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Current Status of low-energy nuclear physics

I)"Understanding"the"nuclear"force
QCD$derived;+3$nucleon+forces+(3NFs)
First+principle+(ab$initio)+predictions

Composite"system"of"interacting"fermions

Binding+and+limits+of+stability
Coexistence+of+individual+and+collective+behaviors
Self$organization+and+emerging+phenomena
EOS+of+neutron+star+matter

Experimental"

programs

RIKEN,"FAIR,"FRIB…

Unstable"nuclei

II)"Nuclear"correlations
Fully+known+for+stable+isotopes
[C.+Barbieri+and+W.+H.+Dickhoff,+Prog.+Part.+Nucl.+Phys 52,+377+(2004)]

Neutron$rich+nuclei;+Shell+evolution+(far+from+stability)

• ~3,200#known#isotopes
• ~7,000#predicted#to#exist
• Correlation#characterised

in#full#for#~283#stable
Nature#473,#25##(2011);#486,#509#(2012)

III)"Interdisciplinary"character
Astrophysics
Tests+of+the+standard+model
Other+fermionic systems:
ultracold gasses;+molecules;



Use a probe (ANY probe) to eject the particle we are interested to:

Basic idea:
• we know, e, e’ and p 
• “get” energy and momentum of pi: pi = ke’ + kp – ke

Ei = Ee’ + Ep - Ee
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pi

Better to choose
large transferred 

momentum and weak 
probes!!!

Spectroscopy via knock out reactions-basic idea



Use a probe (ANY probe) to eject the particle we are interested to:
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In plane wave impulse 
approximation (PWIA):

Spectroscopy via knock out reactions-basic idea

d�(e,e0p)

dEe0 d⌦e0 d⌦p
= �e p ⇥ Sh(pm, Em)



Concept of correlations
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Spectral&function:*distribution*of
momentum (pm)*and*energies*(Em)

independent
particle&picture

Saclay data&for&16O(e,e’p)
[Mougey et*al.,*Nucl.*Phys.*A335,*35*(1980)]

Particle@vibration
coupling&(PV)

Configuration
interaction
(shell&model)

Understood+for+a+few+stable+closed+shells:
[CB+and++W.+H.+Dickhoff,+Prog.+Part.+Nucl.+Phys 52,+377+(2004)]
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Interest in short range correlations:
• a fraction of the total number of nucleons:

- $10% in light nuclei (VMC, FHNC, Green�s function)
- 15-20% in heavy systems (CBF, Green�s function)

• can explain up to 2/3 of the binding energy [see ex. PRC51, 3040 (�95) for 16O]
• influence NM saturation properties [see ex. PRL90, 152501 (�03)]

strength: ~85% ~15%

~100MeV ~300MeV
Em

~800MeV/c

pm
LRC"(particleO

phonon"couplings)

SRC

(binding)

(Review:$$Prog.$Part.$Nucl.$Phys.$52 (2004)$377)

Distribution of (All) the Nuclear Strength
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m
(GeV/C)

D.Rohe,*et.*al,*Eur.*Phys.*J.*A17,*349*(2003),
Phys.*Rev.*Lett.*93 182501*(2004).
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Spectral strength of 12C from exp. E97-006 



•A complete expansion requires all 
types of particle-vibration coupling

•The Self-energy &!(!) yields both
single-particle states and scattering

The FRPA Method in Two Words

n p

' particle ' hole

…these modes are all resummed
exactly and to all orders in a 

ab initio many-body expansion.

“Extended”
Hartree Fock

R(2p1h)&!(!) = R(2h1p)

CB&et&al.,&
Phys.&Rev.&C63,&034313 (2001)
Phys.&Rev.&A76,&052503&(2007)
Phys.&Rev.&C79,&064313&(2009)

Particle vibration coupling is the main mechanism driving the redistribution and fragmentation 
of particle strength—expecially in the quasielastic regions around the Fermi surface…



• Global picture of nuclear dynamics
• Reciprocal correlations among effective modes
• Guaranties macroscopic conservation laws

gII(!)

pp/hh-RPA; two-nucleon transfer

Π(ph)(!)
ph-RPA; response, giant resonances

optical potential

Dyson
Eq.

Single-
particle
motion

S(r,!)

Self-Consistent Green’s Function Approach
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Π(ph)(!)

Dyson
Eq.

Ionization energies/
affinities, in atoms

[CB, D. Van Neck,
AIP Conf.Proc.1120,104 (‘09) & in prep]

Isovector response
for 32Ar, 34Ar
Proton 
Pygmy

[C. B., K. Langanke, et al., Phys Rev. C77, 024304 (2008)]

IVGDR

0           100          200         300       

101

101

102

1

pB(MeV/c)

d"

(q,!)
p1

p2

16O(e,e’pn)14N @ MAINZ

[C. B., C. Giusti, et al.
Phys Rev. C70, 014606 (2004)
D. Middelton, et al.
arXiv:0907.1758; EPJA in print]

Self-Consistent Green’s Function Approach
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Reach of ab initio methods across the nuclear chart
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○ Since 2000’s
○ SCGF, CC, IMSRG
○ Polynomial scaling

○ Since 2010’s
○ GGF, BCC, MR-IMSRG
○ Polynomial scaling

⦿ Ab initio shell model

○ Since 2014
○ Effective interaction via CC/IMSRG
○ Mixed scaling

2018

○ Since 1980’s

○ Factorial scaling
○ Monte Carlo, CI, …

⦿ “Exact” approaches

⦿ Approximate approaches for open-shells

Evolution of ab initio nuclear chart

⦿ Approximate approaches for closed-shell nuclei

Slide,#courtesy#of#V.#Somà



Benchmark of ab-initio methods in the oxygen 
isotopic chain 

Benchmarking different ab-initio methods in the 
oxgyen chain


!

