

ASTROCHEMISTRY : FROM STARS TO PLANETS

Laurent Wiesenfeld

Laboratoire Aimé Cotton

CNRS - Université Paris-Saclay

&

MIT – Earth, Atmosphere and Planetary Sciences.

Table

- 1. Why molecules?
 - It all begins with nuclei
 - Relevance
- 2. Where molecules?
 - Hot to cold
 - Dense to thin
 - Ionized, Plasmas, PDRs
- 3. When molecules?
 - Early universe
 - Disks
 - Planets

- 4. How to detect?
 - Rotation
 - IR and other
- 5. How to model?
 - Qualitative/Quantitative
 - Ab initio
- 6. Conclusion

Table

1. Why molecules?

- It all begins with nuclei
- Relevance
- 2. Where molecules?
 - Hot to cold
 - Dense to thin
 - Ionized, Plasmas, PDRs
- 3. When molecules?
 - Early universe
 - Disks
 - Planets

- 4. How to detect?
 - Rotation
 - IR and other
- 5. How to model?
 - Qualitative/Quantitative
 - Ab initio
- 6. Conclusion

ISM

Chemistry = molecules

 Table 2

 List of Detected Interstellar Molecules with Two to Seven Atoms, Categorized by Number of Atoms, and Vertically Ordered by Detection Year

2 A	toms	3 A	toms	4 A	toms	5 A	toms	6 Atoms	7 Atoms
СН	NH	H ₂ O	MgCN	NH ₃	SiC ₃	HC ₃ N	C_4H^-	CH ₃ OH	CH ₃ CHO
CN	SiN	HCO^+	H_3^+	H ₂ CO	CH ₃	HCOOH	CNCHO	CH ₃ CN	CH ₃ CCH
CH^+	SO^+	HCN	SiCN	HNCO	C_3N^-	CH ₂ NH	HNCNH	NH ₂ CHO	CH ₃ NH ₂
OH	CO^+	OCS	AINC	H ₂ CS	PH ₃	NH ₂ CN	CH ₃ O	CH ₃ SH	CH ₂ CHCN
CO	HF	HNC	SiNC	C_2H_2	HCNO	H ₂ CCO	NH_3D^+	C_2H_4	HC ₅ N
H_2	N ₂	H ₂ S	HCP	C ₃ N	HOCN	C ₄ H	H_2NCO^+	C₅H	C ₆ H
SiO	CF^+	N_2H^+	CCP	HNCS	HSCN	SiH ₄	NCCNH ⁺	CH ₃ NC	c-C ₂ H ₄ O
CS	PO	C ₂ H	AlOH	$HOCO^+$	HOOH	c-C ₃ H ₂	CH ₃ Cl	HC ₂ CHO	CH ₂ CHOH
SO	O ₂	SO ₂	H_2O^+	C ₃ O	$1-C_3H^+$	CH ₂ CN	MgC ₃ N	H_2C_4	C_6H^-
SiS	AlO	HCO	H_2Cl^+	l-C ₃ H	HMgNC	C ₅	HC_3O^+	C ₅ S	CH ₃ NCO
NS	CN^{-}	HNO	KCN	$HCNH^+$	HCCO	SiC ₄	NH ₂ OH	HC ₃ NH ⁺	HC ₅ O
C ₂	OH^+	HCS ⁺	FeCN	H_3O^+	CNCN	H ₂ CCC	HC_3S^+	C ₅ N	HOCH ₂ CN
NO	SH^+	HOC^+	HO_2	C ₃ S	HONO	CH_4	H ₂ CCS	HC₄H	HC ₄ NC
HCl	HCl^+	SiC ₂	TiO ₂	c-C ₃ H	MgCCH	HCCNC	C ₄ S	HC ₄ N	H ₃ HNH
NaCl	SH	C ₂ S	CCN	HC ₂ N	HCCS	HNCCC	CHOSH	c-H ₂ C ₃ O	c-C ₃ HCCH
AlCl	TiO	C ₃	SiCSi	H ₂ CN		H_2COH^+		CH ₂ CNH	
KCl	ArH^+	CO_2	S ₂ H					$C_5 N^-$	
AlF	NS ⁺	CH_2	HCS					HNCHCN	
PN	HeH ⁺	C ₂ O	HSC					SiH ₃ CN	
SiC	VO	MgNC	NCO					MgC ₄ H	
CP		NH ₂	CaNC					CH_3CO^+	
		NaCN	NCS					H ₂ CCCS	
		N ₂ O						CH ₂ CCH	

