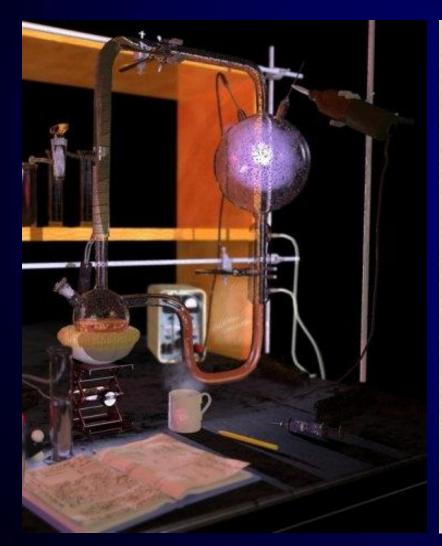
Ion reactions as pathways to complex molecules in space and atmospheres

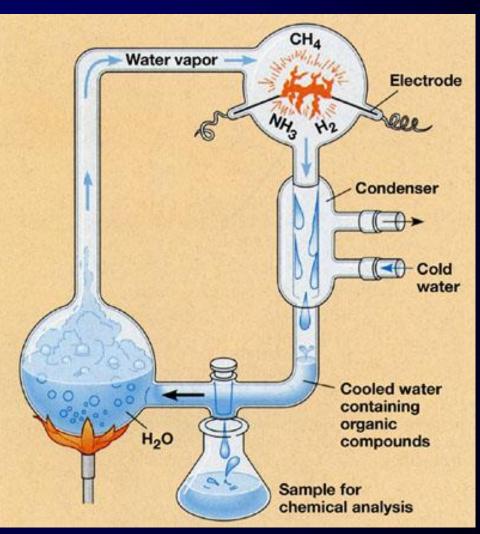
Wolf D. Geppert
Inaugural Workshop on Nuclear Astrochemistry
Trento 2024

Complex organic molecules

How do they come to Earth?

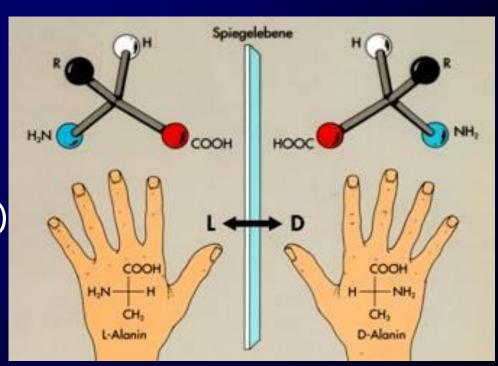
- Accestion under the formation of the solar system
- Delivery trough asteroid-, meteorite- and comet impacts
- Formation on Earth (primeval soup and/or atmosphere)


Protoplanetär skiva


Comet Hale-Bopp

Primeval soup

Urey-Miller experiment

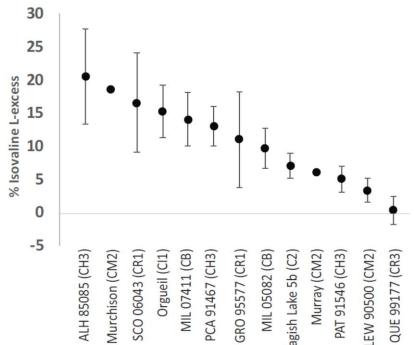

- ★ Gas mixture resembling Jupiter's atmosphere CH₄, NH₃, H₂
- telektrical discharge, formation of aminoacids and nucleobases

Problems with Urey-Miller experiment

- ★ Almost all amino acids exist in 2 distinctive forms (L- and D-form)
- ★ In Urey-Miller-experiment equal amounts of both forms are produced, life uses only one form
- How did this homochirality emerge
- ★ Synthesis of biomolecules is impeded by traces of oxygen (O₂)

Biomolecules from space?

Some amino acids found in Murchison- and other meteorites


Excess of the "correct" Lform present (also with amino acids not used by life)

Where and how are they formed?

Meteorite fragment

Isovaline Enantiomeric excess

Space - an odd place for chemistry?

★ Very low temperatures

Very low particle density in the interstellar medium (0.0001 - 1000000 particles per cm³)

★ Simple atom-atom reactions fail:

 $N + N \times N_2$

- UV-radiation from stars destroy the reaction products
- ★ Arthur Eddington: "No conceivable way that molecules could exist in abundance in space"

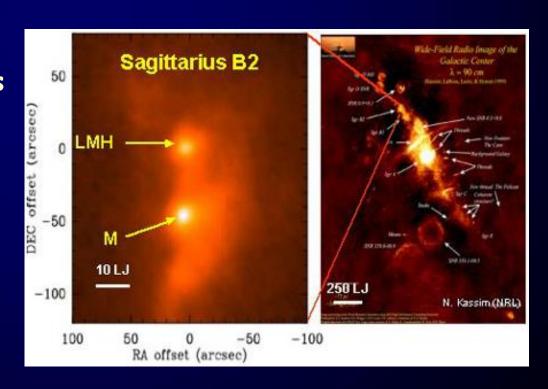
Arthur Eddington (1888-1944)

Interstellar and circumstellar neutral molecules

2 at	toms	3 at	oms	4 at	oms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	10 + aton	ns
AlCl	NS	AINC	НСР	CH ₃	HNCS	CH ₄	c-H ₂ C ₃ O	C ₂ H ₄ O	CH ₃ CC ₂ CN	CH ₃ C ₄ H	(CH ₃) ₂ CO	C ₉ H ₈
AlF	NaCl	AlOH	HCS	1-C ₃ H	NH ₃	CH ₃ O	HNCHCN	CH ₃ C ₂ H	HC₃H₂CN	CH ₃ OCH ₃	(CH ₂ OH) ₂	C ₁₀ H ₇ CN
AlO	O_2	C ₃	HNO	с-С₃Н	HSCN	c-C ₃ H ₂	C ₂ H ₄	H ₃ CNH ₂	H₂COHCHO	CH₃CH₂CN	CH₃CH₂CHO	C ₁₀ H ₇ CN
C_2	PN	C ₂ H	HSC	C ₃ N	SiC ₃	1-H ₂ C ₃	CH ₃ CN	CH ₂ CHCN	(CHOH) ₂	CH₃CONH₂	CH₃OCH₂OH	$C_{11}H_{12}N_2O_2$
СН	PO	CCN	KCN	C ₃ O	HMgNC	H ₂ CCN	CH₃NC	HCCCHNH	HCOOCH ₃	CH₃CH₂OH	CH₃C₅N	- C ₆₀
CN	SH	C ₂ O	MgCN	C ₃ S	HNO ₂	H ₂ C ₂ O	СН₃ОН	H₂CHCOH	СН₃СООН	C ₈ H	CH₃CHCH₂O	
СО	SO	C_2S	MgNC	C_2H_2		H ₂ CNH	CH ₃ SH	C ₆ H	H_2C_6	HC ₇ N	NH ₂ CH ₂ CH ₂ OH	C ₇₀
СР	SiC	C_2P	NH_2	H ₂ CN		HNCNH	1-H ₂ C ₄	HC ₄ CN	CH₂CHCHO	CH₃CHCH₂	HC ₈ CN	
CS	SiN	CO ₂	N ₂ O	H ₂ NC		C ₄ H	HCONH ₂	HC ₄ NC	CH ₂ CCHCN	CH ₃ CH ₂ SH	C ₂ H ₅ OCHO	
FeO	SiO	CaNC	NaCN	H ₂ CO		HC ₃ N	НОСООН	HC₅O	CH₃CHNH	CH₃NHCHO	CH ₃ COOCH ₃	
H ₂	SiS	FeCN	NaOH	H ₂ CS		HCC-NC	C ₅ H	CH₃CHO	C ₂ H ₃ NH ₂		CH ₃ C ₆ H	
HCl	TiO	H ₂ C	ocs	HCCN		НСООН	C ₅ N	CH₃NCO	C ₇ H		C_6H_6	
HF		H ₂ O	O ₃	НССО		NH ₂ CN	HC₂CHO	HOCH₂CN	NH ₂ CH ₂ CN		C ₃ H ₇ CN	
НО		HO ₂	SO_2	HCNO		NH ₂ OH	HC ₄ N		(NH ₂) ₂ CO		(CH ₃) ₂ CHCN	
KCl		H ₂ S	c-SiC ₂	HOCN		HC(O)CN	CH ₂ CNH				C ₆ H ₅ CN	
NH		HCN	SiCSi	CNCN		C ₅	C ₅ S				HC ₁₀ CN	
N_2		HNC	SiCN	НООН		SiC ₄						
NO		HCO	SiNC	HNCO		SiH ₄						
			TiO ₂	HNCN								

Interstellar and circumstellar ions

2 at	2 atoms		3 atoms 4 atoms		6 atoms	8 atoms	10 + atoms
ArH+	OH^+	HOC+	CH_3^+	NH_4^+	HC ₃ NH+	C ₈ H-	C_{60}^{+}
CH ⁺	NO^+	H_2N^+	1-C ₃ H ⁺	H ₂ COH ⁺	C ₆ H-		
CN ⁺	MgH ⁺	HCS ⁺	C ₃ N-	C ₄ H-			
CO ⁺	SH ⁺	HCO ⁺	H_3O^+	NCCNH ⁺			
CN-	SO ⁺	$\mathrm{H_2O^+}$	H ₂ CN ⁺	C5N-			
HeH ⁺		H ₂ Cl ⁺	HCNH ⁺				
HCl+		H ₃ ⁺	HOCO+				


