Laboratory Ice Astrochemistry at Large Scale Facilities

Sergio Ioppolo

InterCat, Department of Physics and Astronomy, Aarhus University

Center for Interstellar Catalysis

Danmarks Grundforskningsfond Danish National Research Foundation

InterStellar Medium (ISM)

10% of Galaxy's mass

Gas 99% in mass	Dust 1% in mass
Heavier elements (2%)	Carbonaceous Silicate Grains

The Molecular Universe

Molecules in Space

More than 300 molecules detected in space in the gas phase

2 ato	ms	3 atoms		4 atoms		5 atoms		6 atoms	7 atoms	8 atoms	9 atoms	10 atoms	11 atoms	12 atoms
Н	AIO	C3 *	H₂CI⁺	c-C₃H	H ₂ NC	C5 *	HC(S)CN	C ₅ H	C ₆ H	CH ₃ C ₃ N	CH ₃ C ₄ H	CH ₃ C ₅ N	HC ₉ N	c-C ₆ H ₆ *
Al	OH⁺	C ₂ H	KCN	I-C₃H	HCCS⁺	C ₄ H	HCCCO	1-H2C4	CH ₂ CHCN	HC(O)OCH ₃	CH ₃ CH ₂ CN	(CH ₃) ₂ CO	CH ₃ C ₆ H	n-C ₃ H ₇ CN
Al	CN-	C ₂ O	FeCN	C_3N		C ₄ Si		C2H4*	CH ₃ C ₂ H	CH₃COOH	(CH ₃) ₂ O	(CH ₂ OH) ₂	C₂H₅OCHO	i-C ₃ H ₇ CN
C ₂	* SH*	C ₂ S	HO ₂	C ₃ O		I-C3H2		CH3CN	HC ₅ N	C ₇ H	CH3CH2OH	CH3CH2CHO	CH ₃ OC(O)CH ₃	C ₂ H ₅ OCH ₃
C	H SH	CH ₂	TiO ₂	C ₃ S		c-C ₃ H ₂		CH ₃ NC	CH₃CHO	C ₆ H ₂	HC ₇ N	CH ₃ CHCH ₂ O	CH ₃ C(O)CH ₂ OH	1-c-C ₅ H ₅ CN
CH	⁺ HCI⁺	HCN	C ₂ N	C2H2*		H ₂ CCN		CH ₃ OH	CH ₃ NH ₂	CH ₂ OHCHO	C ₈ H	CH ₃ OCH ₂ OH	c-C ₅ H ₆	2-c-C ₅ H ₅ CN
C	I TiO	HCO	Si ₂ C	NH_3		CH4 *		CH₃SH	$c-C_2H_4O$	<i>I</i> -HC ₆ H *	CH ₃ C(O)NH ₂	$c-C_6H_4$	HOCH ₂ CH ₂ NH ₂	CH ₃ C ₇ N (?)
C) ArH⁺	HCO⁺	HS_2	HCCN		HC ₃ N		HC₃NH⁺	H ₂ CCHOH	CH₂CHCHO	C ₈ H-	H₂CCCHC ₃ N	H ₂ CCCHC ₄ H	n-C ₃ H ₇ OH
CC	⁺ N ₂	HCS⁺	HCS	HCNH ⁺		HC ₂ NC		HCCCHO	C ₆ H-	CH ₂ CCHCN	C ₃ H ₆	C ₂ H ₅ NCO		i-C ₃ H ₇ OH
С	P NO⁺?	HOC*	HSC	HNCO		HCCNC		NH ₂ CHO	CH₃NCO	H ₂ NCH ₂ CN	CH₃CH₂SH	C ₂ H ₅ NH ₂ (?)		
Si	C NS⁺	H ₂ O	NCO	HNCS		HCOOH		C ₅ N	HC ₅ O	CH3CHNH	CH ₃ NHCHO	HC ₇ NH⁺		
H	HeH⁺	H ₂ S	CaNC	HOCO+		H ₂ CNH		1-HC4H *	HOCH ₂ CN	CH ₃ SiH ₃	HC ₇ O	CH ₃ CHCHCN		
K	PO*	HNC	NCS	H ₂ CO		H_2C_2O		I-HC ₄ N	HCCCHNH	H ₂ NC(O)NH ₂	HCCCHCHCN	CH ₃ C(CN)CH ₂		
Ν	ł	HNO		H ₂ CN		H ₂ NCN		$c-H_2C_3O$	HC ₄ NC	HCCCH ₂ CN	H ₂ CCHC ₃ N	CH2CHCH2CN		
N)	MgCN		H ₂ CS		HNC3		H ₂ CCNH	c-C₃HCCH	HC₅NH⁺	H ₂ CCCHCCH			>12 atoms
N	3	MgNC		H₃O*		SiH ₄ *		C₅N⁻	I-H ₂ C ₅	CH ₂ CHCCH	HOCHCHCHO (?)			C ₆₀ *
Na	CI	N ₂ H*		$c-SiC_3$		$\rm H_2 \rm COH^{\star}$		HNCHCN	MgC₅N	MgC ₆ H				C70 *
0	ł	N ₂ O		CH3 *		C ₄ H ⁻		SiH ₃ CN	CH ₂ C ₃ N	C ₂ H ₃ NH ₂				C ₆₀ * *
P	1	NaCN		C₃N-		HC(O)CN		C ₅ S		(CHOH) ₂				c-C ₆ H ₅ CN
S)	OCS		PH₃		HNCNH		MgC ₄ H		HC ₂ (H)C ₄				HC11N
SC	+	SO ₂		HCNO		CH3O		CH3CO+						1-C ₁₀ H ₇ CN
Si	4	$c-SiC_2$		HOCN		NH_4^+		C_3H_3						2-C ₁₀ H ₇ CN
Si)	CO2 *		HSCN		H_2NCO^*		H_2C_3S						c-C ₉ H ₈
Si	6	NH ₂		H_2O_2		NCCNH*		HCCCHS						1-c-C ₅ H ₅ CCH
C	3	H3+ (*)		C₃H⁺		CH₃CI		C ₅ O						2- <i>c</i> -C ₅ H ₅ CCH
Н		SiCN		HMgNC		MgC₃N		C₅H⁺						c-C5H4CCH2
H)	AINC		HCCO		NH ₂ OH		HCCNCH*						2-C ₉ H ₇ CN
Fe	1?	SiNC		CNCN		HC₃O*		<i>с</i> -С ₃ С ₂ Н						
0	2	HCP		HONO		HC₃S⁺		HC₄S						
CF	*	CCP		MgC ₂ H		H ₂ C ₂ S								
Si⊢	?	AIOH		HCCS		C ₄ S					(C ₆₀		C70	
P)	H ₂ O*		HNGN		HU(U)SH								1.