Table 3		
List of Detected Interstellar Molecules with Eight or More Atoms, Categorized by Number of Atoms, and Vertically Ord	dered by Detectio	n Year

8 Atoms	9 Atoms	10 Atoms	11 Atoms	12 Atoms	13 Atoms	PAHs	Fullerenes
HCOOCH ₃	CH ₃ OCH ₃	CH ₃ COCH ₃	HC ₉ N	C ₆ H ₆	C ₆ H ₅ CN	1-C10H7CN	C ₆₀
CH ₃ C ₃ N	CH ₃ CH ₂ OH	HOCH ₂ CH ₂ OH	CH ₃ C ₆ H	n-C3H7CN	HC11N	2-C10H7CN	C_{60}^{+}
C ₇ H	CH ₃ CH ₂ CN	CH ₃ CH ₂ CHO	C ₂ H ₅ OCHO	i-C ₃ H ₇ CN		C_9H_8	C ₇₀
CH ₃ COOH	HC ₇ N	CH ₃ C ₅ N	CH ₃ COOCH ₃	1-C5H5CN			
H_2C_6	CH ₃ C ₄ H	CH ₃ CHCH ₂ O	CH ₃ COCH ₂ OH	2-C ₅ H ₅ CN			
CH ₂ OHCHO	C ₈ H	CH ₃ CH ₂ OH	C ₅ H ₆				
HC ₆ H	CH ₃ CONH ₂						
CH ₂ CHCHO	C_8H^-						
CH ₂ CCHCN	CH ₂ CHCH ₃						
NH ₂ CH ₂ CN	CH ₃ CH ₂ SH						
CH ₃ CHNH	HC ₇ O						
CH ₃ SiH ₃	CH ₃ NHCHO						
NH ₂ CONH ₂	H ₂ CCCHCCH						
HCCCH ₂ CN	HCCCHCHCN						
CH ₂ CHCCH	H ₂ CCHC ₃ N						

Chemistry = molecules

Planetary atmospheres main gases and prominent molecules

I. Gordon et al.

NUCLEAR PHYSICS

8

Elemental abundances in the Milky Way

FIGURE 3.46 — A summary of the cosmic abundances of the elements and their isotopes.

9

MOLECULAR PHYSICS

Why looking for molecules ?

- Molecules display a nearly infinite of variety:
 - from the simplemost, H₂, the transitionelements containing molecules to the molecules of life, and the polymers, the PAH's .
 - All categories have been observed in extraterrestrial environments, from meteorites to the edge of the Universe.
- Molecules (and in particular isotopologues) are a beacon for history

Molecules

are seen in nearly any environment: binding energies from to a few eV \rightarrow to a few Kelvin

• In Astrophysics,

The abundance of nuclei is determinental for the abundances of the various molecules: interplay of GeV/MeV to eV/µeV physics (15 orders of magnitude), interplay of high and low energy astrophyics, including super novae

Measures of fundamental constants history

Tool	Some results
Thermodynamics and kinetics	Out of equilibrium situations, timescales
Spectroscopy	Fundamental constants, identification, abundances
Spectral lineshapes	Opacities, atmospheres (planets and cool stars)
Isotopic compositions	Detailed history, past nuclear physics
Molecular presence and abundances	Physical and chemical characterization, atmospheric composition
Mass spectrometry (probes)	Up to large molecules, polymers

Why is Astrochemistry both an ancient and a modern problem?