- ★ Mostly cations detected
- ★ Ion abundances in astronomic objects often smaller than the one of corresponding neutrals
- ★ Spectroscopic data often lacking

Observed complex molecules

- Aminoacetonitrile in "Large Molecule Heimat" in Sagittarius B at the galactic centre (Belloche et al. 2008)
- ★ Can react with water to form glycine

H₂NCH₂CN + 2H₂O → H₂NCH₂COOH + NH₃

- Glycol aldehyde (simple carbohydrate) observed in the same place (Hollis 2000)
- More and more to be expected due to high-performance telescopes

Important interstellar and ionospheric ion processes

Ion - neutral reactions (e. g. radiative association)

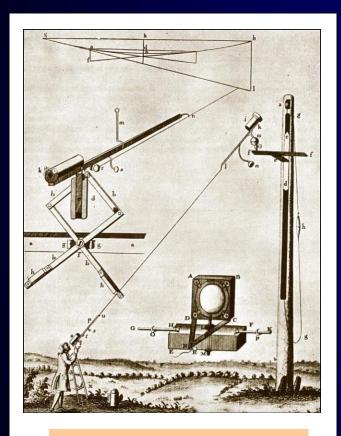
$$H_3^+ + C \rightarrow CH^+ + H_2$$

Ion-electron reactions

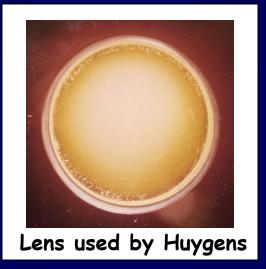
for molecules as good as exclusively dissociative recombination

$$HeH^+ + e^- \rightarrow He + H$$

Ion-ion reactions mutual neutralisation

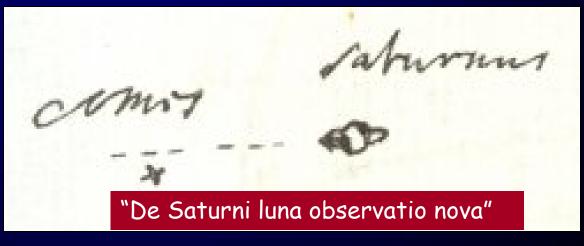

$$C^+ + C_4H^- \rightarrow CH + C_4$$

Reactions in ionospheres

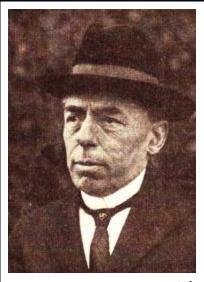

- ★ Ionic reactions common in higher layers of ionospheres
- ★ Similar to interstellar conditions: low densities and temperatures
- * Chemistry bears resemblances to interstellar one

Titan

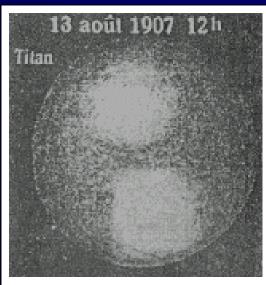
- tiscovered by Christiaan Huygens 1655
- one of Saturn's >80 confirmed satellites



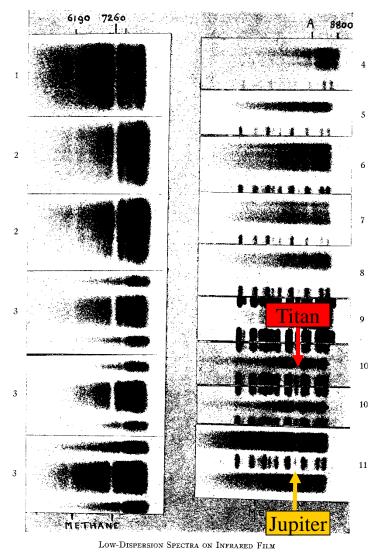
Telescope constructed by Huygens



Christiaan Huygens (1629-1695)



A moon with an atmosphere?


- edge darkening of Titan pointing to an atmosphere first claimed by Josep Comas Solà
- methane discovered in its atmosphere by Kuiper 1944

Josep Comas Solá

Drawing by Solà (1907

- 1, 2. Jupiter 3. Saturn and ring 4, 5. Jupiter I
- 6. Jupiter II

- 8. Jupiter IV 9. Saturn

Observation of the 726 nm methane

line on Titan (Kuiper 1944)

Titan's atmosphere

★ 147 kPa surface pressure

→ 94 % N₂, 6 % CH₄ + Ar

could resemble atmosphere of early Earth

Traces of hydrocarbons and nitrogen compounds

mixing extending to higher altitudes

	Titan	Earth
Dominant molecule	N ₂	N ₂
Tropopause	35 km	8-18 km
Homopause	1195 km	85 km

Dixit et ignotas animum dimittit in artes

Generation of radicals and ions in Titan's ionosphere

Magnetospheric electrons

$$N_2 + e^- \rightarrow N(^2D) + N(^4S) + 2e^-$$

Long-lived excited state

$$CH_4 + e^- \rightarrow CH_3^+ + H + 2e^-$$

 $CH_4 + e^- \rightarrow CH_4^+ + 2e^-$

CH₄⁺ easily donates protons:

$$CH_4 + CH_4^+ \rightarrow CH_5^+ + CH_3$$

UV photons

$$N_2 + hv \rightarrow N(^45) + N^+ + e^- \rightarrow N(^2D) + N^+ + e^- \rightarrow N_2^+ + e^- \rightarrow N(^2D) + N(^45)$$

$$CH_4 + hv \rightarrow {}^{1}CH_2 + H_2$$
 (7%)
 $\rightarrow {}^{3}CH_2 + 2H$ (59%)
 $\rightarrow CH + H_2 + H$ (7%)
 $\rightarrow CH_3 + H$ (29%)

Lavvas et al. 2008, Yung et al. 1984

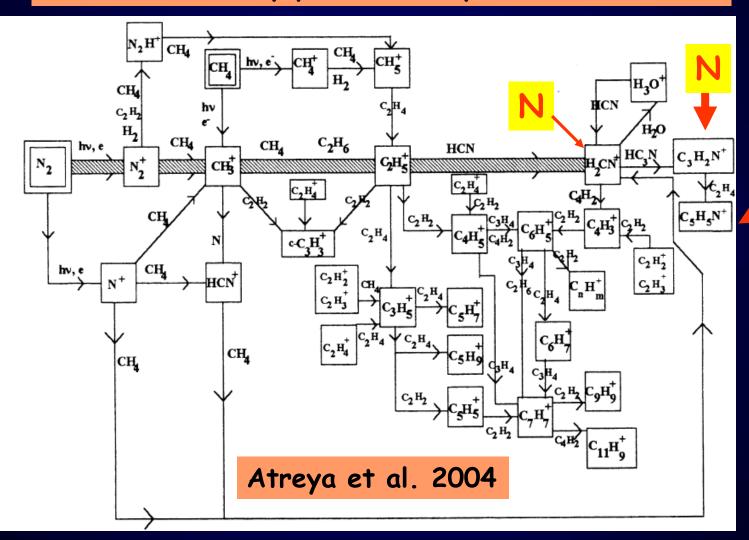
Further build-up of more complex substances

Ion-neutral reactions followed by dissociative recombination

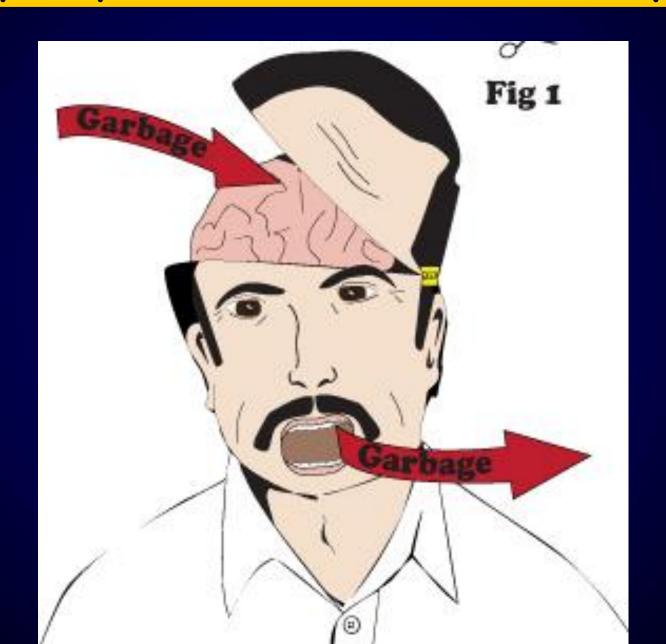
$$CH_{3}^{+}$$
 + CH_{4} \rightarrow $C_{2}H_{5}^{+}$ + H_{2}
 $C_{2}H_{5}^{+}$ + e^{-} \rightarrow $C_{2}H_{4}$ + H (12 % of events)
 \rightarrow other products

 $C_{2}H_{5}^{+}$ + $C_{2}H_{4}$ \rightarrow $C_{3}H_{5}^{+}$ + CH_{4}
 $C_{3}H_{5}^{+}$ + e^{-} \rightarrow $C_{3}H_{4}$ + H
 \rightarrow other products

Radical-neutral reactions


$$N(^2D) + C_2H_4 \rightarrow CH_3CN + H$$

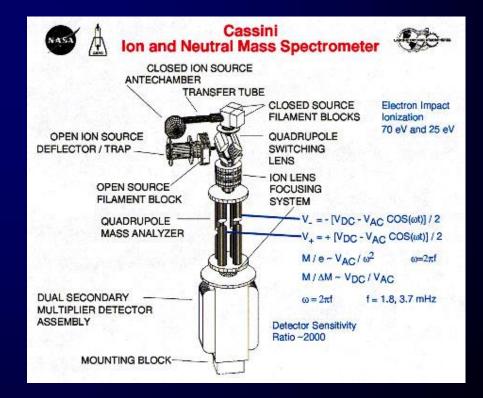
Rate constants and product branching ratios often unknown!