Hebeler,'Holt,'Menendez,'Schwenk,''Ann.'Rev.'Nucl.'Part.'Sci.'in'press'(2015)'

Calcula7ons'based'on'
chiral'NN'and'3NF'forces.'
Con7nuum'not'taken'into'
account''

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm-1)
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved (2.0fm-1)
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Comparison of nuclear forces – AO and ASi/AS
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FIG. 4. Proton (top) and neutron (bottom) radii obtained
from IM-SRG and SCGF calculations with EM [20–22] and
NNLOsat [26] interactions. For protons, experimental values
from Table I are displayed.

oxygen chain, the heaviest one for which experimental in-
formation on both binding energies and radii is available
up to the neutron drip line. We showed that analysing
(p,p) scattering data allows one to obtain information
on nuclear sizes of unstable isotopes within 0.1 fm. The
combined comparison of measured charge/matter radii
and binding energies with state-of-the-art ab initio cal-
culations o↵ers unique insight on nuclear forces. On the
one hand, EM, a current standard for nuclear theory em-
ploying only 2-, 3- and 4-body observables in the fit of
the low-energy constants thus sticking to the (strict) re-
ductionist strategy, yields an excellent reproduction of
binding energies but significantly underestimates charge
and matter radii. On the other hand, unconventional
NNLOsat , while maintaining a good energy systematics,
clearly improves the description of absolute radii, though
leaving room for refinement for what concerns isotope
shifts. Given the alternative fitting procedure, such an
output raises questions about the choice of observables
that should be included in the fit and the resulting pre-
dictive power whenever this strategy is followed.

More precise information on oxygen radii, e.g. rch via
laser spectroscopy measurements, would allow confirming
our (p,p) analysis and further refining the present discus-
sion. Future, similar studies in heavier isotopes will also
preciously contribute to the systematic development of
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FIG. 5. Matter radii from our analysis and Ref. [33, 36]
compared to ab initio calculations with EM [20–22] and
NNLOsat [26] interactions. Bands span results from GGF
and MR-IMSRG many-body schemes.

nuclear forces. From the many-body point of view, the
consistent inclusion of higher-body terms in the charge
radius operator is envisaged and might eventually a↵ect
the present discussion. Finally, we stress that a simulta-
neous reproduction of binding energies and radii in stable
and neutron-rich nuclei is mandatory for reliable struc-
ture but even more for reaction calculations. Scattering
amplitudes and nucleon-nucleus interactions evolve as a
function of the size, which should be consistently taken
into account specially when more microscopic reaction
approaches are considered.
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Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces
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We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes from
the valley of stability to the neutron drip line. Both charge and matter radii are compared to state-of-the-art
ab initio calculations along with binding energy systematics. Experimental matter radii are obtained
through a complete evaluation of the available elastic proton scattering data of oxygen isotopes. We show
that, in spite of a good reproduction of binding energies, ab initio calculations with conventional nuclear
interactions derived within chiral effective field theory fail to provide a realistic description of charge and
matter radii. A novel version of two- and three-nucleon forces leads to considerable improvement of the
simultaneous description of the three observables for stable isotopes but shows deficiencies for the most
neutron-rich systems. Thus, crucial challenges related to the development of nuclear interactions remain.

DOI: 10.1103/PhysRevLett.117.052501

Our present understanding of atomic nuclei faces the
following major questions. Experimentally, we aim (i) to
determine the location of the proton and neutron drip lines
[1,2], i.e., the limits in neutron numbers N upon which, for
fixed proton number Z, with decreasing or increasing N,
nuclei are not bound with respect to particle emission, and
(ii) to measure nuclear structure observables offering sys-
tematic tests of microscopic models. While nuclear masses
have been experimentally determined for the majority of
known light and medium-mass nuclei [3], measurements of
charge and matter radii are typically more challenging.
Charge radii for stable isotopes have been accessed in the
past bymeans of electron scattering [4]. In recent years, laser
spectroscopy experiments allow extending such measure-
ments to unstable nuclei with lifetimes down to a few
milliseconds [5]. Matter radii are determined by scattering
with hadronic probes which requires a modelization of the
reaction mechanism. Theoretically, intensive works have
also been performed towards linking a universal description
of atomic nuclei to elementary interactions [6–8] amongst
constituent nucleons and, ultimately, to the underlying
theory of strong interactions, quantum chromodynamics
(QCD). If accomplished, this ab initio description would be
beneficial both for a deep understanding of known nuclei
(stable and unstable, totalling around 3300) and to predict on
reliable bases the features of undiscovered ones (few more
thousands are expected). Many of the latter are not, in the
foreseeable future, experimentally at reach, yet they are
crucial to understanding nucleosynthesis phenomena,
modelled using large sets of evaluated data and of calculated
observables.
The reliability of first-principles calculations depends

upon a consistent understanding of fundamental

observables: ground-state characteristics of nuclei related
to their existence (masses, expressed as binding energies)
and sizes (expressed as root mean square—rms—radii).
Special interest resides in the study of masses and sizes for
a given element along isotopic chains. Experimentally, their
determination is increasingly difficult as one approaches
the neutron drip line; as of today, the heaviest element with
available data on all existing bound isotopes is oxygen
(Z ¼ 8) [3]. Using theoretical simulations, the link between
nuclear properties and internucleon forces can be explored
for different N=Z values, thus, critically testing both our
knowledge of nuclear forces and many-body theories.
In this work, we focus on oxygen isotopes for which, in

spite of the tremendous progress of recent ab initiomethods,
a simultaneous reproduction of masses and radii has not yet
been achieved. We present important findings from novel
ab initio calculations along with a complete evaluation of
matter radii, rm, for stable and neutron-rich oxygen isotopes.
Here, rm are deduced via a microscopic reanalysis of proton
elastic scattering data sets. They complement charge radii
rch, offering an extended comparison through the isotopic
chain that allows testing state-of-the-art many-body calcu-
lations. We show that a recent version of two- and
three-nucleon (2N and 3N) forces leads to considerable
improvement in the critical description of radii.
A viable ab initio strategy consists in exploiting the

separation of scales between QCD and (low-energy)
nuclear dynamics, taking point nucleons as degrees of
freedom. For decades, realistic 2N interactions were built
from fitting scattering data, see, e.g., [6]. However, model
limitations were seen through discrepancies with exper-
imental data, like underbinding of finite nuclei and inad-
equate saturation properties of extended nuclear matter.

