

Use of ab initio approaches for accurate lepton-nucleus scattering

Carlo Barbieri — University of Surrey
10 July 2018

Current Status of low-energy nuclear physics

Composite system of interacting fermions

Binding and limits of stability
Coexistence of individual and collective behaviors
Self-organization and emerging phenomena
EOS of neutron star matter

programs
RIKEN, FAIR, FRIB...

I) Understanding the nuclear force QCD-derived; 3-nucleon forces (3NFs) First principle (ab-initio) predictions

Astrophysics
Tests of the standard model
Other fermionic systems:
ultracold gasses; molecules;

Spectroscopy via knock out reactions-basic idea

Use a probe (ANY probe) to eject the particle we are interested to:

Basic idea:

- we know, e, e' and p
- "get" energy and momentum of p_i : $p_i = k_e' + k_p k_e$ $E_i = E_e' + E_p - E_e$

Better to choose large transferred momentum and weak probes!!!

Spectroscopy via knock out reactions-basic idea

Use a probe (ANY probe) to eject the particle we are interested to:

In plane wave impulse approximation (PWIA):

$$\frac{d\sigma_{(e,e'p)}}{dE_{e'} d\Omega_{e'} d\Omega_p} = \sigma_{ep} \times S^h(p_m, E_m)$$

Concept of correlations

Understood for a few stable closed shells: [CB and W. H. Dickhoff, Prog. Part. Nucl. Phys **52**, 377 (2004)]

Concept of correlations

[CB and W. H. Dickhoff, Prog. Part. Nucl. Phys **52**, 377 (2004)]

Distribution of (All) the Nuclear Strength

Interest in short range correlations:

- a fraction of the total number of nucleons:
 - ~10% in light nuclei (VMC, FHNC, Green's function)
 - 15-20% in heavy systems (CBF, Green's function)
- can explain up to 2/3 of the binding energy [see ex. PRC51, 3040 ('95) for 16O]
- influence NM saturation properties [see ex. PRL90, 152501 ('03)]

Spectral strength of ¹²C from exp. E97-006

The FRPA Method in Two Words

Particle vibration coupling is the main mechanism driving the redistribution and fragmentation of particle strength—expecially in the quasielastic regions around the Fermi surface...

Self-Consistent Green's Function Approach

- Global picture of nuclear dynamics
- Reciprocal correlations among effective modes
- Guaranties macroscopic conservation laws

Self-Consistent Green's Function Approach

Reach of ab initio methods across the nuclear chart

- Approximate approaches for closed-shell nuclei
 - Since 2000's
 - SCGF, CC, IMSRG
 - Polynomial scaling

- Approximate approaches for open-shells
 - Since 2010's
 - GGF, BCC, MR-IMSRG
 - Polynomial scaling

Benchmark of ab-initio methods in the oxygen isotopic chain

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. **111**, 062501 (2013) and Phys. Rev. C **92**, 014306 (2015)

→ 3NF tensor and 3NF near flourine's dripline

Hebeler, Holt, Menendez, Schwenk, Ann. Rev. Nucl. Part. Sci. in press (2015)

Comparison of nuclear forces - AO and ASI/AS

PRL 117, 052501 (2016) PHYSICAL REVIEW LETTERS 29 JULY 2016

Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces

V. Lapoux, ^{1,*} V. Somà, ¹ C. Barbieri, ² H. Hergert, ³ J. D. Holt, ⁴ and S. R. Stroberg ⁴

Saturation and radii now predicted <u>accurately!</u>

Duguet, Somà, Lecuse, CB, Navrátil, Phys.Rev. C95, 034319 (2017)

- 34Si is unstable, charge distribution is still unknown
- Suggested central depletion from mean-field simulations
- Ab-initio theory confirms predictions
- Other theoretical and experimental evidence: Phys. Rev. C 79, 034318 (2009), Nature Physics 13, 152–156 (2017).