A I

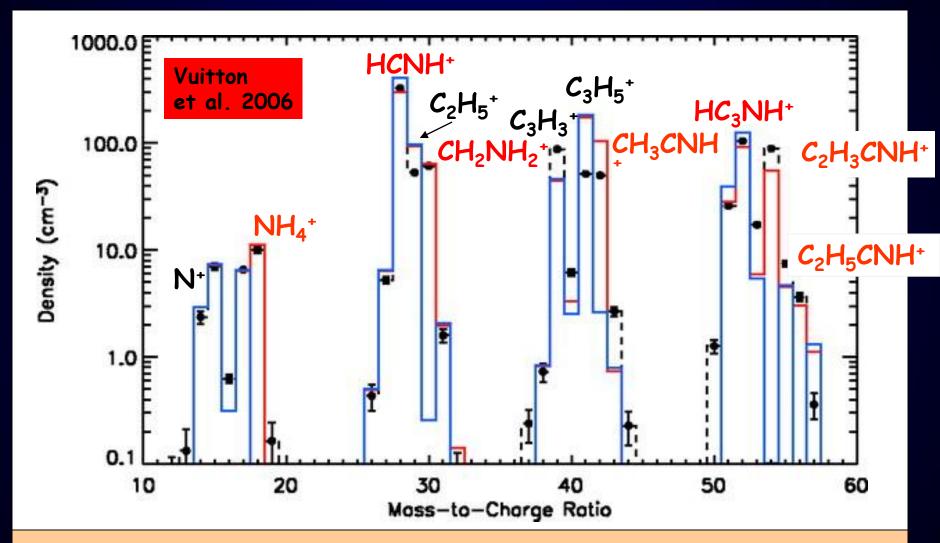
Models of Titan's ionosphere

Old models: mostly protonated hydrocarbons formed

GIGO principle for models of Titan's ionosphere


Closed Source Antechamber. Open Source Transfer Tube Fila ment Filament Trap Switchina Aberture. Quadrupole Rods Dual inlet gas/ion source

Ion-Neutral Mass Spectrometer (INMS) on board of Cassini


2 operating modes:

- a) open source mode for ions
- b) closed source for neutrals

INMS results in open mode

Blue line = fit without including new ions
Red line = fit including N-species, black dots data from Cassini

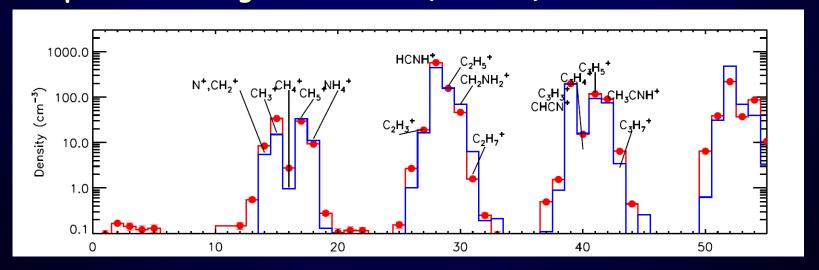
Nitriles ($RC \equiv N$) in atmospheres

- Rich nitrile chemistry in N₂/CH₄ atmospheres, first step to biomolecules
- tholines (aerosol and haze formation):

$$nRCN + nHCN \rightarrow \begin{bmatrix} NH & R \\ || & | \\ -c - N = c \end{bmatrix}_{n}$$
Tholine

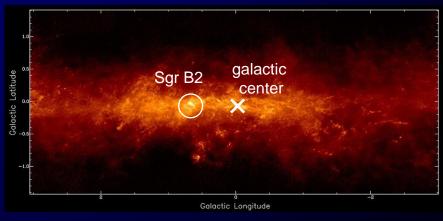
Chemically inert: Destroyed mainly by protonation and dissociative recombination

Titan's haze layer



Tholine from the lab

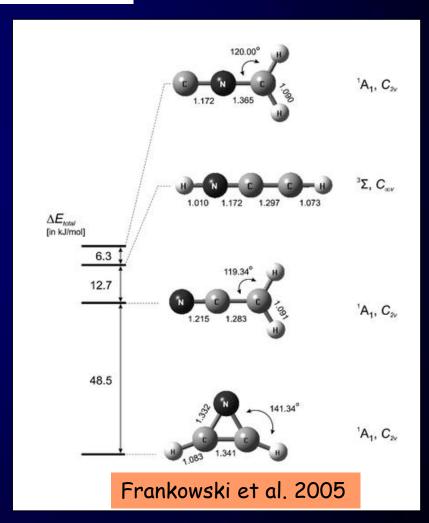
CH₂CN⁺ - a possible reactive cyano intermediate to build larger molecules


- \bigstar Mass 40 detected with INMS most likely $C_2H_2N^+$
- ★ Model calculations predict a density 13 cm⁻³ at the peak of Titans ionosphere (1125 km). (Vuitton et al. 2018)
- ★ In previous models without N compounds underestimated
- ★ Could be reactive with unsaturated hydrocarbons and form templates for larger molecules (tholines)

Nitriles in the interstellar medium

- ★ CH₃CN Methyl cyanide Solomon 1971
- → CH₃NC Methyl isocyanide Cernicharo 1988H2CCN
- ★ CH₂CN Cyanomethyl radical Irvine 1988
- + HCCN cyanomethylene radical Guelin 1991

Guided ion beam mass spectrometer



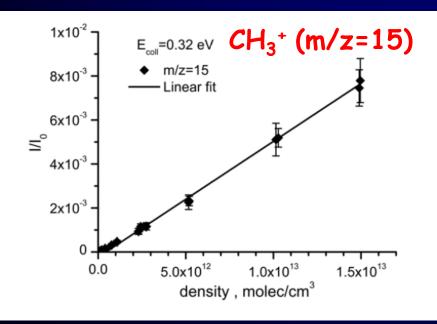
Formation of ions

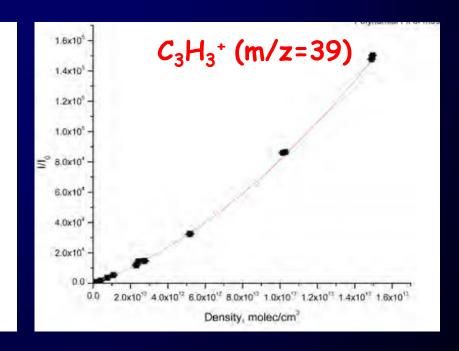
 \star Electron impact ionisation of chloroacetonitrile (CICH₂CN)

$$CICH_2CN \rightarrow CH_2CN^+ + CI^-$$

- Formation of 4 isomers possible:
 - Cyclic ¹C₂H₂N⁺
 - Linear ¹CH₂CN⁺
 - Linear ³HCCNH⁺
 - Linear ¹CH₂NC⁺
- Theoretical calculations disagree about energetic order of two highest-energy isomers

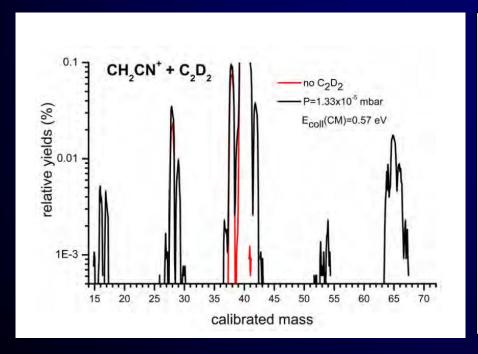
Isomers in interstellar and ionospheric chemistry

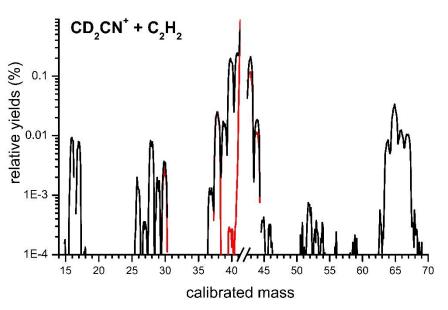

- ★ Long on the radar sreen of astrochemists: (HCO+/HOC+, HCN/HNC)
- ★ Increasing molecular complexity augnments number of possible isomers
- ★ Even rotamers can function as distinctive species in low-temperature environments (different radiofrequency spectra)