McGuire, ApJS (2021)

(The CDMS Catalog)

https://cdms.astro.uni-koeln.de/classic/molecules

Star- and Planet Formation

Credit: Ruud Visser

Tychoniec et al. (2021)

T = 10-20 K $n > 10^2 \text{ cm}^{-3}$

< 1 µm

Interstellar ice chemistry

Carbonaceous/Silicate Grains

Ice Grain Chemistry

Arumainayagam et al., Chem. Soc. Rev. (2019)

Standard Picture

Challenges in Astrochemistry

Credit: Chris R. Arumainayagam

Danmarks Grundforskningsfond Danish National Research Foundation

COMs in Hot Cores

El-Abd et al., ApJ (2019)

COMs in Prestellar Cores

Bacmann *et al.*, *A&A* (2012) (L1689B)

37m00.00s 36m00.00s 35m00.00s 34m00.00s 33m00.00s 32m00.00s 16h31m00.00s RA (J2000)

Complex Organic Molecules in L1544 O- bearing COMS

Firm detections (> 5 σ) methanol: CH₃OH (7) ¹³CH₃OH (2) CH₂DOH acethaldehyde: CH₃CHO (8) formic acid: t-HCOOH (1) ketene: H₂CCO (4) propyne: CH₃CCH (6)

+ C₃O (3), HCO(4)

<u>Upper Limits</u> Dimethyl ether: CH₃OCH₃ Methyl formate: HCOOCH₃ Methoxy: CH₃O propynal: C₃H₂O

Vastel et al. 2014

)anmarks

Grundforskningsfond Danish National Research Foundation

Infrared Space Observatory & Spitzer Ice Legacy

Öberg et al., ApJ (2011)

ISO

SST

Observations vs Laboratory

Boogert, Gerakines and Whittet, ARAA (2015)

Terwisscha van Scheltinga et al., A&A (2018)