PRL 117, 052501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
29 JULY 2016

0031-9007=16=117(5)=052501(6) 052501-1 © 2016 American Physical Society
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FIG. 4. Proton (top) and neutron (bottom) radii obtained
from IM-SRG and SCGF calculations with EM [20–22] and
NNLOsat [26] interactions. For protons, experimental values
from Table I are displayed.

oxygen chain, the heaviest one for which experimental in-
formation on both binding energies and radii is available
up to the neutron drip line. We showed that analysing
(p,p) scattering data allows one to obtain information
on nuclear sizes of unstable isotopes within 0.1 fm. The
combined comparison of measured charge/matter radii
and binding energies with state-of-the-art ab initio cal-
culations o↵ers unique insight on nuclear forces. On the
one hand, EM, a current standard for nuclear theory em-
ploying only 2-, 3- and 4-body observables in the fit of
the low-energy constants thus sticking to the (strict) re-
ductionist strategy, yields an excellent reproduction of
binding energies but significantly underestimates charge
and matter radii. On the other hand, unconventional
NNLOsat , while maintaining a good energy systematics,
clearly improves the description of absolute radii, though
leaving room for refinement for what concerns isotope
shifts. Given the alternative fitting procedure, such an
output raises questions about the choice of observables
that should be included in the fit and the resulting pre-
dictive power whenever this strategy is followed.

More precise information on oxygen radii, e.g. rch via
laser spectroscopy measurements, would allow confirming
our (p,p) analysis and further refining the present discus-
sion. Future, similar studies in heavier isotopes will also
preciously contribute to the systematic development of
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FIG. 5. Matter radii from our analysis and Ref. [33, 36]
compared to ab initio calculations with EM [20–22] and
NNLOsat [26] interactions. Bands span results from GGF
and MR-IMSRG many-body schemes.

nuclear forces. From the many-body point of view, the
consistent inclusion of higher-body terms in the charge
radius operator is envisaged and might eventually a↵ect
the present discussion. Finally, we stress that a simulta-
neous reproduction of binding energies and radii in stable
and neutron-rich nuclei is mandatory for reliable struc-
ture but even more for reaction calculations. Scattering
amplitudes and nucleon-nucleus interactions evolve as a
function of the size, which should be consistently taken
into account specially when more microscopic reaction
approaches are considered.
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Saturation and radii now predicted accurately!

Validated by charge 
distributions and neutron 
quasiparticle spectra:
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FIG. 3. ADC(2) ground-state point-proton density distribu-
tion of 34Si for di↵erent model space dimensions at ~! = 20
MeV (left) and for di↵erent harmonic oscillator frequencies at
N

max

= 13 (right). Upper panels: linear vertical scale. Lower
panels: logarithmic vertical scale.
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FIG. 4. Charge and proton densities of 34Si and 36S at the
ADC(2) level. The experimental charge density of 36S (taken
from Ref. [17]) is also visible.
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FIG. 5. Angular dependence of the form factor obtained for
300 MeV electron scattering on 34Si and 36S. A calculation
with the charge density of 36S scaled to 14 protons is shown
for comparison.
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- 34Si is unstable, charge distribution is still unknown

- Suggested central depletion from mean-field 
simulations

- Ab-initio theory confirms predictions

- Other theoretical and experimental evidence:
Phys. Rev. C 79, 034318 (2009),
Nature Physics 13, 152–156 (2017).

Duguet,*Somà,*Lecuse,*CB,*Navrátil,*Phys.Rev.*C95,*034319 (2017)
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Prediction for chrg./mom. distributions and form factors

• Calculations from the 
spectral functions 
obtained using SCGF 

• Based on the 
saturating chiral 
N2LO-sat nuclear 
force

• Comparison to QMC 
calculations based on 
local chiral forces 
and/or AV18+UIX
[PRC96,#024326#(‘17)
PRC96,#054007#(‘17)
PRC97,#044318#(‘18)]

N. Rocco, CB, arXiv:1803.00825 (Phys. Rev. C in print)
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The 4He  SGFC charge density distribution
• The nuclear charge density distribution is written in terms of the  charge elastic form factor

• The cOm issue: The subtraction of the cOm contribution from the wave function is a long standing 
problem affecting a number of many-body approaches relying on single-nucleon basis

To estimate the error due to residual 
cOm contribution in 4He we developed 
Metropolis Monte Carlo calculation 


• Trial wave function: | V i = | OpRS
0 i

• A sequence of points in the 3A-
dimensional space are generated by 
sampling from P (R) = | OpRS

0 (R)|2

• The intrinsic coordinates are given by

r̃i = ri �Rcm , Rcm =
1

A

X

i

ri

He4

6

FIG. 2. Point proton densities in 4He, as predicted by
NNLOsat. The dashed (blue) line corresponds to the OpRS
derived for N

max

= 11 and ~⌦ = 20 MeV. The other
lines have been obtained using the SCGF full propagator for
N
max

=11, 13 and ~⌦ =20, 22 MeV.