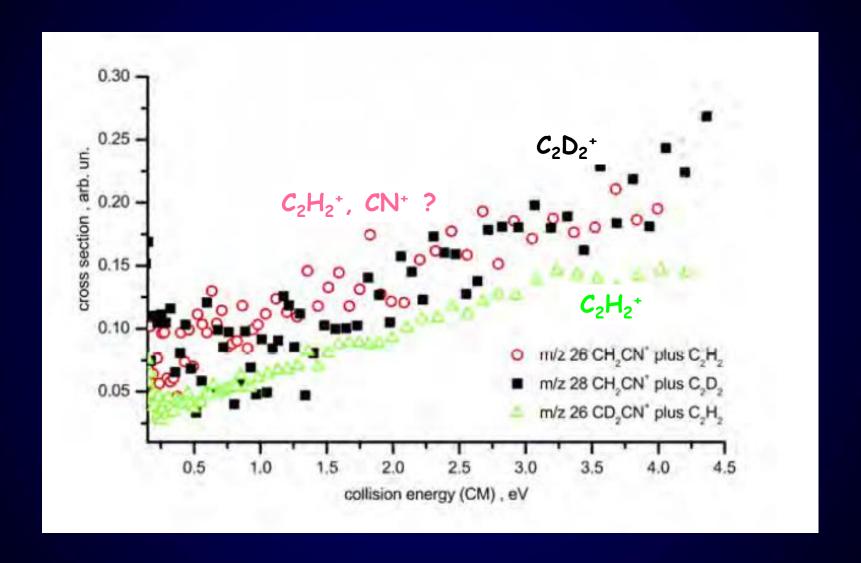

Selective production of isomeric ions

- Selection of apt precursor molecules can lead to different isomers
 - Electron impact ionisation of CH₃CN leads to cyclic azirine⁺ cation and CH₂CN⁺
 - Electron impact ionosation of CICH₂CN leads to CH₂CN+
 - Photodissiociative ionosation using synchrotron radiation of CH₃CN at lower energies delivers azirine⁺ cation

Pressure dependence


$$CH_2CN^+ + C_2H_2 \rightarrow CH_3^+ + HC_3N$$
 (primary) \rightarrow Linear $CH_3^+ + C_2H_2 \rightarrow C_3H_3^+ + H_2$ (secondary) \rightarrow Quadratic (linear part at low pressure)




Use of deuterated isotopomers

- *
- Use of deuterated isotopomers to
 - distinguish between channels leading to similar masses
 - identify main product pathways and their thermodynamics
- Both $CH_2CN^+ + C_2D_2$ and $CD_2CN^+ + C_2H_2$ studies done

Isotopomer studies

Possible reactions

$$CH_{2}CN^{+} + C_{2}H_{2} \rightarrow C_{3}H_{3}^{+} + HCN/HNC$$

$$\rightarrow C_{3}H_{3} + HCN^{+}/HNC^{+}$$

$$\rightarrow C_{2}H_{3} + HCCN^{+}$$

$$\rightarrow H_{2} + H_{2}C_{4}N^{+}$$

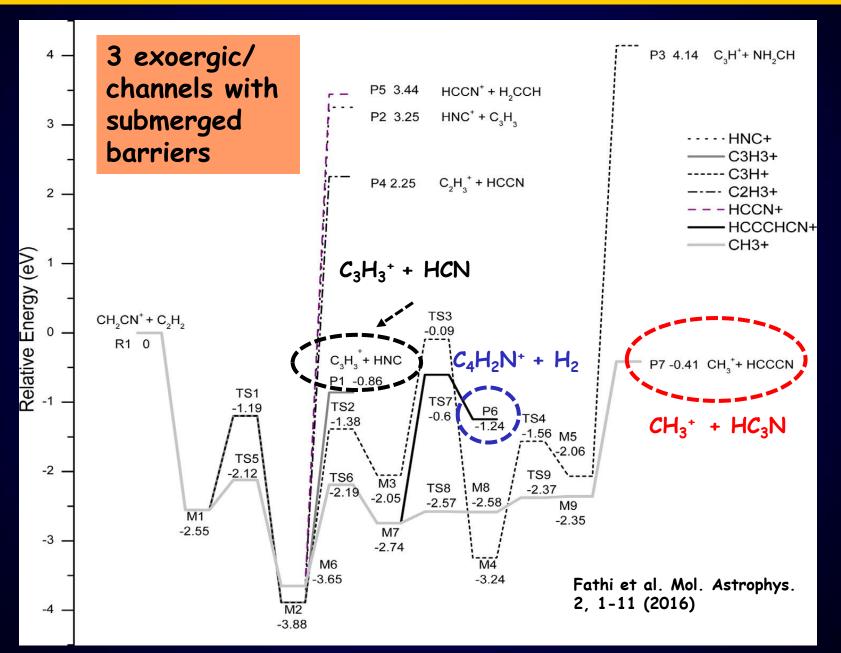
$$\rightarrow C_{2}H_{4} + CCN^{+}$$

$$\rightarrow C_{2}H_{3} + HCNH^{+}$$

$$\rightarrow C_{2}H_{3}^{+} + HCNH$$

$$\rightarrow C_{2}H_{3} + HCNH^{+}$$

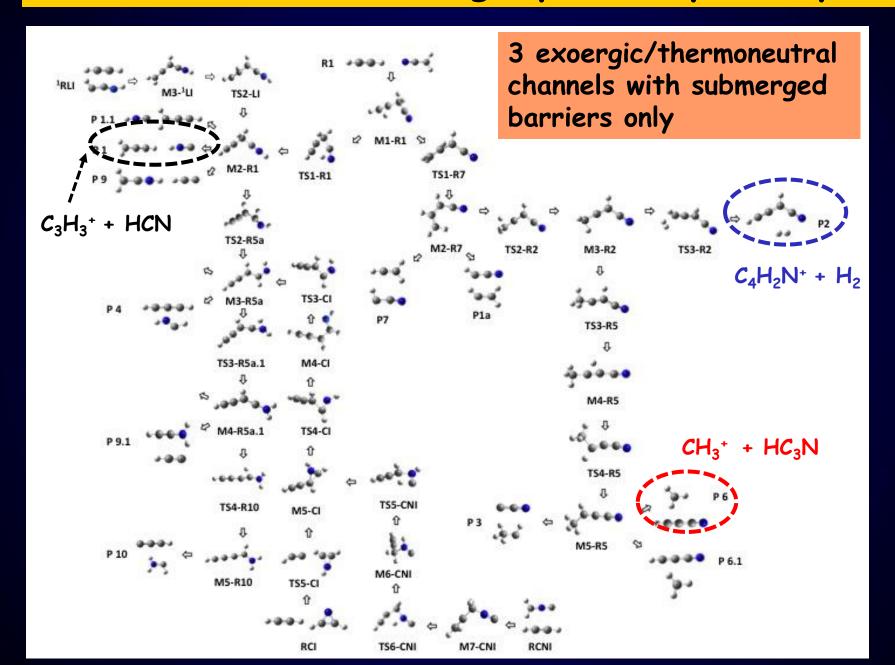
$$\rightarrow CH_{3}^{+} + HCCCN$$


$$\rightarrow CH_{3} + HCCCN^{+}$$

$$\rightarrow C_{2}H_{2} + H_{2}C_{2}N^{+}$$

$$\rightarrow C_{2}H + H_{3}C_{2}N^{+}$$

$$\rightarrow C_{3}H^{+} + H_{3}CN^{+}$$

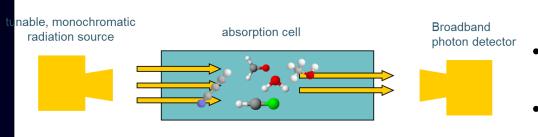

Potential surface of CH₂CN+ + C₂H₂

Possible exoergic barrierless reactions

$$CH_{2}CN^{+} + C_{2}H_{2} \rightarrow C_{3}H_{3}^{+} + HCN/HNC$$

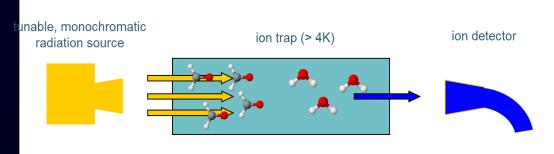
 $\rightarrow C_{3}H_{3} + HCN^{+}/HNC^{+}$
 $\rightarrow C_{2}H_{3} + HCCN^{+}$
 $\rightarrow H_{2} + H_{2}C_{4}N^{+}$
 $\rightarrow C_{2}H_{4} + CCN^{+}$
 $\rightarrow C_{2}H_{3} + HCNH^{+}$
 $\rightarrow C_{2}H_{3}^{+} + HCNH$
 $\rightarrow C_{2}H_{3} + HCNH^{+}$
 $\rightarrow CH_{3}^{+} + HCCCN$
 $\rightarrow CH_{3} + HCCCN^{+}$
 $\rightarrow C_{2}H_{2} + H_{2}C_{2}N^{+}$
 $\rightarrow C_{2}H_{2} + H_{3}C_{2}N^{+}$
 $\rightarrow C_{3}H^{+} + H_{3}CN^{+}$