First Ice Data from JWST

SPACE TELESCOPE

DRAFT VERSION AUGUST 24, 2022 Typeset using IATEX two column style in AASTeX62

CORINOS I: JWST/MIRI Spectroscopy and Imaging of a Class 0 protostar IRAS 15398-3359

YAO-LUN YANG,^{1,2} JOEL D. GREEN,³ KLAUS M. PONTOPPIDAN,³ JENNIFER B. BERGNER,⁴ L. LISEDORE CLEEVES,² NEAL J. EVANS II,⁵ ROBIN T. GARROD,⁶ MIIWA JIN,^{7,8} CHUL HWAN KIM,⁹ JAEVEONG KIM,¹⁰ JEONG-EUN LEE,⁹ NAMI SAKAI,¹ CHRISTOPHER N. SHINGLEDECKER,¹¹ BRIELLE SHOPE,¹² JOHN J. TOBIN,¹³ AND EWRE F. VAN DISHOECK^{14,15}

¹RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan
²Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA
³Space Telescope Science Institute, Baltimore, 3700 San Martin Dr., MD 21218, USA
⁴University of Chicago Department of the Geophysical Sciences, Chicago, IL 60637, USA
⁵Department of Astronomy, The University of Trans at Austin, Austin, TX 78712, USA
⁶Departments of Chemistry and Astronomy, University of Trans at Austin, Austin, TX 78712, USA
⁶Departments of Astronomy, The University of Virginia, Charlottesville, VA, 22904, USA
⁷Astrochemistry adAstronomy, University of America, Washington, DC 20064, USA
⁹Department of Physics, Catholic University of America, Washington, DC 20064, USA
⁹Department of Physics and Astronomy, Brouloal University, I Guanak-ro, Gwanak-yu, Scoul 08826, Korea
¹⁰Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuscong-gu Daejeon 34055, Republic of Korea
¹¹Department of Physics and Astronomy, Benedictine College, Atchison, KS, 66002, USA
¹²Department of Chemistry, University of Virginia, 409 McCornick Rd, Charlottesville, VA 22903, USA
¹³National Radio Astronomy Observatory, S20 Edgenont Rd, Charlottesville, VA 22903, USA
¹⁴Leiden Observatory, Leiden University, Netherlands
¹⁵Max Planck Institute for Extruterrestrial Physics, Garching, Germany

ABSTRACT

The origin of complex organic molecules (COMs) in young Class 0 protostars has been one of the major questions in astrochemistry and star formation. While COMs are thought to form on icy dust grains via gas-grain chemistry, observational constraints on their formation pathways have been

Extracted MIRI MRS spectrum of the IRAS 1539-3359 point source. Yang et al. ApJL (2023)

Early Release Science program on JWST

ERS: PI McClure, co-PI Boogert, co-PI Linnartz, co-I loppolo + 46 co-Is

Cycle 1: PI McClure, co-l loppolo + 25 co-ls

400 hours of observational time in first year to study cosmic ices

IceAge - Dense Cores

ERS: PI McClure, co-PI Boogert, co-PI Linnartz, co-I loppolo + 46 co-Is

Cycle 1: PI McClure, co-l loppolo + 25 co-ls

400 hours of observational time in first year to study cosmic ices

Danmarks Grundforskningsfond Danish National Research Foundation

IceAge - Dense Cores

ERS: PI McClure, co-PI Boogert, co-PI Linnartz, co-l loppolo + 46 co-ls

Cycle 1: PI McClure, co-l loppolo + 25 co-ls

400 hours of observational time in first year to study cosmic ices

McClure et al. Nat. Astron. (2023)

IceAge - Dense Cores

ERS: PI McClure, co-PI Boogert, co-PI Linnartz, co-I loppolo + 46 co-Is

Cycle 1: PI McClure, co-l loppolo + 25 co-ls

400 hours of observational time in first year to study cosmic ices

CHAMAELEON I DARK CLOUD BACKGROUND STAR NIR38

IceAge - Disk

ERS: PI McClure, co-PI Boogert, co-PI Linnartz, co-l loppolo + 46 co-ls

Cycle 1: PI McClure, co-l loppolo + 25 co-ls

400 hours of observational time in first year to study cosmic ices

Sturm et al. (2023)

anmarks

<mark>Grundforskningsfond</mark> Danish National Research Foundation

Jwst Observations of Young protoStars (JOYS)