Is it good old spectroscopy again, in a new guise? Yes, and difficult.

- Think of the hyperfine structure of ND₂H, the rotational-torsional spectroscopy of CH_3 -O-CH₃, to the ro-vibrational spectroscopy of exotic ions (H₃CH₂CN)+ or radicals (CHNH). All these species are known, and some have been discovered by astrophysical spectroscopy.
- **Spectroscopy** ranges from GHz to THz and beyond (cm -> sub-mm, FIR, IR). We have all the instruments, and everything in the spectral line is significant. "Every photon counts"
- **Spectral line shapes are not in equilibrium**, they are broadened by the Doppler effect and by collisions, they are heterogeneous and optically thick.
- Spectra of highly excited atoms is very difficult to model

Why is Astrochemistry both an ancient and a modern problem?

It's also about: finding a flower in a meadow of weeds. Weeds are common and hardy.
 Flowers are rare, their signals weak, but what an achievement to find urea O=C(NH₂)₂ - the first biomolecule synthesized in the 19th century, which proved that chemistry was universal- sugars and amino acids (these, in meteorites, and perhaps in cometsj).

 It's also about: characterizing the atmospheres of other stars and their planets similar to Neptune, or superbly strange like the Trappist system: 5 planets - IR star. Study meteorology there and one day find bio-signed molecules.

Table

- 1. Why molecules?
 - It all begins with nuclei
 - Relevance

2. Where molecules?

- Hot to cold
- Dense to thin
- Ionized, Plasmas, PDRs
- 3. When molecules?
 - Early universe
 - Disks
 - Planets

- 4. How to detect?
 - Rotation
 - IR and other
- 5. How to model?
 - Qualitative/Quantitative
 - Ab initio
- 6. Conclusion

A list (not exhaustive...)

Not mentioned: PAH 's; Intergalactic

Object	Conditions
PDR	gradients in ionization temperature. Photophysics dominat.
HI regions	Very low density, equilibrium very slow to reach
Molecular ISM + grains	Cold, some molecules freeze out (deplete) on grain surfaces. Gas and surface chemistru
YSO	Factories of COM's
Dying stars	Factories of COM's
Disks	Tracers of future history. Gradients in space, turbulence, Keplerian motion
Stellar atmospheres	From cool to hot molecules or atomic plasmas. Specific tracers
Planetary atmospheres	From diffuse to dense, vast ranges
Extragalactic	Metallicities, star formation rates
Early universe	Only H, He e-; traces of D, Li

Conditions of interstellar gases

- Large range in temperature & density $T \approx 10 10^6 \text{ K}$ $n \approx 10^{-3} 10^6 \text{ cm}^{-3}$
- Even dense regions are "ultra-high vacuum" lab UHV:10⁻¹⁰ Torr (n ≈ 4 × 10⁶ cm⁻³)

(STP conditions: $n = 3 \times 10^{19} \text{ cm}^{-3}$)

lonized gases

Neutral gases

H II regions - bright nebulae associated with regions of star formation & molecular clouds; ionized by stellar UV photons from early-type (OB) stars $T \approx 10^4$ K & $n_e \approx 0.1 - 10^4$ cm⁻³ Warm Ionized Medium (WIM) $T \approx 8000$ K & $n_e \approx 0.025$ cm⁻³

Hot Ionized Medium (HIM) - tenuous gas pervading the ISM, ionized by electron impact

 $T \approx 4.5 \text{ x } 10^{5} \text{K}$ & $n_e \approx 0.035 \text{ cm}^{-3}$

Cool clouds (CNM) $T \approx 100 \text{ K}$ & $n \approx 40 \text{ cm}^{-3}$ Warm neutral gas (WNM) $T \approx 7500 \text{ K}$ & $n \approx 0.5 \text{ cm}^{-3}$ Cold dark clouds ($M \approx 10 - 1000 \text{ M}_{\odot}$) $T \ge 10 \text{ K}$ & $n \approx 10^2 - 10^4 \text{ cm}^{-3}$ Giant molecular clouds ($M \approx 10^3 - 10^5 \text{ M}_{\odot}$) $T \ge 20 \text{ K}$ & $n \approx 10^2 - 10^4 \text{ cm}^{-3}$ with high density cores & clumps that form stars.