Flow chart with exoergic product pathways



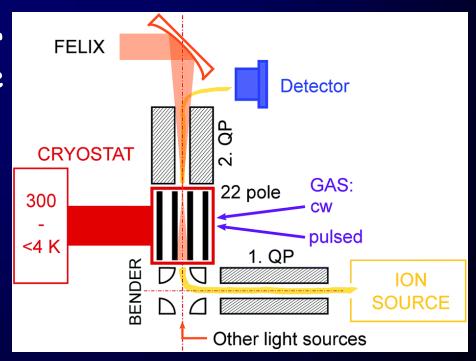
Selective production of isomeric ions

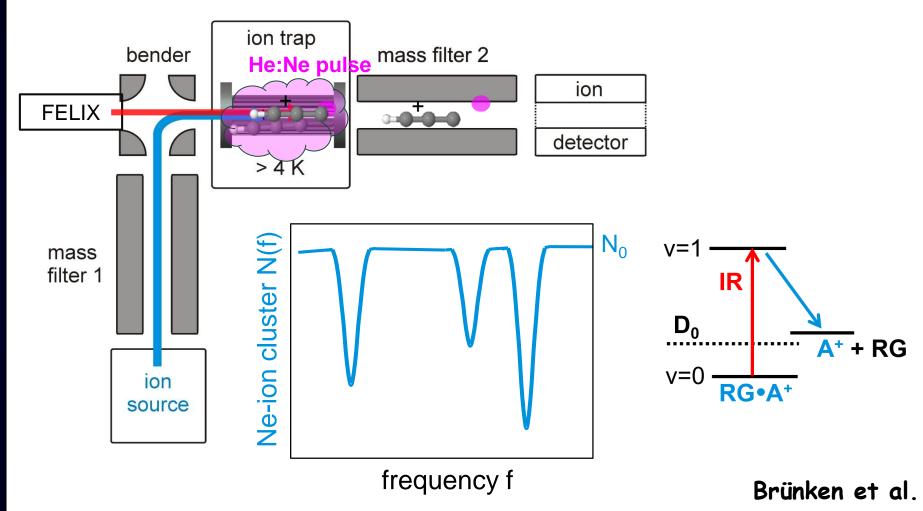
- Selection of apt precursor molecules can lead to different isomers
 - Electron impact ionisation of CH₃CN leads to cyclic azirine⁺ cation and CH₂CN⁺
 - Electron impact ionosation of CICH₂CN leads to CH₂CN+
 - Photodissiociative ionosation using synchrotron radiation of CH₃CN at lower energies delivers azirine⁺ cation


Spectroscopy of ions in traps (Brünken et al.)

Typical absorption experiment

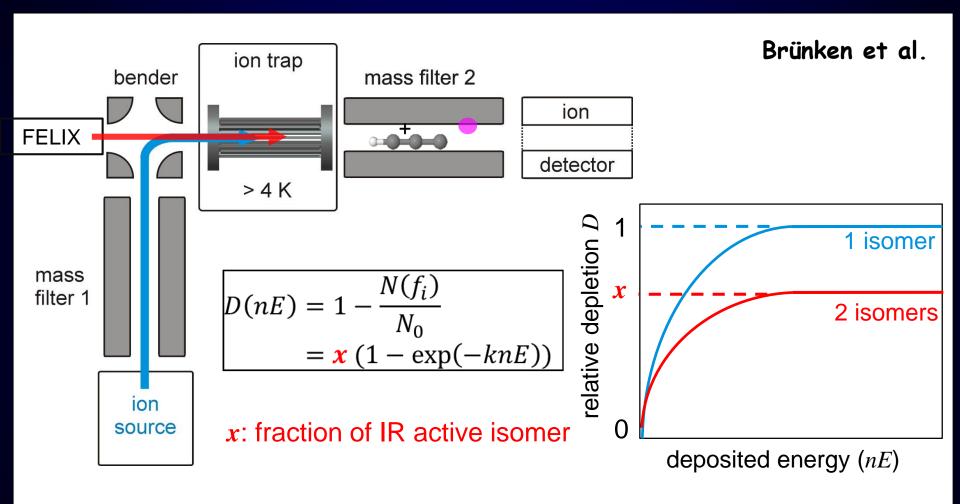
- high number densities necessary
 - → difficult for reactive ions
- line contamination


Action Spectroscopy in Cryogenic Ion Traps


- sensitive (only few 1000 ions)
- mass selection
- isolation of reactive ions
- low ion temperatures
 - → less congested spectra
 - → higher S/N & accuracy
- long interaction times

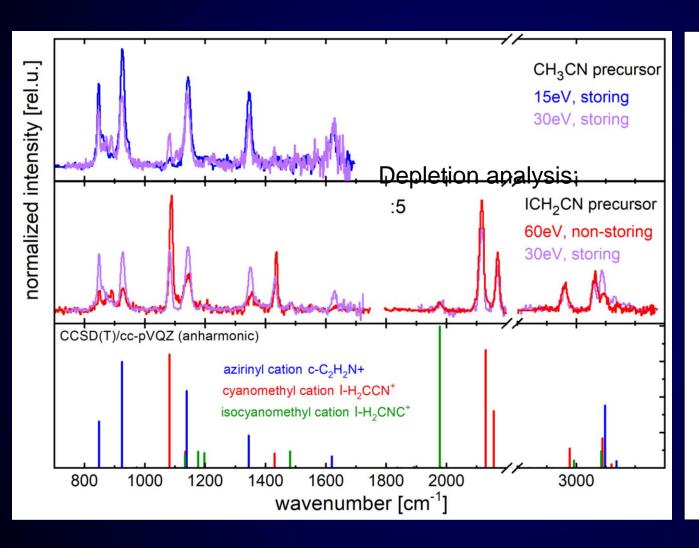
Infrared predissociation spectroscopy (IRPD)

- Tagging of molecular ion with noble gas (Ne)
- ★ Irradiated with laser: Resonance with vibrational mode of ion leads to cluster destruction
 → loss of ion signal of cluster
- ★ Identity of ions and their relative abundance can be established
- ★ Comparison of assignment of vibrational lies with ab initio calculations



Infrared predissociation spectroscopy (IRPD)

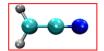
IRPD - weakly bound messenger infrared predissociation Y.T. Lee, M. Duncan, M. A Johnson, K. Asmis, O. Dopfer, J. Roithova, ... See also: Schwarz & Asmis, Chem. Eur. J. 2019, **25**, 1 – 16


Infrared predissociation depletion spectroscopy

See: Prell et al., J. Am. Chem. Soc. 132 (2010) Jasik et al., J. Phys. Chem. A 119 (2015) Jusko et al., ChemPhysChem 23 (2018) *n*: number of FEL pulses

E: energy per pulse

Results for CH₂CN⁺


Depletion analysis:

c-CHCHN⁺ I-H₂CCN⁺ **95(5)** %

55(5) % 30(10)%

c-CHCHN⁺ I-H₂CCN⁺ % 35(5) **63(3)** % 40(2) %

Brünken et al.

Implication for Titan's atmosphere

$$CH_2CN^+ + C_2H_2 \rightarrow C_3H_3^+ + HNC$$

 \rightarrow Not particularly relevant, many routes to $C_3H_3^+$

$$CH_2CN^+ + C_2H_2 \rightarrow CH_3^+ + HCCCN$$

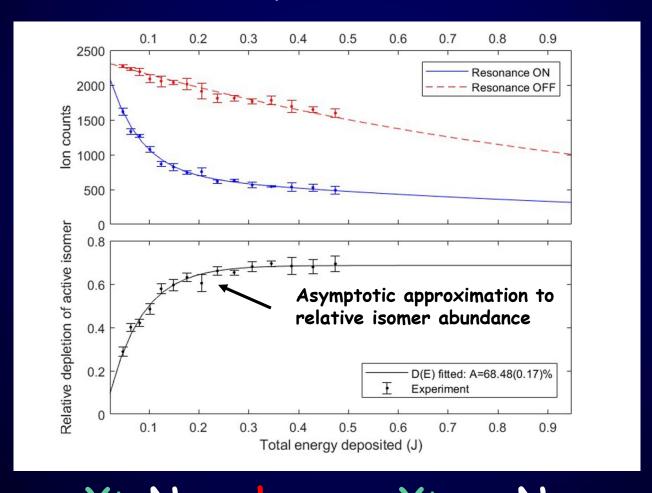
→ Small contribution to HCCCN formation possible

$$CH_2CN^+ + C_2H_2 \rightarrow H_2C_4N^+ + H_2$$

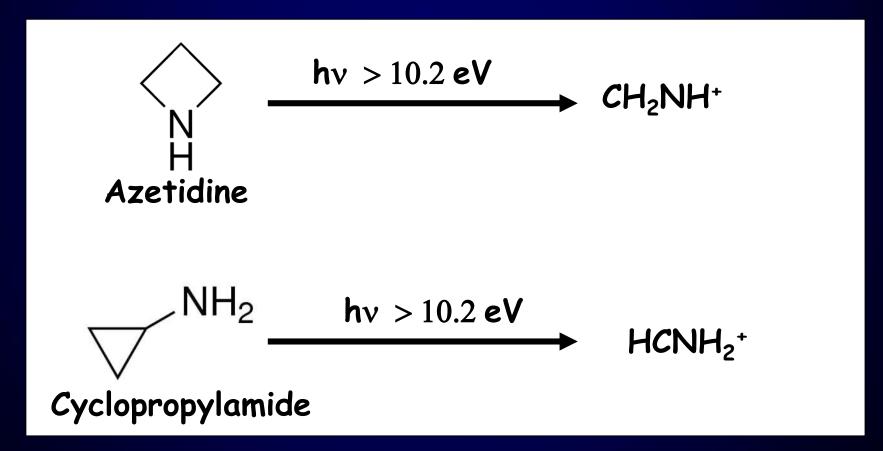
- \rightarrow Leads to 1-Cyano 2-propynyl ion (HCCC(H)CN⁺)
- \rightarrow can function as template to build heavier ions
- → m/z=64 detected by INMS (not predicted in hydrocarbon models)

