- ROCKS 3	Meteoritic rocks and inclusions		\checkmark	\checkmark

Exampl	e cases		Molecular Cloud	
	Sola	ar Neighbourhood		Proto-planetary Disk
Туре	Scale	Large (1 kpc)	Medium (50 pc)	Small (100 AU)
STAR-	≈ 90% from asymptotic giant branch (AGB) stars			
DUST L. [RADIO-	≈ 10% from core-collapse supernovae	\checkmark	\checkmark	
	0.1 < half life < 100 Myr <i>short-lived</i>	\checkmark	\checkmark	
BULK- ROCKS 3.	Aeteoritic rocks and inclusions		\checkmark	\checkmark

There are also graphite grains, oxide grains (aluminium oxides, spinel, hibonite), silicate grains, nano diamonds and other less abundant types

Silicon Carbide (SiC) grains

There are also graphite grains, oxide grains (aluminium oxides, spinel, hibonite), silicate grains, nano diamonds and other less abundant types

Silicon Carbide (SiC) grains

SiC grains from AGB stars show the *slow* neutron-capture signature:

e.g., the large ($\approx \mu m$) grains

SiC grains from AGB stars show the *slow* neutron-capture signature: e.g., the large ($\approx \mu m$) grains Number of grains 400 10 200 3(⁸⁸Sr/⁸⁶Sr) 6 ()-200 -2 -0 -400 200 -600 -400 -200 0

 $\delta(^{138}Ba/^{136}Ba)$

Nuclear Physics: Neutron captures can produce negative δ(⁸⁸Sr/⁸⁶Sr) only when [Ce/Y] is also negative! (Lugaro et al. 2020)

10

6

Nuclear Physics: Neutron captures can produce negative δ (⁸⁸Sr/⁸⁶Sr) only when [Ce/Y] is also negative!

-0.2

[Fe/H]

0.0

0.2

0.4

0+ -0.8

-0.6

-0.4

Astrochemistry: The large (≈ μm) SiC grains must have formed in AGB stars with metallicity higher than solar

Nuclear Physics: Neutron captures can produce negative δ (⁸⁸Sr/⁸⁶Sr) only when [Ce/Y] is also negative! (Lugaro et al. 2020) 1.0FRUITY 1.5 Mo Monash 1.5 M_o 10 0.8 FRUITY 3.0 Mo Monash 3.0 Mo 0.6 FRUITY 4.0 Mo 0.4 [Ce/Y] 0.2 -2 0.0 -0 -0.2The Ba stars with negative [Ce/Y] are predominantly those with positive [Fe/H] 0+ -0.8

-0.6

-0.4

-0.2

[Fe/H]

0.0

0.2

0.4

Age-metallicity relationship in the solar neighborhood

Nissen et al. 2020: 72 nearby solar-type stars with very well determined ages show two distinct sequences. The high metallicity stars

- 1. Were there at the time of the formation of the Sun?
- 2. Did they migrate there later?

Age-metallicity relationship in the solar neighborhood

Nissen et al. 2020: 72 nearby solar-type stars with very well determined ages show two distinct sequences. The high metallicity stars

- 1. Were there at the time of the formation of the Sun?
- 2. Did they migrate there later?

The SiC grains support Scenario 1.

For example, **black line**: the two-infall galactic chemical evolution (GCE) model of Spitoni et al. (2019).