Where are molecules? (simplified)

Main gas depend on object scrutinized

 ISM, YSO, Stars : H, H₂, (He), oy cold plasma e⁻

- Comets : H₂O
- Atmospheres: H₂, CH₄, NH₃, N₂, SO₂, O₂ (Earth), mixtures

The main gas is very often optically inactive in microwave, not necessarily in IR Active molecule as traces.

Special mention: early universe: Chemistry before stars

The Dawn of Chemistry

Daniele Galli and Francesco Palla

INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy; email: galli@arcetri.astro.it, palla@arcetri.astro.it

Figure 2. The pathways and ZPVE-corrected energetics for the creation and destruction of ${}^{1}\Sigma_{g}^{+}$ HeHHe⁺. Positive energies favor the products based on the direction of the arrow. Negative energies favor the reactants.

Article

A Molecular Candle Where Few Molecules Shine: HeHHe⁺

Ryan C. Fortenberry 1,*,* () and Laurent Wiesenfeld 2* ()

- ¹ Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677-1848, USA
- ² Laboratoire Aimé-Cotton, CNRS & Université Paris-Saclay, 91405 Orsay, France; laurentwiesenfeld@u-psud.fr
- Correspondence: r410@olemiss.edu; Tel: +1-662-915-1687
- + These authors contributed equally to this work

First astrophysical detection of the helium hydride ion (HeH⁺)

Rolf Güsten¹, Helmut Wiesemeyer¹, David Neufeld², Karl M. Menten¹, Urs U. Graf³, Karl Jacobs³, Bernd Klein^{1,4}, Oliver Ricken¹, Christophe Risacher^{1,5}, Jürgen Stutzki³

3

Extra galactic

CECILIA: Direct O, N, S, and Ar Abundances in Q2343-D40, a Galaxy at $z\!\sim\!\!3$

NOAH S. J. ROGERS,¹ ALLISON L. STROM,^{1,2} GWEN C. RUDIE,³ RYAN F. TRAINOR,⁴ MENELAOS RAPTIS,⁴ AND CAROLINE VON RAESFELD^{1,2}

DIRECT GAS-PHASE ABUNDANCES AT z~3

IMAGES, SPECIFIC CASES

- * Diffuse clouds T ~ 100 K, n ~ 10^2 cm⁻³ $x_e \sim 10^{-4}$ Tracers : OH, CH⁺, HCO⁺
- * Photon-Dominated Regions T ~ 1000 K, n ~ 10^4 cm⁻³ $x_e \sim 10^{-4}$ Tracers : CN, CH, CH^{+,} C+

* Jets

T ~ 10-1000 K, n ~ $10^{4\text{-}7}\,\text{cm}^{\text{-}3}$ Tracers : CO, HCO+, SiO

Star forming regions/ YSO environments $T \sim 5-300 \text{ K}, n \sim 10^{4-7} \text{ cm}^{-3}$ $x_e \sim 10^{-9-1a}$ Tracers : CO, HCO+,H2O H2CO,CH3OH, N,S containing molecules

Protoplanetary disks

Protoplanetary Disks

Figure 2. An overview of line emission from near-IR to submm wavelengths from planet forming disks and existing and upcoming instrumentation to detect it. The model SED is that of a typical T Tauri disk using two different spectral resolutions ($R = 28\,000$ and $R = 11\,000$ relevant for the planned SMI and SAFARI instruments onboard the proposed SPICA mission).

I Kamp, WF Thi et al.

Postpone the atmospheres...