Conclusions (CH₂CN⁺)

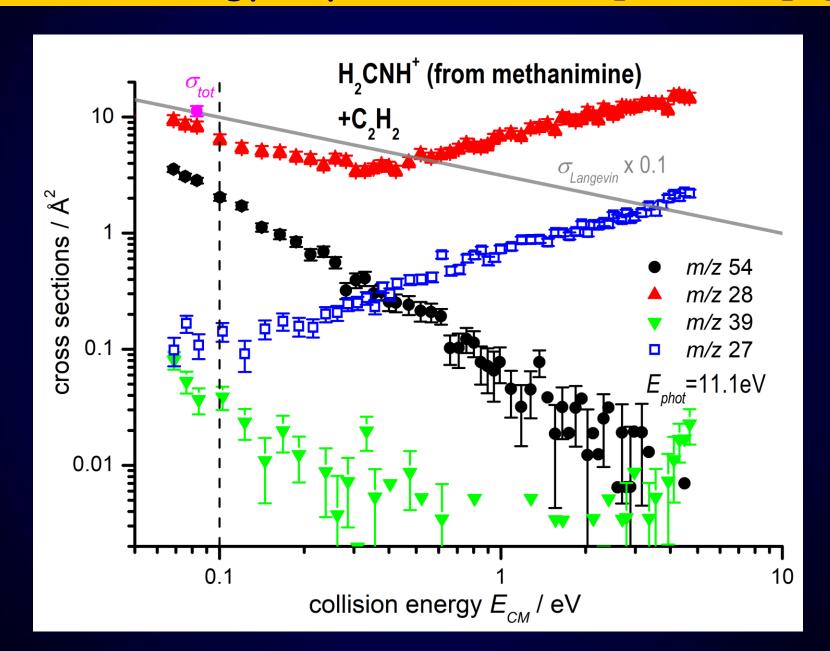
- ★ Reactions of CH₂CN⁺ with acetylene can lead to larger nitrogen-containing entities.
- ★ Several barrierless reaction pathways for CH2CN+, $Cyc-C_2NH_2^+$ only leads to $C_2H_3^+$.
 - 1-Cyano-2-propynyl cation could act as template for build-up of larger entities
 - Isomerism a problem photoionisation through synchrotron radiation can lead to selected isomeric species
 - Hot species probably present ion trap and VUV photoionisation studies envisaged and partly performed


CH₂NH⁺ and HCNH₂⁺

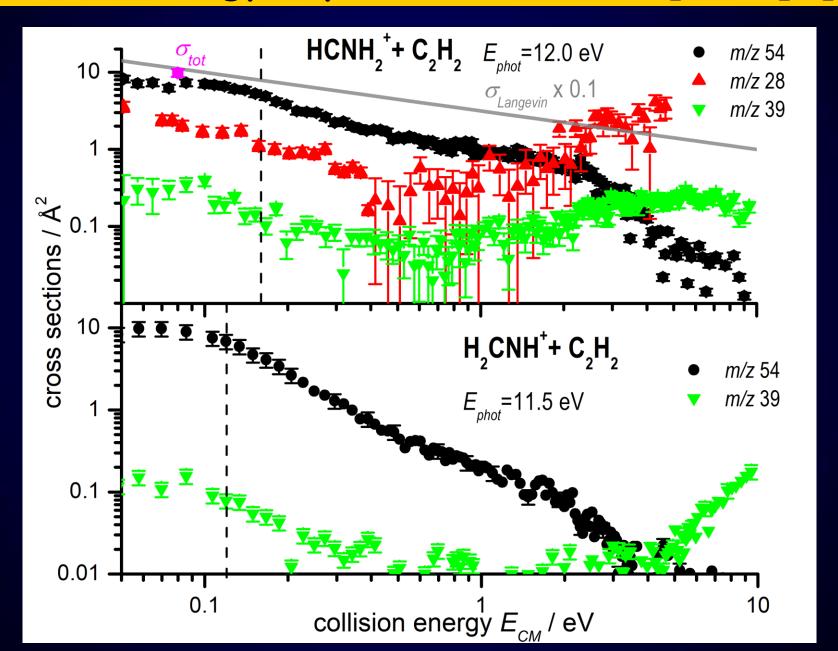
- Another type of reactive carbon-nitrogen compounds
- ★ Vibrational modes measured with IRPD and assigned with ab initio calculations at the CCSD(T)/ANOO level
- ★ Isotope ratio with electron impact ionisation (33 eV) 70:30 in favour of HCNH₂⁺
- ★ HCNH₂⁺ also lower in energy by 4.2 kcal/mol.


Infrared predissociation spectroscopy

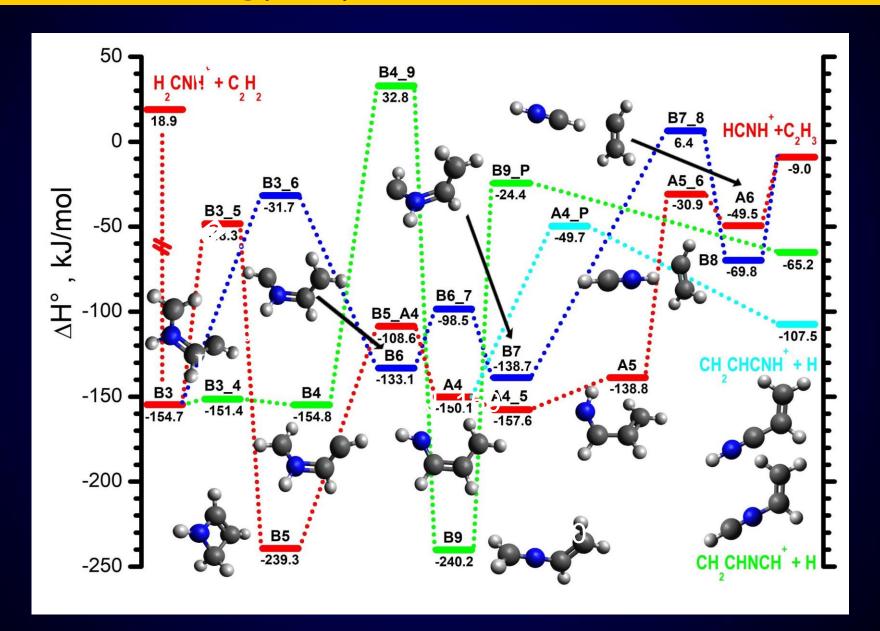
At resonance of a particular isomer ion signal loss due to resonant infrared predissociation of cluster

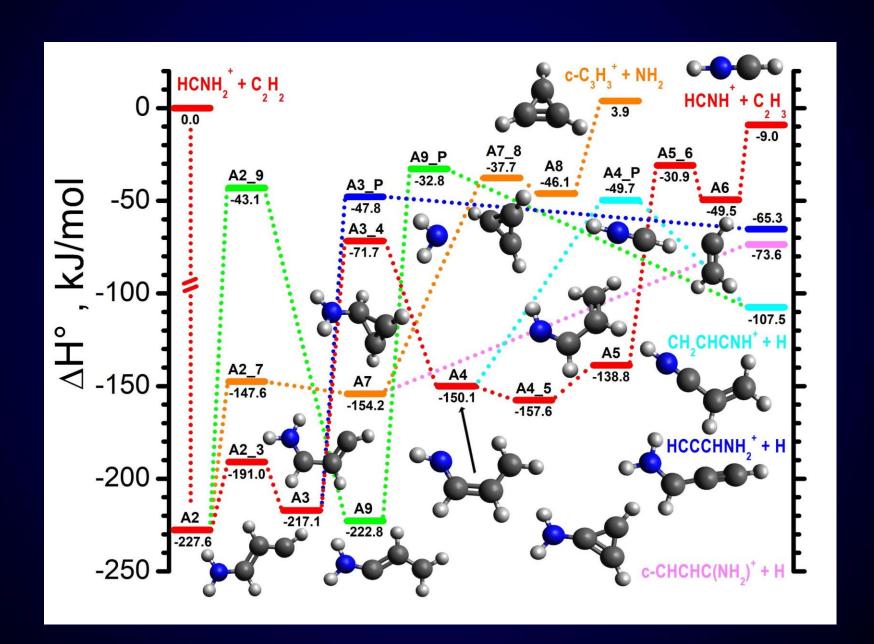

Reactions of CH₂NH⁺ and HCNH₂⁺

★ Selective generation of isomers possible with dissociative photoionisation by apt precursor substances.

