

Laboratory for Underground Nuclear Astrophysics (LUNA)

INAUGURAL WORKSHOP ON NUCLEAR ASTROCHEMISTRY 26 February 2024

Federico Ferraro INFN - Laboratori Nazionali del Gran Sasso

What is Nuclear Astrophysics about?

Where do elements come from?

The universe 3 minutes after the Big Bang

From a molecular cloud to a star...

...going through cyclic burning processes...

...to stellar explosions

The evolving composition of the Universe

Jennifer A. Johnson, Populating the periodic table: Nucleosynthesis of the elements. Science 363, 474-478 (2019). DOI: 10.1126/science.aau 9540

Inaugural workshop on Nuclear Astrochemistry - 26 Feb 2024

INFN

Stellar evolution

Nucleosynthesis

Solar system Inaugural workshop on Nuclear Astrochemistry - 26 Feb 2024

9 **UNN**

How do nuclear reactions take place?

The energy of nuclei in a plasma follows a **Maxwell-Boltzmann distribution**

the **cross section** falls faster than exponentially as the energy decreases

Consider a reaction

 $A + B \rightarrow C + D$

The reaction rate is given by

$$\langle r \rangle = N_A N_B \int_0^\infty \phi(v) \, \sigma(v) \, v \, dv$$

The **Gamow peak** defines the relevant energy range for this reaction to occur

How to measure a nuclear cross section

How to measure a nuclear cross section

low energy How to measure a nuclear cross section

Below a certain energy, the counting rate is too low and the cosmic-ray induced background prevents the direct measurement of the cross section

Introducing the **astrophysical S-factor S(E)** and factorizing the **Coulomb interaction term** apart:

$$\boldsymbol{\sigma}(\boldsymbol{E}) = \frac{1}{E} e^{-2\pi\eta} \boldsymbol{S}(\boldsymbol{E})$$

it is possible to measure the cross section at high energy and extrapolate the astrophysical factor *S(E)* in the interesting energy range (Gamow window)

Challenges in Nuclear Astrophysics...

Counting rate = beam flux × target nuclei areal density × cross section × detection efficiency

10¹⁴ pps (100 μA 1⁺ beam)

10¹⁹ atoms/cm² (often smaller)

10⁻³⁶ cm² (often smaller)

a few counts/day

10⁻¹ (often smaller)

fundamental to strongly suppress the background!

UNDERGROUND LABORATORIES

Inaugural workshop on Nuclear Astrochemistry - 26 Feb 2024

Nuclear Astrophysics Underground Laboratories

The Gran Sasso National Laboratory (LNGS)

LUNN

16

Gamma background reduction @ LNGS

Inaugural workshop on Nuclear Astrochemistry - 26 Feb 2024

Reduction of particle background @ LNGS

Neutrons

Charged particles

The LUNA collaboration

Laboratori Nazionali del Gran Sasso, INFN, ASSERGI, Italy F.Ferraro, M. Junker

GSSI, L'AQUILA, Italy A. Compagnucci, R. Gesuè

Università degli Studi di Bari and INFN, BARI, Italy/*INFN Lecce, LECCE, Italy F. Barile, G.F. Ciani

Konkoly Observatory, Hungarian Academy of Sciences, BUDAPEST, Hungary M. Lugaro

Institute of Nuclear Research (ATOMKI), DEBRECEN, Hungary L. Csedreki, Z. Elekes, Zs. Fülöp, Gy. Gyürky, T. Szücs

federico.ferraro@lngs.infn.it

Helmholtz-Zentrum Dresden-Rossendorf, DRESDEN, Germany D. Bemmerer, A. Boeltzig, E. Masha

University of Edinburgh, EDINBURGH, United Kingdom M. Aliotta, L. Barbieri, C.G. Bruno, T. Davinson, J. Marsh, D. Robb, I R. Sidhu

Università degli Studi di Genova and INFN, GENOVA, Italy F. Casaburo, P. Corvisiero, P. Prati, S. Zavatarelli

Università degli Studi di Milano and INFN, MILANO, Italy R. Depalo, A. Guglielmetti