Exam	ple cases		Molecu	ular Cloud	
		Solar Neighbo	urhood		Proto-planetary Disk
Тур	e <u>Sc</u>	ale Large	(1 kpc) Mediu	m (50 pc)	Small (100 AU)
STAR-	≈ 90% fron asymptotic gi branch (AGB) s	n iant stars			
DUST L. [RADIO-	≈ 10% from core-collapse supernovae				
ACTIVITY 2	0.1 < half life < 100 N short-live	1yr ed	r (.	\mathbf{i}	
BULK- ROCKS 3. –	Meteoritic rocks and inclusions			\checkmark	\checkmark

Chemical Evolution of the Milky Way

nucleosynthesis models)

events and/or long half lives (from stellar nucleosynthesis and galactic evolution models)

short half lives (from stellar

nucleosynthesis models)

Formation of the molecular cloud: common events and/or long half lives (from stellar nucleosynthesis and galactic evolution models)

Trueman et al. 2022, ApJ

Côté et al. 2021, Science

Evolution of the mass ratio of a radioactive to stable nucleus

Uncertainties from, e.g., mass of gas, star formation rate etc.: three different independent realizations of the Milky Way

Côté et al. 2019a, ApJ

With ¹⁰⁷Pd, ¹³⁵Cs, and ¹⁸²Hf, ²⁰⁵Pb is also produced by the *s* process in AGB stars

Nuclear Physics:

- First experimentally derived decay rates for ²⁰⁵TI
- 2. First Accurate ²⁰⁵Pb and ²⁰⁵Tl decay rates as function of stellar temperature and density!

Exam	ple cases			Molecular Cloud	
		Sola	ar Neighbourhood		Proto-planetary Disk
Тур	e Sca	le	Large (1 kpc)	Medium (50 pc)	Small (100 AU)
STAR-	≈ 90% from asymptotic gia branch (AGB) st	int tars			
	≈ 10% from core-collapse supernovae		\checkmark	\checkmark	
ACTIVITY 2.	0.1 < half life < 100 My	yr d	\checkmark		
BULK- ROCKS 3. –	Meteoritic rocks and inclusions			\checkmark	

Analysis of bulk meteoritic rocks has revealed **small but widespread variations** in stable isotope abundances.

Talk by Mattias Ek

1. Anomalies were carried into the Solar System by a "carrier", a "physical trap", probably stardust

2. The **stardust** was destroyed, and the nuclear signature diluted. Very small variations ~ **10**⁻⁴ – **10**⁻⁵, error bars ~ **10**⁻⁶

3. How did the **stardust** distribute these anomalies is not fully known, many scenarios are proposed

Example: Molybdenum variations in bulk meteorites

Nuclear Physics: neutron-capture cross sections needed!

Example: Molybdenum variations in bulk meteorites

cross sections needed!

Lugaro, Ek et al. (2023, EPJA)

Nuclear Physics: Koehler (2022, PRC) measured a ⁹⁵Mo neutron-capture cross section 30% higher than the standard by Winters and Macklin (1987, ApJ)

Example: Ca, Ti, Cr variations in bulk meteorites

Nuclear Physics: neutron-capture cross sections and decay rates needed!

Figure from Rüfenacht et al. (2023, GCA)

Example: Ca, Ti, Cr variations in bulk meteorites

Nuclear Physics: neutron-capture cross sections and decay rates needed!

Figure from Rüfenacht et al. (2023, GCA)

⁴⁰Ca: Dillman et al. Phys. Rev. C (2009) ⁴²Ca, ⁴³Ca, ⁴⁴Ca: Musgrove *et al.*, Nucl. Phys. (1977) ⁴⁶Ca: Mohr *et al.*, Phys. Rev. C (1999). ⁴⁸Ca: Mohr *et al.*, Phys. Rev. C (1997). ⁴⁶Ti, ⁴⁷Ti, ⁴⁸Ti, ⁴⁹Ti, ⁵⁰Ti: Allen et al. Technical report AAEC/E402, Australian Atomic Energy Commission (1977). ⁵⁰Ti: Sedyshev *et al.*, Phys. Rev. C (1999). ⁵⁰Cr, ⁵³Cr, ⁵⁴Cr: M. Kenny *et al.*, Technical report AAEC/E400, Australian Atomic Energy Commission (1977). ⁵²Cr: Rohr *et al.*, Phys. Rev. C (1989) ⁴¹Ca, ⁴⁵C, ⁵¹Cr : only theoretical (n,γ) ; latest decay rates from Fuller et al. 1987