IV. RESULTS

Our calculations have been performed using the
NNLOsat chiral interaction [15], which was specifically
designed to accurately describe both binding energies and
nuclear radii of mid-mass nuclei [38, 39]. In Fig. 2 we an-
alyze the convergence of the SCGF-ADC(3) point-proton
densities of 4He with respect to the oscillator frequency
(~⌦) and the size of the model space (N

max

). The di↵er-
ent lines almost superimpose, indicating that for ~⌦ ⇡ 20
MeV and N

max

�11 the calculation converges and no
longer depends on the oscillator parameters. The den-
sity calculated from the OpRS is also displayed. The
nice agreement with the SCGF-ADC(3) curves follows
from the requirement that the single particle energies and
overlap functions in the OpRS propagator are chosen to
approximate at best the true (correlated) one-body den-
sity.

The charge densities in 4He can be obtained from the
point-proton densities through Eqs. (17) and (18). In
Fig. 3 we compare the experimental charge density de-
termined through the “Sum-of-Gaussians” parametriza-
tion given in Ref. [40] with those obtained from the QMC
results of Ref. [41] and from the OpRS calculated in the
present work. For the latter, we display both the result
already shown in Fig. 2 and the distribution obtained af-
ter subtracting the center of mass e↵ect with the MMC
algorithm outlined in Sec. II. When the center of mass
contamination is subtracted, we obtain the short-dashed
(black) line. The comparison with the total OpRS re-
sults, corresponding to the dot-dashed (blue) line, clearly
shows that for 4He the center of mass contribution is size-
able and can not be neglected. The use of the intrinsic
wave function yields a strong enhancement of the charge
density, which turns out to be very close to the QMC re-
sult. Note that the discrepancy between the experiment
and the intrinsic OpRS and QMC calculations is moti-
vated by the absence of the two-body meson exchange

FIG. 3. Charge densities of 4He. The (green) dots have
been obtained using the “Sum-of-Gaussians” parametrization
of the charge densities given in Ref. [40]. The dashed (red)
line refers to the QMC calculation of Ref. [41] that used
the AV18+UIX two- and three-body interactions. The dot-
dashed (blue) line corresponds to the same OpRS propagator
shown in Fig. 2, while in the short-dashed (black) line the
center-of-mass contamination has been subtracted from the
OpRS wave function by means a MMC calculation.

FIG. 4. Charge elastic form factor for 4He. The solid
(light green) and (violet) lines correspond to the calculation
of Ref. [44] where chiral two- and three-body interactions
at N2LO have been used for R0 = 1.0fm and R0 = 1.2fm
coordinate- space cuto↵s, respectively. The uncertainty bands
include the statistical MC uncertainties added in quadrature
to the uncertainty from the truncation of the chiral expansion.
The dashed (red) line is obtained within QMC Ref. [44] while
the dot-dashed (blue) and short-dashed (black) line refers to
the OpRS calculation with and without the center-of-mass
contamination. The shaded area indicates the statistical MC
uncertainty. Experimental data are from an unpublished com-
pilation by I. Sick, based on Refs. [45–48].

current contributions. These are known to have little
e↵ect on larger nuclei such as 16O but their inclusion
is fundamental in order to correctly reproduce the 4He
elastic form factor, from which the charge densities are
extracted [30, 41–43].
In Fig. 4 we compare the results for the charge elastic

form factor for 4He obtained within three many-body ap-

✤ The QMC AV18+UIX results are taken from D. Lonardoni et al, Phys. Rev. C96, 024326 (2017) 

4He

• Single particle momentum distribution of 16O, log scale
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FIG. 7. Momentum distributions of 4He. The dashed (red)
line corresponds to the QMC calculation [41], the dotted
(green) curve have been obtained using the SCGF-ADC(3)
propagator while the short-dashed (blue) and solid (black)
lines correspond to the total and intrinsic OpRS results, re-
spectively.

lations strongly reduce the SCGF-ADC(3) momentum
distribution in the high momentum region. In the upper
panel we observe an enhancement of the SCGF-ADC(3)
results with respect to the QMC calculation. This can
be understood by recalling that the QMC and SCGF-
ADC(3) momentum distribution are normalized to num-
ber of nucleons. In order for the normalization condition
to be satisfied, the missing strength in the tails of the
NNLOsat curve has to be compensated by an enhance-
ment in the low-momentum region.

Fig. 9 shows the electron-4He inclusive double-
di↵erential cross sections at di↵erent values of Ee and
✓e. The curves are obtained from the full SCGF-ADC(3)
spectral function, from its OpRS approximation and from
the intrinsic OpRS. The SCGF-ADC(3) cross-section
represented by the dashed (red) line is quenched with
respect to the solid (green) line that refers to the un-
corrected OpRS. This has to be attributed to the di↵er-
ent behavior of the curves displayed in Fig. 7. Whilst
the OpRS wave functions are built to reproduce low-
est energy momenta of the ADC(3) propagator—which
optimizes the quasiparticle energies and strength near
the Fermi surface—this leaves small discrepancies in the
single-nucleon momentum distribution. The compari-
son between the solid (green) and dashed (black) curve
clearly shows that the subtraction of the center of mass
component from the wave function leads to a reduction of
the width and an enhancement of the quasielastic peak.
Since this strongly a↵ects the cross section in all the kine-
matical setups that we considered, we applied FSI cor-
rections only to the intrinsic OpRS calculation. In order
to do it, we follow the approach outlined in Sec. III, with
the di↵erence that the optical potential has been disre-
garded in the energy conserving �-function since to the
best of our knowledge neither the 3H-p nor the 3He-n op-
tical potentials are present in the literature. The results
are shown in Fig. 10. The convolution of the OpRS cross

FIG. 8. Computed momentum distributions of 16O. The
dashed (red) and solid (black) lines are obtained within
QMC [41] and SCGF-ADC(3) approaches, respectively. In
the lower panel, a logarithmic scale has been used to demon-
strate the weak tail at large momenta that arises from the soft
chiral interaction adopted in the SCGF-ADC(3) calculation.

section with the folding function of Eq. (38) leads to a
redistribution of the strength, which quenches the peak
and enhances the tails. For Ee = 300 MeV, ✓ = 60�,
and Ee = 500 MeV, ✓ = 34� the OpRS intrinsic calcu-
lation overestimates the data. Moreover, in all the kine-
matical configurations under consideration the position
of the quasielastic peak is not correctly reproduced. This
is likely to be ascribed to the approximate procedure we
adopted to account for FSI e↵ects, i.e. we neglected the
real part of the optical potential. Its inclusion would
shift the cross section towards lower values of ! possibly
improving the agreement with the experimental data.