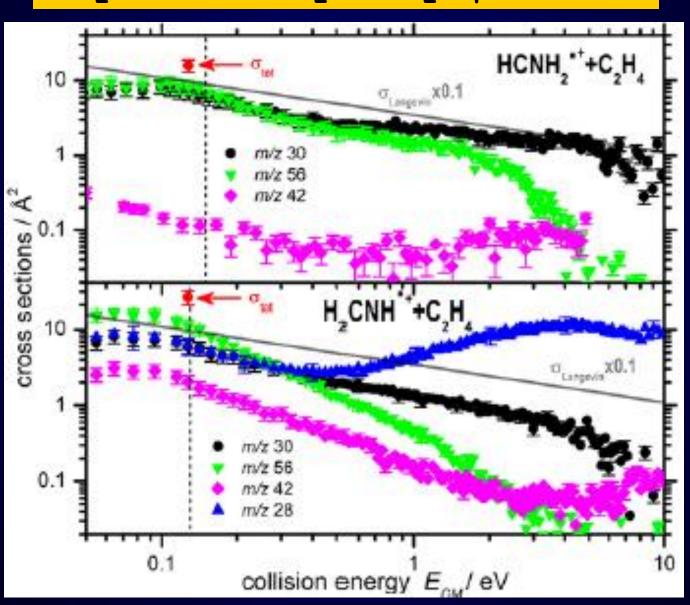


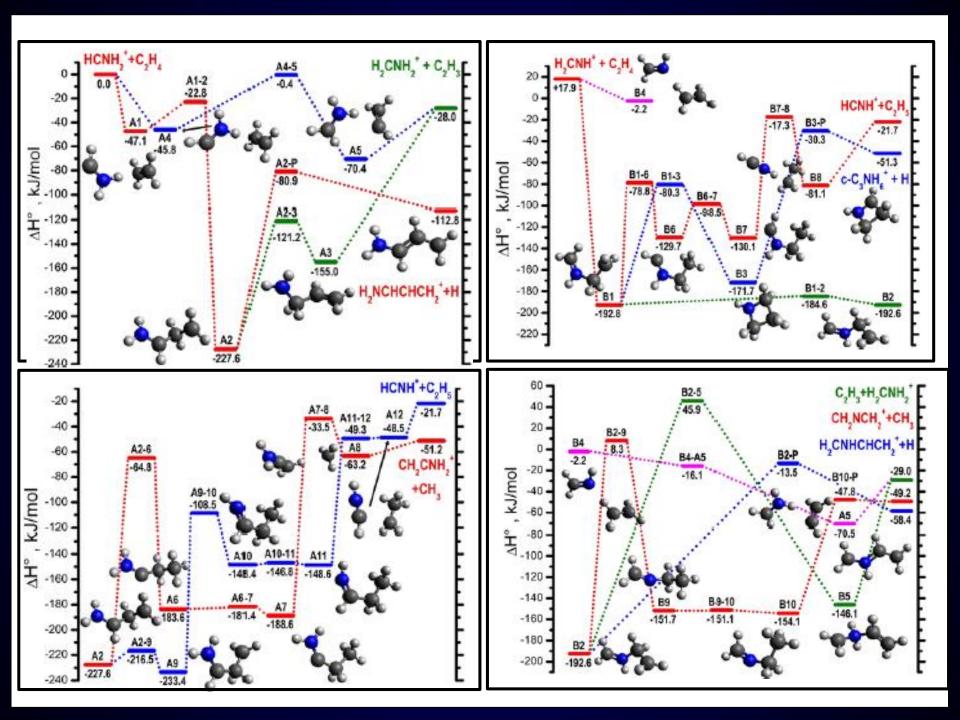
Contamination due to C₂H₅⁺ and ¹³CCH₄⁺ an issue


Collisional energy dependence of CH₂NH⁺ + C₂H₂


Collisional energy dependence of HCNH2+ + C2H2

Collisional energy dependence of CH₂NH⁺ + C₂H₂


Collisional energy dependence of HCNH2+ + C2H2



Conclusions from HCNH2+/ CH2NH+ + C2H2

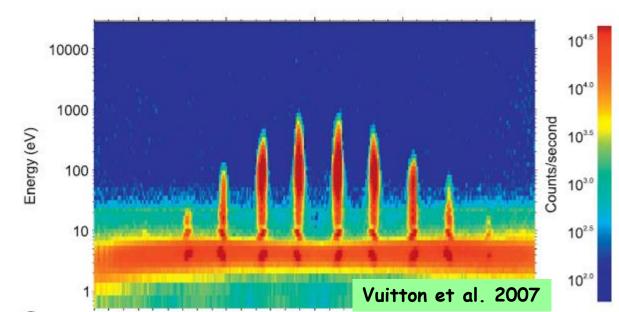
- ★ 3 main ionic products: $C_3H_4N^+$ (dominant sat low relative translational energies), C_3H_3+ and HCNH⁺ (only for HCNH₂⁺)
- Formation of heavier $C_3H_4N^+$ ions can be explained by reactions exhibiting only submerged barriers.
- Smaller contribution of almost thermoneutral $C_3H_3^+$ (complicated pathway for CH_2NH^+)
- ★ HCNH+ dominates at higher energies (fragmentation of primary products?)
- Minute contribution of $C_2H_3^+$ (proton transfer, fragmentation of HCNH⁺)

Collisional energy dependence of $CH_2NH^+/HCNH_2^+ + C_2H_4$

Conclusions from HCNH2+/ CH2NH+ + C2H4

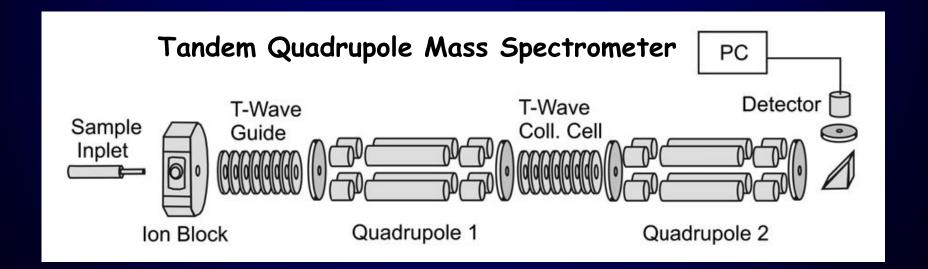
- ★ 3 main ionic products: H₂CNH₂⁺, C₃H₆N⁺ (dominant at low relative translational energies) and HCNH⁺ (only for H₂CNH⁺)
- Formation of heavier $C_3H_6N^+$ ions can be explained by reactions exhibiting only submerged barriers.
- ★ Smaller contribution of CH₂NCH₂⁺ (methyl radical elimination), barrierless for HCNH₂⁺.
- ★ HCNH⁺ dominates at higher energies for H₂CNH⁺ fragmentation of adduct favoured or collisional induced dissociation of parent, threshold at 1.3 eV)

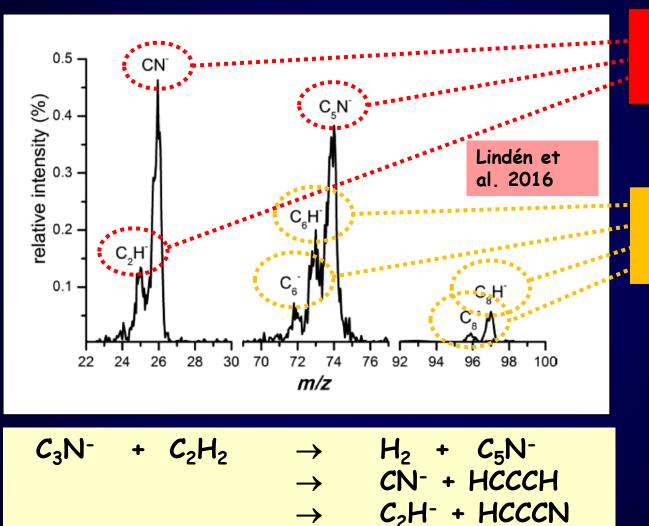
Heavy anions


 Anions with large mass detected by CAPS Cassini Plasma Spectrometer

★ Also lighter cyano anions found (CN⁻, C₃N⁻, C₅N⁻)