Table

1. Why molecules?

- It all begins with nuclei
- Relevance
- 2. Where and xhenmolecules?
 - Hot to cold
 - Dense to thin
 - Ionized, Plasmas, PDRs
 - · Early universe
 - Disks
 - Planets

- 3. How to detect?
 - Rotation
 - IR and other
- 4. How to model?
 - Qualitative/Quantitative
 - Ab initio
- 3. Conclusion

How to detect? A note on units

- **Probes:** many ways to deal with molecules, from chromatography to mass spectrometry. Valid for example in our atmosphere, for planetary probes (Cassini, Rosetta,...)
- Telescopes: wavelengths from cm to sub-Å, from radio waves to gamma-rays, from µeV to GeV (cosmic rays). Single optics (dish or mirror) or interferometry (ALMA, Plateau de Bures, VLA, VLTI, Gemini)

Quantum sta	ates	Energies	Type of radiation	How to detect		
Hyperfine structure		kHz → MHz	Longwave to radio	Usually indirectly detected		
Fine structur atoms	re (mostly	100GHz → a few THz	microwave to FIR	ground & space Favorable for high-z atomic gasses		
Rotation		0.5 → 60 cm-1	millimiter to sub-mm	ground (mostly) and space / plane/balloons		
Vibration		100 → A few 1000 cm- 1	FIR to IR	Space and balloons Favorable for high-z molecular gasses		
Electronic	Molecules	up to a few eV	visible, UV	ground and space		
transitions	Atoms	up to a few keV	Visible → X-rays	ground and space		
1 kcal/mole ≈ 43 meV ≈ 503 K ≈ 350 cm-1 ≈ 10 THz						

CINIS

Chimie Physique 2022

Atmospheric opacity

Quantum sta	ates	Energies	Type of radiation	How to detect		
Hyperfine structure		kHz → MHz Longwave to radio		Usually indirectly detected		
Fine structure (mostly atoms		100GHz → a few THz	microwave to FIR	ground & space Favorable for high-z atomic gasses		
Rotation		0.5 → 60 cm-1	millimiter to sub-mm	ground		
Vibration		100 → A few 1000 cm-1	FIR to IR	Space and balloons Favorable for high-z molecular gasses		
Electronic	Molecules	up to a few eV	visible, UV	ground and space		
transitions	Atoms	up to a few keV	Visible → X-rays	ground and space		
1 kcal/mole \approx 43 meV \approx 503 K \approx 350 cm-1 \approx 10 THz						

Young stellar object: solar mass binary

The ALMA-PILS survey: inventory of complex organic molecules towards IRAS 16293-2422 A

J. Jørgensen et al., Niels Bohr Inst. et al.

Table 1 List of molecules mentioned in this review with more than three atom	Table 1	List of	f molecules	mentioned	in	this	review	with	more	than	three	atoms
--	---------	---------	-------------	-----------	----	------	--------	------	------	------	-------	-------

Species	Formula	Species	Formula
Acetaldehyde	CH ₃ CHO	Glyoxal	HC(O)CHO
Acetamide	$\rm CH_3C(O)\rm NH_2$	Hydroxylamine	$\rm NH_2OH$
Acetic acid	CH ₃ COOH	Isocyanic acid	HNCO
Acetone	$\rm CH_3C(O)\rm CH_3$	Methane	CH_4
Ammonia	NH ₃	Methanimine	CH_2NH
Benzene	$c-C_6H_6$	Methanol	CH_3OH
Benzonitrile	$\mathrm{c}\text{-}\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CN}$	Methoxymethanol	CH_3OCH_2OH
Butyl cyanide	C_4H_9CN	Methyl acetylene	CH ₃ CCH
Cyanoacetylene	$\mathrm{HC}_{3}\mathrm{N}$	Methyl amine	CH_3NH_2
Cyanodiacetylene	$\mathrm{HC}_{5}\mathrm{N}$	Methyl chloride	CH ₃ Cl
Cyanoformaldehyde	NCCHO	Methyl cyanide	CH_3CN
Cyanomethanimine	NHCHCN	Methyl formate	CH ₃ OCHO
Cyanomethyl radical	$\rm CH_2CN$	Nitrous acid	HONO
Cyclopropenone	$c-H_2C_3O$	Propanal	C_2H_5CHO
Dimethyl ether	$\rm CH_3OCH_3$	Propanol	C_3H_7OH
Ethanimine	CH_3CHNH	Propenal	C_2H_3CHO
Ethanol	C_2H_5OH	Propyl cyanide	C_3H_7CN
Ethylene glycol	$(CH_2OH)_2$	Propylene oxide	$c-CH(CH_3)CH_2O$
Formaldehyde	H_2CO	Quinoline	C_9H_7N
Formamide	$\rm NH_2CHO$	Thioformaldehyde	H_2CS
Formic acid	HCOOH	Vinyl cyanide	C_2H_3CN
Glycolaldehyde	$\rm CH_2(OH)\rm CHO$	Urea	$\rm NH_2C(O)\rm NH_2$
Glycolonitrile	$HOCH_2CN$		