In Fig. 11 we compare the experimental data of the in-
clusive double-di↵erential electron-16O cross sections as
computed from the fully correlated SCGF-ADC(3) spec-
tral function. In the dashed (green) curve FSI e↵ects
have been implemented in full, yielding a very nice agree-
ment with the data. In particular, the inclusion of the
real part of the optical potential in the final state nu-
cleon energy shifts the cross sections towards lower val-
ues of ! and the quasielastic-peak position is correctly
reproduced.

The 16O  SGFC momentum distribution

• The momentum distribution reflects the fact that NNLOsat is softer the AV18+UIX.

16O

The charge elastic form factor 4He 

• The charge elastic form factor is given by 

✤ The N2LO results are taken from J. E. Lynn et al, Phys. Rev. C 96, 054007 (2017) where two different 
coordinate space cut offs have been adopted
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4He

The charge elastic form factor for16O

✤ The N2LO results are taken from D. Lonardoni, et. al, Phys. Rev. C97, 044318 (2018) where two 
different coordinate-space cutoffs have been adopted
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FIG. 5. Charge densities in 16O. The (green) dots and the
dashed (red) line are the same as Fig. 3. The dot-dashed
(black) line corresponds to the full SCGF density calculated
at the ADC(3) level.

It is visible that up to q = 3 fm�1 the removal of the
center-of-mass contamination enhances the strength and
improves the agreement between the OpRS and the QMC
and the calculations of Ref. [44]. For larger values of
the momentum we found some discrepancies for both the
OpRS calculations.

For medium-mass nuclei, the center of mass correc-
tions are known to be less significant. Therefore, in
Fig. 5 we compare the experimental charge density in
16O with the full SCGF-ADC(3) and the QMC calcula-
tions. There is an overall nice agreement between the
theoretical curves. The SCGF-ADC(3) results perfectly
reproduce the experimental points, confirming the good-
ness of the NNLOsat potential which was fitted to repro-
duce the experimental radius of 16O.

Figure 6 displays the charge elastic form factor for 16O.
In this case we find an excellent agreement between the
SCGF, the QMC calculations and the experimental data.
The results of Ref. [49] for two di↵erent values of the
coordinate cuto↵s are also shown. While for R0=1.0 fm
the curve has the correct behavior some discrepancies are
visible for R0=1.2 fm.

In Fig. 7 we benchmark the intrinsic and uncorrected
OpRS single-nucleon momentum distribution of 4He with
the QMC calculation of Ref. [41]. The OpRS result, cor-
responding to the dashed (blue) line, correctly follows
that of the dressed ADC(3) propagator, although the
agreement is not as close as in Fig. 2. Note that, also
in this case the subtraction of the center of mass compo-
nent has a sizable e↵ect, which is crucial for recovering
the agreement with the intrinsic QMC results.

The 16O single-nucleon momentum distributions ob-
tained within the SCGF-ADC(3) and QMC approach are
compared in Fig. 8. The di↵erences displayed in the tails
of the single-nucleon momentum distributions are clearly
visible in the lower panel of Fig. 8 where the logarithmic
scale has been used. The dashed (red) line, corresponding
to the QMC calculation, is found to be above the SCGF-
ADC(3) results for high momenta. This is likely to be

FIG. 6. Charge elastic form factor for 16O. The solid
(light green) and (violet) lines correspond to the calculation
of Ref. [49] for R0 = 1.0fm and R0 = 1.2fm coordinate-
space cuto↵s, respectively. The uncertainty bands include
the statistical MC uncertainties added in quadrature to the
uncertainty from the truncation of the chiral expansion. The
dashed (red) line is obtained within QMC Ref. [44] while the
dot-dashed (black) refers to the SCGF results calculated at
the ADC(3) level. The shaded area indicates the statistical
MC uncertainty. Experimental data are from Ref. [40].

FIG. 7. Momentum distributions of 4He. The dashed (red)
line corresponds to the QMC calculation [41], the dotted
(green) curve have been obtained using the SCGF-ADC(3)
propagator while the short-dashed (blue) and solid (black)
lines correspond to the total and intrinsic OpRS results, re-
spectively.

ascribed to the di↵erent choice made for the potentials.
In fact, the NNLOsat is much softer than the AV18+UIX
potential adopted in the QMC study. The use of an hard
potential implies the presence of stronger high momen-
tum components in the nuclear wave function. While the
QMC momentum distribution exhibits a long tail extend-
ing to p > 1 GeV, the softer potential adopted in our cal-
culations strongly reduce the SCGF-ADC(3) momentum
distribution in the high momentum region. In the upper
panel we observe an enhancement of the SCGF-ADC(3)
results with respect to the QMC calculation. This can be
explained by recalling that the QMC and SCGF-ADC(3)

16O

The charge elastic form factor 4He 

• The charge elastic form factor is given by 

✤ The N2LO results are taken from J. E. Lynn et al, Phys. Rev. C 96, 054007 (2017) where two different 
coordinate space cut offs have been adopted
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4He-e- cross sections from the SCGF Spect. Fnct.4He-e- cross sections within the SCGF approach
• ADC(3) and OpRS results:  IA • Including FSI in the OpRS intrinsic resultsPW Impulse approximation: Adding FSI:

N. Rocco, CB, arXiv:1803.00825 (Phys. Rev. C in print)

Based on the 
saturating chiral 
N2LO-sat 
nuclear force



16O-e- cross sections from the SCGF Spect. Fnct.