Summary of				Molecular Cloud	
exam	ple cases	Sola	ar Neighbourhood		Proto-planetary Disk
Тур	е	Scale	Large (1 kpc)	Medium (50 pc)	Small (100 AU)
STAR-	≈ 90% asympto branch (A	from tic giant GB) stars	Age-metallicity relationship		
DUST [[RADIO-	≈ 10% from core-collapse supernovae		\checkmark	\checkmark	
ACTIVITY 2. –	0.1 < half life < 1	00 Myr <i>-lived</i>	Las and of	t neutron star n d time between molecular cloud birth of the Su	herger birth d and
BULK- ROCKS 3. –	Meteoritic rocks and inclusions				Mo variations from AGB SiC

Open-source tools for Nuclear Astro/Cosmochemistry

ROYAL ASTRONOMICAL SOCIETY MNRAS 524, 6295-6330 (2023) https://doi.org/10.1093/mnras/stad2167 Advance Access publication 2023 July 21

The chemical evolution of the solar neighbourhood for planet-hosting stars

Marco Pignatari, 1,2,3,4,5 Thomas C. L. Trueman, 1,3,4 Kate A. Womack, 3 Brad K. Gibson	3,5 OMEGA+ One-zone Model
Benoit Côté, ^{1,4,5,6} Diego Turrini, ^{7,8,9} Christopher Sneden, ¹⁰ Stephen J. Mojzsis, ^{1,2,11} Richar	for the Evolution of
J. Stancliffe, ^{4,12} Paul Fong, ^{3,4} Thomas V. Lawson ⁽⁰⁾ , ^{3,4,13} James D. Keegans, ^{4,14} Kate Pilkir	ngton, ¹⁵ GAlaxies (Côté et al. 2017)
Jean-Claude Passy, ¹⁶ Timothy C. Beers ^{5,17} and Maria Lugaro ^{1,2,18,19}	nugrid.github.io/NuPyCEE/

		DRAFT VERSION FEBRUARY 27, 2024 Typeset using IATEX twocolumn style in AASTeX631
	SIMPLE Stellar Interpretation of Meteoritic data and Plotting	
	(Pignatari et al., in preparation) astrohub.uvic.ca/chetec/	Stellar Interpretation of Meteoritic Data and Plotting (SIMPLE): Isotope Mixing Lines for Seven Sets of Core-Collapse Supernova Models
l		Marco Pignatari, ^{1, 2, 3} Georgy V. Makhatadze, ^{4, 1, 2} Gábor G. Balázs, ^{1, 2, 5} Mattias Ek, ⁶ Alessandro Chieffi, ⁷ Carla Frolich, ⁷ Chris Fryer, ⁷ Falk Herwig, ⁷ Thomas Lawson, ³ Marco Limongi, ⁷ Thomas Rauscher, ⁷ Lorenzo Roberti, ^{1, 2} Maria Schönbächler, ⁶ Andre Sieverding, ⁷ Reto Trappitsch, ⁷ and Maria Lugaro ^{1, 2, 5, 8}

developed/supported by ChETEC-INFRA

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008324 (ChETEC-INFRA).

Thanks to all the collaborators and students!

Lugaro, Maria; Pignatari, Marco; Côté, Benoit; Yagüe López, Andrés; Brinkman, Hannah; Cseh, Borbála; Den Hartogh, Jacqueline; Doherty, Carolyn; Lawson, Thomas; Pető, Mária; Soós, Benjámin; Trueman, Thomas; Világos, Blanka; Molnar Laszlo, Plachy Emese; Szányi Balász; Bányai, Evelin; Balázs, Gábor; Karakas, Amanda (Monash, Australia); Kobayashi, Chiaki (Hertfordshire, UK); Schoenbachler Maria and Ek Mattias (ETH Zurich), Makhatadze Georgy (IPGP, Paris)