The ALMA-PILS survey: inventory of complex organic molecules towards IRAS 16293-2422 A

Fig. 1. Dust colour temperature $(T_{\rm C}, \text{ top})$ and the H₂ column density $(N(H_2))$, bottom) maps of H-MM1 as derived from Herschel/SPIRE maps at 250, 350, and 500 μ m. The distribution of the 850 μ m emission observed with SCUBA-2 is indicated with black contours on the $N(H_2)$ map. The contour levels are 10 to 50 by 10 MJy sr⁻¹. The column

110

100

10

Fig. 16. Deuterated ammonia spectra produced by the core model at the time $3\,10^5$ yr (red curves) together with the observed spectra (histograms).

Starless core Ophiuchus/H-MM1

Harju at al. 2016

Stellar atmosphere : case of brown dwarf

A 1.46–2.48 μ m spectroscopic atlas of a T6 dwarf (1060 K) atmosphere with IGRINS: first detections of H₂S and H₂, and verification of H₂O, CH₄, and NH₃ line lists

Full H- and K-band IGRINS spectra of 2MASS J08173001-6155158 1.2 1.0 Normalized Flux 2MASS 0817 Data 0.8 2MASS 0817 Uncertaint 0.6 0.4 0.2 0.0 1.5 1.6 1.7 Wavelength (μ m) Normalized Flux 0.8 0.6 0. 0.0 2.0 2.1 2.2 Wavelength (µm)

Figure 2. The full *H*- and *K*-band IGRINS spectra of 2MASS J08173001–6155158 with epochs combined and the orders stitched together. This figure does not include the quadratic correction described in Section 3.1. These data appear noisy, but in fact have $S/N \simeq 300$ at the peak of the *H*-band spectrum and $S/N \simeq 200$ at the *K*-band peak. The apparent noise spikes are all absorption features, and can be seen in detail in the full set of figures in the Appendix, available in the Online Supplementary Material.

Tannock at al., MNRAS, 2022

Fig. 16. Deuterated ammonia spectra produced by the core model at

Special topic : JWST

Banzatti et al.

Protoplanetary Disks

THE ASTROPHYSICAL JOURNAL LETTERS, 957:L22 (14pp), 2023 November 10

Figure 2. JWST-MIRI-MRS spectra for the four disks. For clarity, the spectra are offset vertically by the following additive shifts: 0.05 Jy in CI Tau, 0.17 Jy in GK Tau, and 0.4 Jy in HP Tau. Illustrative models of molecular emission are shown for guidance at the bottom. Prominent dust features are approximately identified and marked with shaded regions. The estimated continuum that is subtracted before analyzing the water spectra is shown in red on each spectrum. Two ALMA images are shown on the right for reference regarding disk sizes and structures (the whole sample is included in Appendix A).