Based on the 
saturating chiral 
N2LO-sat 
nuclear force

N. Rocco, CB, arXiv:1803.00825 (Phys. Rev. C in print)

16O-e- cross sections within the SCGF approach



Role of two-body (meson exchange) currents in !-A
CC0π total cross section: MiniBooNE data

The 2p2h contribution is needed to explain the
magnitude of the total cross section 

Calculations#by##N.#Rocco,##see#also#talk#by#O.#Benhar afterward

The inclusive cross section of the process in which a neutrino or antineutrino scatters off a 
nucleus can be written in terms of five response functions
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• Two-body diagrams contributing to the axial 
and vector responses 

• Preliminary implementation discards 1b-2b 
interference:

The inclusive cross section of the process in which a neutrino or antineutrino scatters off a 
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Spectral function for 40Ar
⦿ ADC(2) truncation, NNLOsat interaction

Neutrons

Spectral function of 40Ar

V.#Somà,#CB#et#al.,#in#preparation

- Experimental datat now available for Jlab:
H. Dai et al., arXiv:1803.01910

- Ab initio simulations based on the ADC(2) truncation 
of the N2LO-sat Hamiltoninan

# Validation of initial state correlation before they are 
implementer in neutrino-40Ar simulations
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Summary
Saturating chiral interactions and 3N forces:

" Description of nuclear g.s. in the pf shell is improved-especially in the 
trends w.r.t. iso-sopin asymmetry.

" Radii: newer generations of chiral interaction can give satisfactory radii.
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The charge elastic form factor for16O

✤ The N2LO results are taken from D. Lonardoni, et. al, Phys. Rev. C97, 044318 (2018) where two 
different coordinate-space cutoffs have been adopted
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FIG. 5. Charge densities in 16O. The (green) dots and the
dashed (red) line are the same as Fig. 3. The dot-dashed
(black) line corresponds to the full SCGF density calculated
at the ADC(3) level.

It is visible that up to q = 3 fm�1 the removal of the
center-of-mass contamination enhances the strength and
improves the agreement between the OpRS and the QMC
and the calculations of Ref. [44]. For larger values of
the momentum we found some discrepancies for both the
OpRS calculations.

For medium-mass nuclei, the center of mass correc-
tions are known to be less significant. Therefore, in
Fig. 5 we compare the experimental charge density in
16O with the full SCGF-ADC(3) and the QMC calcula-
tions. There is an overall nice agreement between the
theoretical curves. The SCGF-ADC(3) results perfectly
reproduce the experimental points, confirming the good-
ness of the NNLOsat potential which was fitted to repro-
duce the experimental radius of 16O.

Figure 6 displays the charge elastic form factor for 16O.
In this case we find an excellent agreement between the
SCGF, the QMC calculations and the experimental data.
The results of Ref. [49] for two di↵erent values of the
coordinate cuto↵s are also shown. While for R0=1.0 fm
the curve has the correct behavior some discrepancies are
visible for R0=1.2 fm.

In Fig. 7 we benchmark the intrinsic and uncorrected
OpRS single-nucleon momentum distribution of 4He with
the QMC calculation of Ref. [41]. The OpRS result, cor-
responding to the dashed (blue) line, correctly follows
that of the dressed ADC(3) propagator, although the
agreement is not as close as in Fig. 2. Note that, also
in this case the subtraction of the center of mass compo-
nent has a sizable e↵ect, which is crucial for recovering
the agreement with the intrinsic QMC results.

The 16O single-nucleon momentum distributions ob-
tained within the SCGF-ADC(3) and QMC approach are
compared in Fig. 8. The di↵erences displayed in the tails
of the single-nucleon momentum distributions are clearly
visible in the lower panel of Fig. 8 where the logarithmic
scale has been used. The dashed (red) line, corresponding
to the QMC calculation, is found to be above the SCGF-
ADC(3) results for high momenta. This is likely to be

FIG. 6. Charge elastic form factor for 16O. The solid
(light green) and (violet) lines correspond to the calculation
of Ref. [49] for R0 = 1.0fm and R0 = 1.2fm coordinate-
space cuto↵s, respectively. The uncertainty bands include
the statistical MC uncertainties added in quadrature to the
uncertainty from the truncation of the chiral expansion. The
dashed (red) line is obtained within QMC Ref. [44] while the
dot-dashed (black) refers to the SCGF results calculated at
the ADC(3) level. The shaded area indicates the statistical
MC uncertainty. Experimental data are from Ref. [40].

FIG. 7. Momentum distributions of 4He. The dashed (red)
line corresponds to the QMC calculation [41], the dotted
(green) curve have been obtained using the SCGF-ADC(3)
propagator while the short-dashed (blue) and solid (black)
lines correspond to the total and intrinsic OpRS results, re-
spectively.

ascribed to the di↵erent choice made for the potentials.
In fact, the NNLOsat is much softer than the AV18+UIX
potential adopted in the QMC study. The use of an hard
potential implies the presence of stronger high momen-
tum components in the nuclear wave function. While the
QMC momentum distribution exhibits a long tail extend-
ing to p > 1 GeV, the softer potential adopted in our cal-
culations strongly reduce the SCGF-ADC(3) momentum
distribution in the high momentum region. In the upper
panel we observe an enhancement of the SCGF-ADC(3)
results with respect to the QMC calculation. This can be
explained by recalling that the QMC and SCGF-ADC(3)

16O⦿ ADC(2) truncation, NNLOsat interaction

Neutrons

Spectral function of 40Ar

A.#Cipollone,+N.#Rocco##
A.+Idini,+F.#Raimondi

P.+NavratilV.+Somà,+T.+Duguet

Applications to electron and neutrino scattering:

" Spectral functions (not only for 1-body!) are extracted naturally from 
the SCGF formalism.