Università degli Studi di Napoli "Federico II" and INFN, NAPOLI, Italy A. Best, C. Ananna, D. Dell'Aquila, A. Di Leva, G. Imbriani, D. Rapagnani

Università degli Studi di Padova and INFN, PADOVA, Italy C. Broggini, A. Caciolli, P. Marigo, R. Menegazzo, D. Piatti, J. Skowronski, S. Turkat

INFN Roma1, ROMA, Italy A. Formicola, C. Gustavino

Laboratori Nazionali di Legnaro, Italy M. Campostrini, V. Rigato

Osservatorio Astronomico di Collurania, TERAMO and INFN LNGS, Italy O. Straniero

Università di Torino and INFN, TORINO, Italy F. Cavanna, P. Colombetti, G. Gervino

Inaugural workshop on Nuclear Astrochemistry - 26 Feb 2024

It has been the only underground accelerator for nuclear astrophysics for 25 years

Its results include

solar physics (solar neutrinos) cosmological model big bang nucleosynthesis (BBN) stellar nucleosynthesis

Some reactions studied in the past by LUNA (BBN)

Image adapted from "The Borexino Collaboration. Comprehensive measurement of *pp*-chain solar neutrinos. *Nature* 562, 505–510 (2018). https://doi.org/10.1038/s41586-018-0624-y"

Some reactions studied in the past by LUNA (advanced H burning)

LUNA 50 kV (1991-2001)

Electrostatic accelerator Beams: p, ³He, ⁴He Beam energy: 3-50 keV Beam current: up to 500 µA Energy spread: 20 eV Stability: 0.4 eV/h

LUNA 1 7 30 kV 4

Inaugural workshop on Nuclear Astrochemistry - 26 Feb 2024

25

federico.ferraro@lngs.infn.it

INFN

One historical measurement: ³He(³He,2p)⁴He

First direct measurement in the Gamow window

At 16.5 keV the cross section is 0.02 pb, corresponding to a reaction rate of approximately 2 events/month.

The absence of a resonance in the Gamow window allowed to discard a nuclear solution to the Solar Neutrino Problem

LUNA 400 kV (2001-today)

Laboratory for Underground Nuclear Astrophysics

One recent measurement: D(p,γ)³He

It was the most uncertain nuclear physics input to BBN calculations

nature

Explore content Y About the journal Y Publish with us Y

nature > articles > article

Article | Published: 11 November 2020

The baryon density of the Universe from an improved rate of deuterium burning

V. Mossa, K. Stöckel, F. Cavanna, F. Ferraro, M. Aliotta, F. Barile, D. Bemmerer, A. Best, A. Boeltzig, C. Broggini, C. G. Bruno, A. Caciolli, T. Chillery, G. F. Ciani, P. Corvisiero, L. Csedreki, T. Davinson, R. Depalo, A. Di Leva, Z. Elekes, E. M. Fiore, A. Formicola, Zs. Fülöp, G. Gervino, A. Guglielmetti, C. Gustavino ⊠, G. Gyürky, G. Imbriani, M. Junker, A. Kievsky, I. Kochanek, M. Lugaro, L. E. Marcucci, G. Mangano, P. Marigo, E. Masha, R. Menegazzo, F. R. Pantaleo, V. Paticchio, R. Perrino, D. Piatti, O. Pisanti, P. Prati, L. Schiavulli, O. Straniero, T. Szücs, M. P. Takács, D. Trezzi, M. Viviani & S. Zavatarelli ⊠ -Show fewer authors

 Nature
 587, 210–213 (2020)
 Cite this article

 4403
 Accesses
 168
 Altmetric
 Metrics

Our measurement improved the reliability in the use of primordial abundances as probes of the physics of the early Universe

One recent measurement: D(p,γ)³He

"Big Bang nucleosynthesis studied at Felsenkeller and CRYRING" Eliana Masha Tuesday afternoon