)anmarks

Grundforskningsfond Danish National Research Foundation

Jwst Observations of Young protoStars (JOYS)

-0

-0.1

0.0

Blended C-H

stretch modes

CH3CHO

502 OC.N.

IRAS 2A

7.2

λ [μm]

7.4

IRAS 2A

8.0

λ [µm]

8.2

8.4

7.8

Rocha et al. (2024)

IRAS 2A

7.2

λ [µm]

7.4

0.4

8.6

Challenges in Astrochemistry

Credit: Chris R. Arumainayagam

Bottom-up route

Top-down route

Jäger et al. 2011; Alata et al. 2014; Zhen et al. 2014; Maté et al. 2016; Dartois et al. 2017; West et al. 2018 Tielens 1992; Bennett et al. 2005; Ward & Price 2011; Bergner et al. 2019 Perrero, Enrique Romero et al. 2022

Credit: Ko-Ju Chuang

SURFRESIDE TEAM Leiden University

Prof. Harold Linnartz (1965 - 2023)

Dr. loppolo

Ms. Santos

Prof. Ewine van Dishoeck

Prof. Herma Cuppen

Molecules form via Dark Chemistry

Öberg, Chem. Rev. (2016)

Molecules form via Dark Chemistry

Water forms via Dark Chemistry

Water forms via Dark Chemistry

 O_3

Н

Water forms via Dark Chemistry

Dulieu et al. 2010; Jing et al. 2011

Miyauchi et al. 2008; loppolo et al. 2008, 2010; Matar et al. 2008; Oba et al. 2009, 2012, 2014; Cuppen et al. 2010; Chaabouni et al. 2012; Lamberts et al. 2013, 2014a; 2014b; 2015; 2016

Mokrane et al. 2009; Romanzin et al. 2011

MeOH forms via Dark Chemistry

Watanabe et al., *ApJ* (2004) Hidaka et al., *ApJ* (2004) Hiraoka et al., *ApJ* (2002)

COMs form via Dark Chemistry

NIST

This Wo

CH,OH

150

100

NIST

1E-9

1E-10

1E-11

1E-12

1E-13

1E-14

50

Intensity, counts

This Work

H_{CO}

COMs form via Dark Chemistry

A non-diffusive reaction mechanism at 10 K

Fedoseev *et al.*, *MNRAS* (2015) Chuang *et al.*, *MNRAS* (2016) Chuang *et al.*, *MNRAS* (2017) Fedoseev *et al.*, *ApJ* (2017) Qasim *et al.*, A&A (2019) Chuang *et al.*, A&A (2020) Qasim *et al.*, Nat. Astron. (2020) Ioppolo *et al.*, Nat. Astron. (2021)

COMs form via Dark Chemistry

A non-diffusive reaction mechanism at 10 K

- Diffusive:
- $CH_3 + HCO \rightarrow CH_3CHO$ (very slow at low temps)
- Non-diffusive (**3-body reaction**, **3B**): [initiating reaction] $H + CO \rightarrow HCO$ [follow-on reaction] $CH_3 + HCO \rightarrow CH_3CHO$ $\Rightarrow only H needs to move!$
- Non-diffusive (**photodissociation-induced**, **PDI**): [initiating process] $H_2CO + hv \rightarrow HCO (+H)$ [follow-on reaction] $CH_3 + HCO \rightarrow CH_3CHO$

Credit R. Garrod

Jin and Garrod, *ApJS* (2020) Garrod *et al.*, ApJS (2021)

First models of hot cores to use a **diffusive + non-diffusive** treatment.

COM production shifted to much earlier times / lower temperatures.

Glycine forms via Dark Chemistry

loppolo *et al., MNRAS* (2011a) loppolo *et al., MNRAS* (2011b) loppolo *et al., ApJ* (2008)

Glycine forms via Dark Chemistry

Glycine forms via Dark Chemistry

Amino acids formation via Dark Chemistry

Oba *et al.*, *CPL* (2015) showed H-abstraction on R-group

Formation of proteinogenic α -amino acids?