Prediction for chrg./mom. distributions and form factors

- Calculations from the spectral functions obtained using SCGF
- Based on the saturating chiral N2LO-sat nuclear force
- Comparison to QMC calculations based on local chiral forces and/or AV18+UIX [PRC96, 024326 ('17) PRC96, 054007 ('17) PRC97, 044318 ('18)]

⁴He-e cross sections from the SCGF Spect. Fnct.

PW Impulse approximation:

Adding FSI:

Based on the saturating chiral N2LO-sat nuclear force

¹⁶O-e cross sections from the SCGF Spect. Fnct.

Based on the saturating chiral N2LO-sat nuclear force

N. Rocco, CB, arXiv:1803.00825 (Phys. Rev. C in print)

Role of two-body (meson exchange) currents in ν -A

$CCO\pi$ total cross section: MiniBooNE data

The 2p2h contribution is needed to explain the magnitude of the total cross section

Two-body diagrams contributing to the axial and vector responses

Preliminary implementation discards 1b-2b interference:

$$W_{2p2h}^{\mu\nu} = W_{ISC}^{\mu\nu} + W_{MEC}^{\mu\nu} + W_{vat}^{\mu\nu}$$

Spectral function for 40 Ar

- Experimental datat now available for Jlab: H. Dai et al., arXiv:1803.01910
- Ab initio simulations based on the ADC(2) truncation of the N2LO-sat Hamiltoninan
- → Validation of initial state correlation <u>before</u> they are implementer in neutrino-⁴⁰Ar simulations

Summary

turating chiral interactions and 3N forces:

- → Description of nuclear g.s. in the pf shell is improved-especially in the trends w.r.t. iso-sopin asymmetry.
- → Radii: newer generations of chiral interaction can give satisfactory radii.

Applications to electron and neutrino scattering:

- → Spectral functions (not only for 1-body!) are extracted naturally from the SCGF formalism.
- → good reproduction of charge/momentum distribution and electron scattering.
- → Inclusion of electroweak currents (1b and 2b) underway (by N. Rocco).

A. Cipollone, N. Rocco A. Idini, F. Raimondi ECT*

A. Carbone

V. Somà, T. Duguet

P. Navratil

Results for Oxygen isotopes

σ from RPA response (discretized spectrum) vs σ from photoabsorption and Coulomb excitation

- GDR position of ¹⁶O reproduced
- Hint of a soft dipole mode on the neutron-rich isotope

Dipole polarizability α_D (fm ³)					
Nucleus	SCGF	CC/LIT	Exp		
$^{16}\mathrm{O}$	0.50	0.57(1)	0.585(9)		
²² O	0.72	0.86(4)	0.43(4)		

Results for Calcium isotopes

σ from RPA response (discretized spectrum) vs σ from photoabsorption and Coulomb excitation

- Positions of GDRs reproduced

Dipole polarizability α_D (fm ³)				
Nucleus	SCGF	CC/LIT	Exp	
40 Ca	1.79	$1.47 (1.87)_{thresh}$	1.87(3)	
48 Ca	2.08	2.45	2.07(22)	

Comparison of nuclear forces - ACa and AO

V. Somà, F. Raimondi, CB, P. Navrátil, T. Duguet, in preparation

PRL 117, 052501 (2016) PHYSICAL REVIEW LETTERS

week ending 29 JULY 2016

\$

Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces

Saturation and radii now predicted <u>accurately!</u>

Bubble nuclei... 345i prediction

Duguet, Somà, Lecuse, CB, Navrátil, Phys.Rev. C95, 034319 (2017)

- 34Si is unstable, charge distribution is still unknown
- Suggested central depletion from mean-field simulations
- Ab-initio theory confirms predictions
- Other theoretical and experimental evidence: Phys. Rev. C 79, 034318 (2009),
 Nature Physics 13, 152–156 (2017).

<u>Validated</u> by charge distributions and neutron quasiparticle spectra:

Neutron spectral function of Oxygens