" good reproduction of charge/momentum distribution and electron 
scattering.

" Inclusion of electroweak currents (1b and 2b) underway (by N. Rocco).

A.#Carbone



Results for Oxygen isotopes 

F. Raimondi, CB, arXiv:1711.04698 + in prep.
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                      Results for Oxygen isotopes 

•  GDR position of 16O reproduced
•  Hint of a soft dipole mode on the neutron-rich isotope

NNLOsat

σ from RPA response (discretized spectrum) vs σ from photoabsorption and Coulomb excitation
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                      Results for Oxygen isotopes 

•  GDR position of 16O reproduced
•  Hint of a soft dipole mode on the neutron-rich isotope

NNLOsat

σ from RPA response (discretized spectrum) vs σ from photoabsorption and Coulomb excitation

- GDR position of 16O reproduced

- Hint of a soft dipole mode on the 
neutron-rich isotope 

NNLOsat



Results for Calcium isotopes                      Results for Calcium isotopes 

•  GDR positions reproduced
•  Total sum rule reproduced but poor strength distribution (Lack of correlations)

NNLOsat

σ from RPA response (discretized spectrum) vs σ from photoabsorption and Coulomb excitation

                     Results for Calcium isotopes 

•  GDR positions reproduced
•  Total sum rule reproduced but poor strength distribution (Lack of correlations)

NNLOsat

σ from RPA response (discretized spectrum) vs σ from photoabsorption and Coulomb excitation

- Positions of GDRs reproduced

NNLOsat

F. Raimondi, CB, arXiv:1711.04698 + in prep.



Comparison of nuclear forces – ACa and AO

V.#Somà,#F.#Raimondi,#CB,#P.#Navrátil,#T.#Duguet,#in#preparation
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FIG. 4. Proton (top) and neutron (bottom) radii obtained
from IM-SRG and SCGF calculations with EM [20–22] and
NNLOsat [26] interactions. For protons, experimental values
from Table I are displayed.

oxygen chain, the heaviest one for which experimental in-
formation on both binding energies and radii is available
up to the neutron drip line. We showed that analysing
(p,p) scattering data allows one to obtain information
on nuclear sizes of unstable isotopes within 0.1 fm. The
combined comparison of measured charge/matter radii
and binding energies with state-of-the-art ab initio cal-
culations o↵ers unique insight on nuclear forces. On the
one hand, EM, a current standard for nuclear theory em-
ploying only 2-, 3- and 4-body observables in the fit of
the low-energy constants thus sticking to the (strict) re-
ductionist strategy, yields an excellent reproduction of
binding energies but significantly underestimates charge
and matter radii. On the other hand, unconventional
NNLOsat , while maintaining a good energy systematics,
clearly improves the description of absolute radii, though
leaving room for refinement for what concerns isotope
shifts. Given the alternative fitting procedure, such an
output raises questions about the choice of observables
that should be included in the fit and the resulting pre-
dictive power whenever this strategy is followed.

More precise information on oxygen radii, e.g. rch via
laser spectroscopy measurements, would allow confirming
our (p,p) analysis and further refining the present discus-
sion. Future, similar studies in heavier isotopes will also
preciously contribute to the systematic development of
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FIG. 5. Matter radii from our analysis and Ref. [33, 36]
compared to ab initio calculations with EM [20–22] and
NNLOsat [26] interactions. Bands span results from GGF
and MR-IMSRG many-body schemes.

nuclear forces. From the many-body point of view, the
consistent inclusion of higher-body terms in the charge
radius operator is envisaged and might eventually a↵ect
the present discussion. Finally, we stress that a simulta-
neous reproduction of binding energies and radii in stable
and neutron-rich nuclei is mandatory for reliable struc-
ture but even more for reaction calculations. Scattering
amplitudes and nucleon-nucleus interactions evolve as a
function of the size, which should be consistently taken
into account specially when more microscopic reaction
approaches are considered.
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Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces
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We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes from
the valley of stability to the neutron drip line. Both charge and matter radii are compared to state-of-the-art
ab initio calculations along with binding energy systematics. Experimental matter radii are obtained
through a complete evaluation of the available elastic proton scattering data of oxygen isotopes. We show
that, in spite of a good reproduction of binding energies, ab initio calculations with conventional nuclear
interactions derived within chiral effective field theory fail to provide a realistic description of charge and
matter radii. A novel version of two- and three-nucleon forces leads to considerable improvement of the
simultaneous description of the three observables for stable isotopes but shows deficiencies for the most
neutron-rich systems. Thus, crucial challenges related to the development of nuclear interactions remain.
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Our present understanding of atomic nuclei faces the
following major questions. Experimentally, we aim (i) to
determine the location of the proton and neutron drip lines
[1,2], i.e., the limits in neutron numbers N upon which, for
fixed proton number Z, with decreasing or increasing N,
nuclei are not bound with respect to particle emission, and
(ii) to measure nuclear structure observables offering sys-
tematic tests of microscopic models. While nuclear masses
have been experimentally determined for the majority of
known light and medium-mass nuclei [3], measurements of
charge and matter radii are typically more challenging.
Charge radii for stable isotopes have been accessed in the
past bymeans of electron scattering [4]. In recent years, laser
spectroscopy experiments allow extending such measure-
ments to unstable nuclei with lifetimes down to a few
milliseconds [5]. Matter radii are determined by scattering
with hadronic probes which requires a modelization of the
reaction mechanism. Theoretically, intensive works have
also been performed towards linking a universal description
of atomic nuclei to elementary interactions [6–8] amongst
constituent nucleons and, ultimately, to the underlying
theory of strong interactions, quantum chromodynamics
(QCD). If accomplished, this ab initio description would be
beneficial both for a deep understanding of known nuclei
(stable and unstable, totalling around 3300) and to predict on
reliable bases the features of undiscovered ones (few more
thousands are expected). Many of the latter are not, in the
foreseeable future, experimentally at reach, yet they are
crucial to understanding nucleosynthesis phenomena,
modelled using large sets of evaluated data and of calculated
observables.
The reliability of first-principles calculations depends