InterCat: Shedding Light on the Formation of the Building Blocks of Life in Space

Investigation of peptide bond formation

Alfred Hopkinson

- 1) Hydrogenation/Deuteration of Gly on cold grain analogs Deuterium exchange observed Formation of larger species
- 2) 1 keV e⁻ irradiation of Gly
- 3) 20 keV H⁺ irradiation of Gly
- **1 MeV H⁺ irradiation of Gly** 4) **Peptide-like bonds**

3-Aminoaspartic

Astrochemistry at Large-Scale Facilities

atomki

STARDUST MACHINE

ICA

AQUILA

LISA

CRs and electron irradiation of ice material relevant to ISM & Solar System

ICA $P < 1x10^{-9}$ mbar $T_{surf} = 20 - 300$ K $E_{ions} = 200 \text{ keV} - 4 \text{ MeV H}^+$ $H^+, \text{He}^+, \text{He}^{++}, \text{C}^+, \text{C}^{++}, \text{O}^+, \text{O}^{++}, \text{S}^+, \text{S}^{++}$ Current = nA - μ A

- 2 keV electron gun
- Effusive Cell

AQUILA

 $P < 1x10^{-9}$ mbar $T_{surf} = 20 - 300$ K $E_{ions} = 100s eV - 10s keV$ Solar Wind: H, He, C, O, Si, Fe, Ni ions High charge state of ions Positive/negative ions or molecular ions

Detection of MF Isomers in space

El-Abd et al., ApJ (2019)

Formation of MF Isomers in space

No.	Experiments	T _{sample} (K)	Ratio (CO:CH ₃ OH)	$\begin{array}{c} Flux_{(CO+CH3OH)} \\ (cm^{-2}s^{-1}) \end{array}$	$\begin{array}{c} Flux_{H} \\ (cm^{-2}s^{-1}) \end{array}$	$\begin{array}{c} Flux_{UV} \\ (cm^{-2}s^{-1}) \end{array}$	Time (s)
1	$CO + CH_3OH + H$	14	4:1	1.2E13	6.0E12	_	3600
2	$CO + CH_3OH + h\nu$	14	4:1	1.2E13	_	4.0E12	3600
3	$CO + CH_3OH + H + hv$	14	4:1	1.2E13	6.0E12	4.0E12	3600
No.	Control experiments	T _{sample} (K)	Ratio (CO:CH ₃ OH)	$\begin{array}{c} Flux_{(CO+CH3OH)} \\ (cm^{-2}s^{-1}) \end{array}$	$Flux_{\rm H} \\ (cm^{-2}s^{-1})$	$\begin{array}{c} Flux_{UV} \\ (cm^{-2}s^{-1}) \end{array}$	Time (s)
1.1	$CO + CH_3OH + H_2$	14	4:1	1.2E13	_	_	3600
1.2	$CO + CH_3OH + H$	14	4:1	2.0E12	1.0E12	_	21600
1.3	$CO + CH_3OH + H$	14	4:1	2.0E12	6.0E12	_	21600
3.1	$CO + CH_3OH + H_2$	14	4:1	1.2E13	_	_	3600
3.2	$CO + CH_3OH + H_2(100\%) + h\nu$	14	4:1	1.2E13	_	4.0E12	3600
3.3	$CO + CH_3OH + H_2(70\%) + h\nu$	14	4:1	1.2E13	_	4.0E12	3600
4.1	$CO + CH_3OH + Ar(100\%) + hv$	14	4:1	1.2E13	_	4.0E12	3600
4.2	$CO + CH_3OH + Ar(70\%) + h\nu$	14	4:1	1.2E13	_	4.0E12	3600
4.3	$\mathrm{CO} + \mathrm{CH}_3\mathrm{OH} + \mathrm{Ar}(30\%) + \mathrm{h}\nu$	14	4:1	1.2E13	_	4.0E12	3600

Chuang et al., MNRAS (2017)

Danmarks Grundforskningsfond

)anish National Research Foundation

Danmarks Grundforskningsfond

Danish National Research Foundation

Danmarks Grundforskningsfond

Danish National Research Foundation

Danish National Research Foundation

Danmarks Grundforskningsfond

Formation of MF Isomers in space H₂CO-rich + I keV e⁻

rundforskningsfond

esearch Foundation

Balucani et al. (2015); Ascenzi et al. (2019); Garrod et al. (2022)

Danmarks Grundforskningsfond Danish National Research Foundation

VUV and UV-vis spectroscopy of ices and electron irradiation

Danmarks Grundforskningsfond Danish National Research Foundation

loppolo et al., A&A (2020)

VUV ice Database

A comprehensive large VUV/UV-vis ice database to

- Identify simple & complex molecules (e.g., prebiotic species) in the Solar System.
- Aid the study of UV photoprocesses.