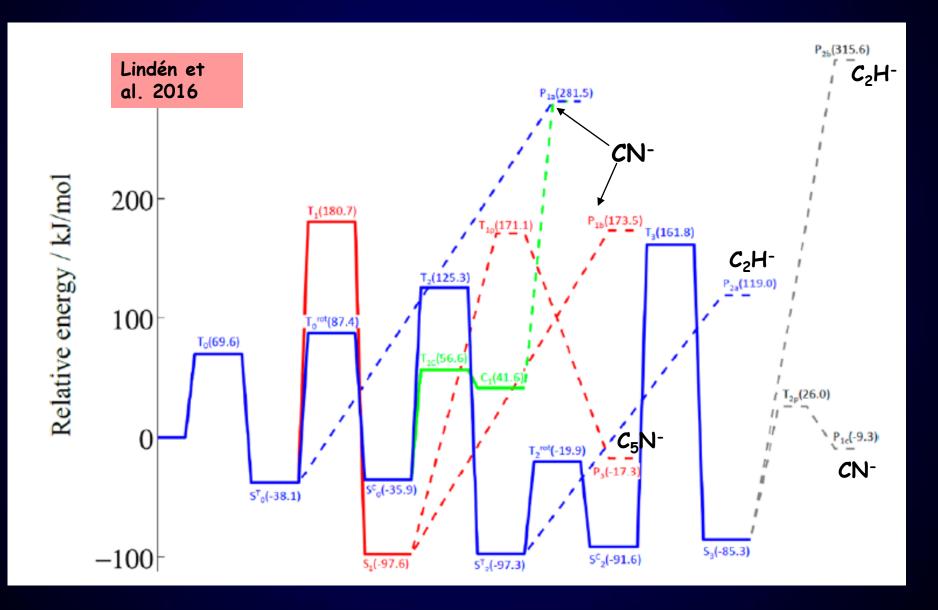
★ Nature of larger ions fairly unknown


Could play substantial role in aerosol formation



Investigation of the $C_3N^- + C_2H_2$ reaction

- ★ 3 different guided ion beam apparatuses:
 - Triple Quadrupole Mass Spectrometer (Trento
 - Tandem Quadrupole Mass Spectrometer (Prague)
 - "CERISES" Guided Ion Beam Apparatus (Paris)


$C_3N^- + C_2H_2$: Observed products

Primary products

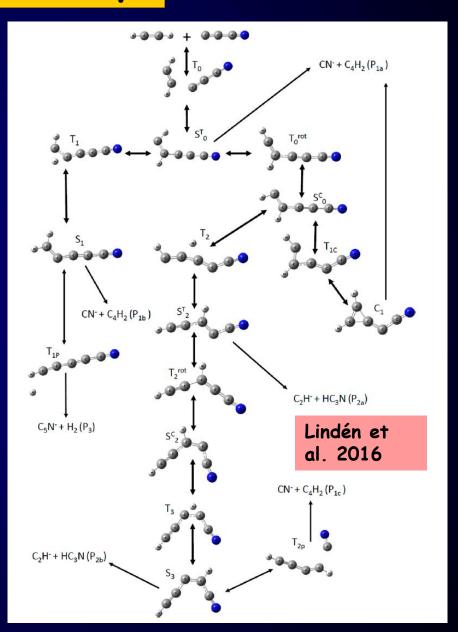
Secondary products

Reaction pathways

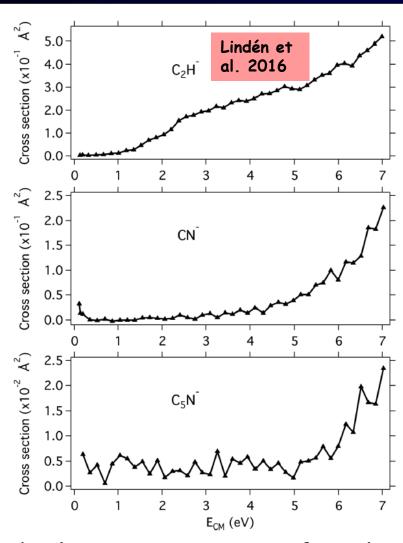
Reaction pathways

Primary pathways:

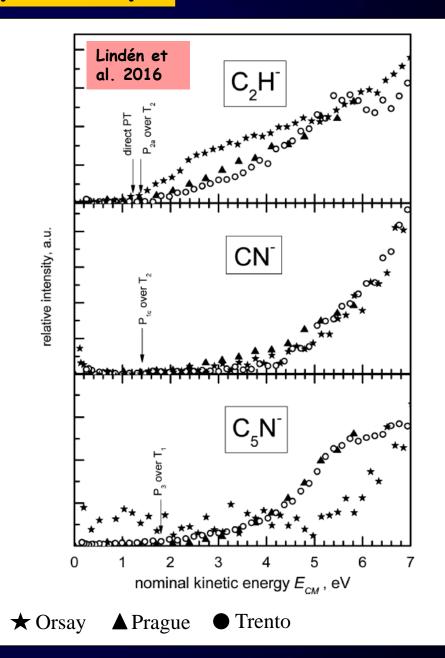
$$C_3N^- + C_2H_2 \rightarrow C_5H^- + H_2$$

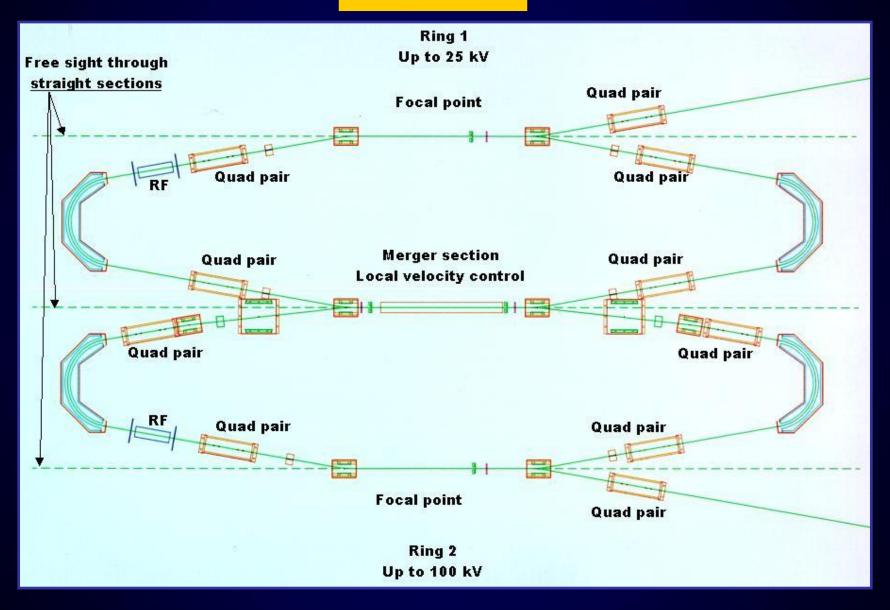

$$C_3N^- + C_2H_2 \rightarrow C_4H_2 + CN^-$$

Other processes:

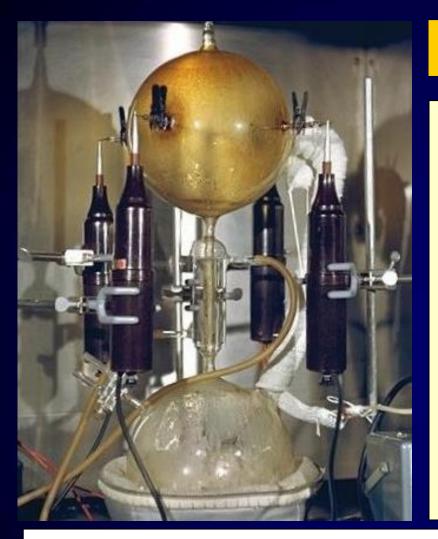

 $C_3N^- + C_2H_2 \rightarrow C_2H^- + HC_3N$ (proton transfer)

 $C_3N^- + C_2H_2 \rightarrow C_2 + C_2H_2 + CN^-$ (collision induced dissociation)

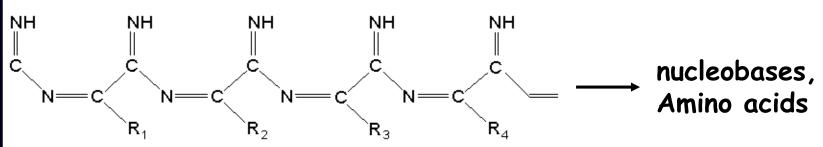

Production of C₂H⁻ and C₅N⁻ favoured


Reaction pathways

Absolute cross sections of product formation (Orsay)



DESIREE


Conclusions (Anions)

- ★ Anion reactions have great impact on the chemistry of planetary ionospheres, interstellar clouds and circumstellar envelopes
- \star Chain elongation of through reaction of $C_2H_2 + C_3N^2$ inefficient at low temperatures
- * Molecular data on many anion reactions still lacking.
- ★ New experimental facilities (electrostatic storage rings, magnetoelectodynamic traps, ion traps) will enable research into these processes.

Relevance for Earth

- ★ In Urey-Miller experiment amino acids formed in liquid
- * Also tholines generated
- ★ Amino acids and nucleobases formed from water
- ★ Possible process on Early Earth?
- ★ Happening on exoplanets?

Conclusions

- ★ Reactions of CH₂CN⁺ with acetylenehas several barrierless reaction pathways and can lead to larger nitrogen-containing entities
- ★ 1-Cyano-2-propynyl cation could act as template for build-up of larger entities
- ★ Reactions of HCNH₂⁺/ CH₂NH⁺ lead to larger ions under hydrogen atom elimination (amongst other products)
- ★ Infrared photodissociation allows distinction between different isomers of ions
- ★ Isomerism an issue even for small ions photoionisation through synchrotron radiation can lead to selected isomeric species