It was the most uncertain nuclear physics input to BBN calculations

nature

Explore content Y About the journal Y Publish with us Y

nature > articles > article

Article | Published: 11 November 2020

The baryon density of the Universe from an improved rate of deuterium burning

V. Mossa, K. Stöckel, F. Cavanna, F. Ferraro, M. Aliotta, F. Barile, D. Bemmerer, A. Best, A. Boeltzig, C. Broggini, C. G. Bruno, A. Caciolli, T. Chillery, G. F. Ciani, P. Corvisiero, L. Csedreki, T. Davinson, R. Depalo, A. Di Leva, Z. Elekes, E. M. Fiore, A. Formicola, Zs. Fülöp, G. Gervino, A. Guglielmetti, C. Gustavino ^[2], G. Gyürky, G. Imbriani, M. Junker, A. Kievsky, I. Kochanek, M. Lugaro, L. E. Marcucci, G. Mangano, P. Marigo, E. Masha, R. Menegazzo, F. R. Pantaleo, V. Paticchio, R. Perrino, D. Piatti, O. Pisanti, P. Prati, L. Schiavulli, O. Straniero, T. Szücs, M. P. Takács, D. Trezzi, M. Viviani & S. Zavatarelli ^[2] -Show fewer authors

 Nature
 587, 210–213 (2020)
 Cite this article

 4403
 Accesses
 168
 Altmetric
 Metrics

Our measurement improved the reliability in the use of primordial abundances as probes of the physics of the early Universe

Inaugural workshop on Nuclear Astrochemistry - 26 Feb 2024

LUNA 400 kV (2001-today)

recent picture (19/01/2024)

ÍNFN

federico.ferraro@lngs.infn.it

Electrostatic accelerator

Beam energy: 20-400 keV

Energy spread: 0.1 keV

Stability: 5 eV/h

Beams: p, ³He, ⁴He

Inaugural workshop on Nuclear Astrochemistry - 26 Feb 2024

Present/future measurements @ LUNA 400 kV

in commissioning:

ELDAR Elements in the Lives and Deaths of stARs

Social Solar Composition Investigated At Luna

Present/future measurements @ LUNA 400 kV

in commissioning:

ELDAR

Elements in the Lives and Deaths of stARs

```
    <sup>14</sup>N(p,γ)<sup>15</sup>O
```


SoCIAL SOlar Composition Investigated At Luna

Inaugural workshop on Nuclear Astrochemistry - 26 Feb 2024

• ²³Na(p,α)²⁰Ne

ELDAR Elements in the Lives and Deaths of stARs

This reaction is part of NeNa and MgAl cycles, active during H burning when the temperature exceeds \sim 50 MK.

Possible cause of O/Na **anti-correlation** (the best model of GC at present explains many observables but O and Na should be **correlated!**)

Uncertainties on the reaction rate are dominated by very weak resonances (too weak to be measured in surface laboratories)

"This discrepancy would be much alleviated if the cross-section of the sodium-destroying reaction ${}^{23}Na(p,\alpha){}^{20}Ne$ were actually a factor of a few lower than currently estimated"

Figure 1. The rates of the ${}^{16}O(p,\gamma){}^{17}F$ and ${}^{23}Na(p,\alpha){}^{20}Ne$ reactions as a function of temperature, showing that for $T \leq 10^8$ K oxygen is destroyed faster than sodium, whereas sodium is destroyed faster above this temperature.

ELDAR Elements in the Lives and Deaths of stARs

Target chamber previously in use

Present/future measurements @ LUNA 400 kV

in commissioning:

ELDAR Elements in the Lives and Deaths of stARs

SoCIAL SOlar Composition Investigated At Luna Part of a wider effort on the ${}^{14}N(p,\gamma){}^{15}O$ that includes also measurements at the 3.5 MV accelerator

$^{14}N(p,\gamma)^{15}O$: the bottleneck of the CNO cycle

$^{14}N(p,\gamma)^{15}O$: the bottleneck of the CNO cycle

A new study of the ${}^{14}N(p,\gamma){}^{15}O$ reaction

- over a wide energy range
- with the capability of addressing all ¹⁵O transitions with 5% precision

can provide a definitive solution to the **solar metallicity problem**

Goals of the SOCIAL project:

- below 100 keV \rightarrow total cross section
- 100-370 keV → contribution of different excited states

using a segmented high-efficiency detector

• ¹⁴N(p,γ)¹⁵O

It is possible to see both the sum peak and the contribution from each gamma in the de-excitation of ¹⁵O

It is possible to determine the cross section more precisely (mitigating summing-in problems)

SO

The new "Bellotti" Ion Beam Facility of LNGS

Inline Cockcroft Walton accelerator TERMINAL VOLTAGE: 0.2 – 3.5 MV Beam energy reproducibility: 0.01% TV or 50V Beam energy stability: 0.001% TV / h

Beam current stability: < 5% / h

INFN federico.ferraro@lngs.infn.it

Inaugural workshop on Nuclear Astrochemistry - 26 Feb 2024

H⁺ beam: 500 - 1000 μA

He⁺ beam: 300 - 500 μA

C⁺ beam: 100 - 150 μA

C⁺⁺ **beam:** 50 pμA

LUNA @ the new **IBF of LNGS** (2023-2024-???)

Measurements proposed to the PAC (Program Advisory Committee):

• ¹⁴N(p,γ)¹⁵O \rightarrow approved and started \rightarrow perfect as commissioning measurement

- interesting science case
- well known targets
- well known resonance at low E

• ²²Ne(
$$\alpha$$
,n)²⁵Mg \rightarrow approved and started \rightarrow

SHADES

EFC Scintillator-He3 Array for Deep-underground Experiments on the S-process

 \rightarrow approved, starting soon \rightarrow (QMUR) Carbon Burning • ¹²C+¹²C

$^{14}N(p,\gamma)^{15}O$: the bottleneck of the CNO cycle

$^{14}N(p,\gamma)^{15}O$: the bottleneck of the CNO cycle

Goals of the high-energy experiment

- non-resonant component
- weak transitions (to ground state)
- summing-in corrections
- angular distribution

... all of this in a wide energy range!

¹⁴N(p,γ)¹⁵O: experimental setup @ Bellotti IBF

LUNA-MV accelerator of the new IBF of LNGS

- 3 High-Purity Germanium detectors
- very high energy resolution
- close/far geometry
- reduced summing-in effect
- sensitivity to angular distribution

beam

$^{22}Ne(\alpha,n)^{25}Mg$: neutron source for the s-process

$^{22}Ne(\alpha,n)^{25}Mg$: neutron source for the s-process

~ half the elements between Fe and Y ($56 \leq A \leq 90$) are produced via the weak s-process in massive stars (M > $8M_{\odot}$)

²²Ne(α ,n)²⁵Mg is a neutron source for the weak s-process

LUNN

²²Ne(α ,n)²⁵Mg: need for data!

Cross section is highly uncertain: no direct data in vast part of Gamow window!

Capabilities on surface labs exhausted (20 years since last direct measurement)

Current lowest rate: 2 reactions/minute

One resonance close to Gamow peak

upper limits spanning ≈ 300 keV

Many states can contribute to the cross section

INFN federico.ferraro@lngs.infn.it

Inaugural workshop on Nuclear Astrochemistry - 26 Feb 2024

²²Ne(α ,n)²⁵Mg: background

Q-values:

- ²²Ne(α,n)²⁵Mg = 478 keV
- ${}^{10}B (\alpha, n){}^{13}N = 1059 \text{ keV}$

•
$${}^{11}B (\alpha, n){}^{14}N = 158 \text{ keV}$$

To minimize the Beam-Induced background:

- ²²Ne gas target
- energy sensitivity (LS)

²²Ne(α,n)²⁵Mg: experimental setup @ Bellotti IBF

LUNA-MV accelerator of the new IBF of LNGS

erc

3He + LS neutron detector

- high neutron detection intrinsic efficiency
- large solid angle coverage

Windowless, differential pumping gas target with RBS beam current reading high purity high stability

Inaugural workshop on Nuclear Astrochemistry - 26 Feb 2024

Inaugural workshop on Nuclear Astrochemistry - 2

ORTEC

T

¹²C+¹²C: trigger of C burning in the stars

¹²C+¹²C: trigger of C burning in the stars

¹²C+¹²C: need for data!