Danmarks Grundforskningsfond Danish National Research Foundation

Energy (eV)

8

7

CO, T = 20 K

Wavelength (nm)

Danmarks Grundforskningsfond Danish National Research Foundation

Ices in the Solar System

loppolo et al., A&A (2020)

Danish National Research Foundation

Danmarks Grundforskningsfond

Formation of MF Isomers in space H₂CO-rich + I keV e⁻

Danish National Research Foundation

Danmarks Grundforskningsfond

HFML-FELIX

FELIX

Radboud University Nijmegen, The Netherlands

Grundforskningsfond Danish National Desearch Foundation

End Station at FEL-1 & FEL-2 (2.7 – 150 µm):

UHV Chamber ($P = 1x10^{-10}$ mbar T = 8 - 450 K) Analytical Tools (FTIR & QMS) Sample Manipulation (Rotation + XYZ) Source (5 keV electron gun)

rundforskningsfond

(India)

(UK)

(NL)

(DK)

LISA is open to internal and external users:

Selective IRFEL-induced Changes in Ices

Simulating: IR radiation, exothermic surface reactions, CRs heating, ice grain collisions, and shocks

Selective IR-induced Phase Changes in Ices

Selective IR-induced Diffusion of Molecules

Desorption Induced upon Vibrational Excitation

Selective IR-induced Chemistry in PAHs

Danish National Research Foundation

Danmarks Grundforskningsfond

IR Photodesorption

Desorption Mechanisms IR Photodesorption

Fig. 4. The radiation field inside a giant molecular cloud, located at $D_G = 5 \,\text{kpc}$ and with a visual extinction to its center of $A_{V_0} = 200 \,\text{mag}$. ISRF refers to the radiation field at far distances from the cloud, $A_V = 0$ is the radiation field at the surface of the cloud, $A_V = 3$, 5, 10 etc. is the radiation field inside the cloud at distances $A_V = 3$, 5, 10 etc. mag from the surface of the cloud

Table 2. Comparison of the estimated fluxes, desorption rates, and desorption efficiencies of CH_3OH and CO species induced by IR and UV photons.

		Interstellar flux (photons $cm^{-2} s^{-1}$)	Rate (molecules photon ^{-1})	Estimated efficiency (molecules $cm^{-2} s^{-1}$)
СО	IR	$>3 \times 10^{9} {}^{(a)}$	$\lesssim (1.1 \pm 0.3) \times 10^{-8 (c)}$	$\sim 3.3 \times 10^{1}$
	UV	~1 × 10 ⁴ ${}^{(b)}$	~(0.14-8.9) × 10 ^{-2 (d)}	~(1.4-89) × 10 ¹
CH ₃ OH	IR	>4 × 10 ^{8 (a)}	$\lesssim (3 \pm 1) \times 10^{-8 (c)}$	$\sim 1.2 \times 10^{1}$
	UV	~1 × 10 ^{4 (b)}	~1 × 10 ^{-5 (e)}	$\sim 1.0 \times 10^{-1}$

References. ^(a)Mathis et al. (1983). ^(b)Cecchi-Pestellini & Aiello (1992). ^(c)This work. ^(d)Öberg et al. (2007); Muñoz Caro et al. (2010); Fayolle et al. (2011); Chen et al. (2014); Paardekooper et al. (2016). ^(e)Bertin et al. (2016); Cruz-Diaz et al. (2016).

Conclusions

JWST is revolutionizing our understanding of star formation in the ISM

New systematic and consistent set of lab data are needed!

Complementary VUV/IR/THz techniques at large scale facilities can help understand the evolution of ices in space.

External users and new ideas are welcome!

Acknowledgements

Dr Jin Zhang Alejandra Traspas-Muiña

Dr Duncan Mifsud Dian Schrauwen

Lab Ice Databases

Zuzana Kaňuchová Alessandra Migliorini Anita Dawes Rachel James Gianni Strazzulla Nigel Mason InterCat Team

Systematic Studies

Alejandra Traspas Muiña Duncan Mifsud Zuzana Kaňuchová Perry Hailey Nigel Mason Bob McCullough ATOMKI Team

Fundamental Processes

Dian Schrauwen Jin Zhang Jenny Noble Stephane Coussan Herma Cuppen Britta Redlich HFML-FELIX Team