PDR (photon dominated region): here the Orion Bar

PDRs4ALL coll., JWST Early Science Release 2023-202x

PDRs4ALL coll., JWST Early Science Release 2023-202x

Before and after JWST

Before and after JWST

Table

1. Why molecules?

- It all begins with nuclei
- Relevance
- 2. Where molecules?
 - · Hot to cold
 - Dense to thin
 - Ionized, Plasmas, PDRs
- 3. When molecules?
 - · Early universe
 - Disks
 - Planets

- 4. How to detect?
 - Rotation
 - IR and other
- 5. How to model?
 - Qualitative/Quantitative
 - Ab initio
- 6. Conclusion

From observation to modelling

Assessing the extent of the opacity challenge for exoplanetary sciences

(Niraula et al., 2022)

MICROSCOPIC DATA, COLLISIONS

Our work in Grenoble, than Paris

Rotational spectrum detected by HIFI /Herschel

Classical view for reaching LTE

• $l_{orbital} = p b = m v b$

(*m* reduced mass; *b* impact parameter; *v* relative velocity) . Exchange *l* <-> J makes LTE

H ₂ 0 *	 Full D potential (9D) with H₂, rigid potential with He Full rotational analysis, Class./Quantum Partial vibrational analysis, Class./Quantum dynamics Isotopologues, HDQ.D₂Q.H₂¹⁸Q 	MANY COLLABORATIONS	* : isotopologs also computed
CO *	 Potential with CO and H2 vibration High precision rotational analysis 	M. Wernli PhD	$\left(\text{HCO}^{+} - \text{H}_{2} \right)$
HC ₃ N	 Rigid rotor potential with H2 (4D) Full rotational analysis, Quantum dynamics 	M. Wernli PhD	SiO – H ₂
NH ₃ *	5D potential with H2 & inversionAll isotopologues NDH2, NHD2, ND3	Several Post-Docs	
H ₂ CO	 Rigid rotor, full potential with H2 Overcooled, absorbs the CMB 	N. Troscompt PhD	SO ₂ - H ₂
HCOOCH ₃	Full potentiel with HeOvercooling	Coll. K. Szalewicz	
HNCO	• Full potentiel with He, H2	E. Sahnoun PhD	HCI – He,H ₂
c-C ₃ H ₂ *	Full potentiel with He, H2Unstable molecule	M. Ben Khalifa PhD	HMgNC -He
CH ₃ CN	 Full potentiel with He, H2 C_{3v} symmetry -> peculiar spectroscopy 	M. Ben Khalifa PhD/post doc	
C+	Interaction with H2Fine structure transition	Coll NASA-JPL	

Bergeat, LW, Faure, 2020-2022

Bergeat et al, PRL 2020/Molecules 2022

Pressure broadening and shift H₂O –H₂

Drouin, LW, 2012

Moving to atmospheres

 CO_2

• PES CO2 - He CO2 - H2

- Dynamics of collision
- Ro-vib in progress
- Pressure Broadening, Opacities

MIT – Harvard – U. Paris collaboration

CH₄

• PES CH4 - H2

Grenoble Tunis (E. Sahnoun)

- Relevant computations: opacity is the MAIN BOTTLENECK for atmpospheres.
- Quantum mechanical dynamics: matrix algebra

Heavy on computation, massively parallel setups.

60

- Main project is HPC
- 10⁶ scalar CPU hours is ordinary for a project)
- For atmospheres (higher T), 10⁷ hours projected : large project for present day computing power.
- MIT-U. Saclay-CNRS joint endeavour being set up

Work in team

Lab. Aimé Cotton, Paris-Saclay

Olivier Dulieu, Alex Voute

Grenoble

Alexandre Faure

Tunis

Nejmeddine Jaïdane

Emna Sahnoun

Malek Ben Khalifa (now, Leuven, BE)

MIT / Harvard

Julie de Wit Prajwal Niraula Iouli Gordon

 Many collaborations through the COST action « Our astrochemical History »

Extreme case: ultra-small, ultra precise spectroscopic telescope

1m telescopes in La Silla and Tenerife

HARPS on the 3.6 m telescope LaSilla

RS=120,000 (measured)

The other extreme: VLT/ESO (Chili)