Several datasets and models exist

Direct measurements above 2.1 MeV (large scattering, large uncertainties)

Indirect measurements below 2.1 MeV (some criticism with normalization and the treatment of Coulomb interactions)

Very intersting to measure below 2.5 MeV (energy range of astrophysical interest)

¹²C+¹²C: experimental method

To measure the cross section it is possible to count emitted charged particles

but

~50% of the reactions leave the final nucleus in an excited state

SO

it is also possible to count photons emitted (isotropically) in the **<u>de-excitation</u> of the final nucleus**

very often involves the transitions from the 1st excited state to the GS

¹²C+¹²C: experimental setup @ Bellotti IBF

¹²C+¹²C: experimental setup @ Bellotti IBF

¹²C+¹²C: expected sensitivity

H burning He burning

C burning BBN

		0-3 years	3-5 years	5-7 years
Present and future measurements	400 kV	²³ Na(p,α) ²⁰ Ne	¹⁹ F(p,α) ¹⁶ O	⁶ Li (α,γ) ¹⁰ B
		²⁷ Al(p,α) ²⁴ Mg	¹⁹ F(p,γ) ²⁰ Ne	⁷ Li $(\alpha, \gamma)^{11}$ B
		¹⁴ N(p,γ) ¹⁵ O	³⁰ Si(p,γ) ³¹ P	$^{10}B(\alpha,^{2}H)^{12}C$
				¹⁰ B(α,p) ¹³ C
				$^{10}B(\alpha,n)^{13}N$
				$^{11}B(\alpha,n)^{14}N$
	3.5MV	¹⁴ N(p,γ) ¹⁵ O	¹⁸ O(α,γ) ²² Ne	² H(p,γ) ³ He
		²² Ne(α,n) ²⁵ Mg	$^{17}O(\alpha,\gamma)^{21}Ne$	2 H(α , γ) ⁶ Li
		¹² C+ ¹² C (gammas)	¹⁵ Ν(α,γ) ¹⁹ F	³ He(α,γ) ⁷ Be
		¹³ C(α,n) ¹⁶ O	¹⁴ N(α,γ) ¹⁸ F	¹² C(α,γ) ¹⁶ O
			²² Ne(α , γ) ²⁶ Mg	¹² C+ ¹² C (particles)

Conclusions

- LUNA has pioneered underground studies in Nuclear Astrophysics for over three decades
- The LUNA underground accelerator allowed direct measurements at the lowest possible energies (Hydrogen Burning, Big Bang Nucleosynthesis, s-process)
- Interesting measurements soon to be performed at the new IBF of the LNGS (s-process, Hydrogen burning, Helium burning, Carbon burning)
- (Session on Nuclear Astrophysics Tuesday afternoon)

Thank you for your attention!

Inaugural workshop on Nuclear Astrochemistry - 26 Feb 2024

Other slides

Challenges in Nuclear Astrophysics

Below a certain energy, the counting rate is too low and the cosmic-ray induced background prevents the direct measurement of the cross section

introducing the **astrophysical S-factor S(E)** and factorizing the **Coulomb interaction term** apart:

$$\boldsymbol{\sigma}(\boldsymbol{E}) = \frac{1}{E} e^{-2\pi\eta} \boldsymbol{S}(\boldsymbol{E})$$

it is possible to measure the cross section at high energy and extrapolate the astrophysical factor *S(E)* in the interesting energy range (Gamow window)

unexpected low-energy resonances may be present in the extrapolation region!

Underground laboratories for Nuclear Astrophysics

2 NaNbO sputtered targets from Legnaro (unknown stoichiometry)

Before beam

3 Na₂WO₄ evaporated targets from Atomki

$^{14}N(p,\gamma)^{15}O$: the bottleneck of the CNO cycle

INFN

To be investigated:

- non-resonant component
- weak transitions (to ground state)
- summing-in corrections
- angular distribution
- ... all of this in a wide energy range!