upon a consistent understanding of fundamental

observables: ground-state characteristics of nuclei related
to their existence (masses, expressed as binding energies)
and sizes (expressed as root mean square—rms—radii).
Special interest resides in the study of masses and sizes for
a given element along isotopic chains. Experimentally, their
determination is increasingly difficult as one approaches
the neutron drip line; as of today, the heaviest element with
available data on all existing bound isotopes is oxygen
(Z ¼ 8) [3]. Using theoretical simulations, the link between
nuclear properties and internucleon forces can be explored
for different N=Z values, thus, critically testing both our
knowledge of nuclear forces and many-body theories.
In this work, we focus on oxygen isotopes for which, in

spite of the tremendous progress of recent ab initiomethods,
a simultaneous reproduction of masses and radii has not yet
been achieved. We present important findings from novel
ab initio calculations along with a complete evaluation of
matter radii, rm, for stable and neutron-rich oxygen isotopes.
Here, rm are deduced via a microscopic reanalysis of proton
elastic scattering data sets. They complement charge radii
rch, offering an extended comparison through the isotopic
chain that allows testing state-of-the-art many-body calcu-
lations. We show that a recent version of two- and
three-nucleon (2N and 3N) forces leads to considerable
improvement in the critical description of radii.
A viable ab initio strategy consists in exploiting the

separation of scales between QCD and (low-energy)
nuclear dynamics, taking point nucleons as degrees of
freedom. For decades, realistic 2N interactions were built
from fitting scattering data, see, e.g., [6]. However, model
limitations were seen through discrepancies with exper-
imental data, like underbinding of finite nuclei and inad-
equate saturation properties of extended nuclear matter.
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FIG. 4. Proton (top) and neutron (bottom) radii obtained
from IM-SRG and SCGF calculations with EM [20–22] and
NNLOsat [26] interactions. For protons, experimental values
from Table I are displayed.

oxygen chain, the heaviest one for which experimental in-
formation on both binding energies and radii is available
up to the neutron drip line. We showed that analysing
(p,p) scattering data allows one to obtain information
on nuclear sizes of unstable isotopes within 0.1 fm. The
combined comparison of measured charge/matter radii
and binding energies with state-of-the-art ab initio cal-
culations o↵ers unique insight on nuclear forces. On the
one hand, EM, a current standard for nuclear theory em-
ploying only 2-, 3- and 4-body observables in the fit of
the low-energy constants thus sticking to the (strict) re-
ductionist strategy, yields an excellent reproduction of
binding energies but significantly underestimates charge
and matter radii. On the other hand, unconventional
NNLOsat , while maintaining a good energy systematics,
clearly improves the description of absolute radii, though
leaving room for refinement for what concerns isotope
shifts. Given the alternative fitting procedure, such an
output raises questions about the choice of observables
that should be included in the fit and the resulting pre-
dictive power whenever this strategy is followed.

More precise information on oxygen radii, e.g. rch via
laser spectroscopy measurements, would allow confirming
our (p,p) analysis and further refining the present discus-
sion. Future, similar studies in heavier isotopes will also
preciously contribute to the systematic development of
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FIG. 5. Matter radii from our analysis and Ref. [33, 36]
compared to ab initio calculations with EM [20–22] and
NNLOsat [26] interactions. Bands span results from GGF
and MR-IMSRG many-body schemes.

nuclear forces. From the many-body point of view, the
consistent inclusion of higher-body terms in the charge
radius operator is envisaged and might eventually a↵ect
the present discussion. Finally, we stress that a simulta-
neous reproduction of binding energies and radii in stable
and neutron-rich nuclei is mandatory for reliable struc-
ture but even more for reaction calculations. Scattering
amplitudes and nucleon-nucleus interactions evolve as a
function of the size, which should be consistently taken
into account specially when more microscopic reaction
approaches are considered.
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FIG. 7. Point-proton density distributions of 34Si and 36S
computed using two di↵erent chiral interactions, both in two
versions (with and without three-nucleon forces).
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FIG. 8. Charge density distribution of 36S computed with
four di↵erent (2N+3N) interactions. The experimental charge
density of 36S is also visible [17].
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FIG. 9. One-nucleon addition and removal spectral strength
distribution along with associated e↵ective single-particle en-
ergies in 34Si. Left panel: neutrons. Right panel: protons.
Dashed lines indicate corresponding Fermi energies.
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FIG. 10. Same as Fig. 9 for 36S.
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FIG. 11. One-neutron addition spectral strength distribution
for states above the Fermi energy. Left panel: 34Si (final states
in 35Si). Right panel: 36S (final states in 37S). Experimental
states observed via (d,p) reactions are represented in dashed
lines. Experimental data are taken from Refs. [9, 13, 14].

Validated by charge distributions and neutron quasiparticle spectra:
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FIG. 3. ADC(2) ground-state point-proton density distribu-
tion of 34Si for di↵erent model space dimensions at ~! = 20
MeV (left) and for di↵erent harmonic oscillator frequencies at
N

max

= 13 (right). Upper panels: linear vertical scale. Lower
panels: logarithmic vertical scale.
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FIG. 4. Charge and proton densities of 34Si and 36S at the
ADC(2) level. The experimental charge density of 36S (taken
from Ref. [17]) is also visible.
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FIG. 5. Angular dependence of the form factor obtained for
300 MeV electron scattering on 34Si and 36S. A calculation
with the charge density of 36S scaled to 14 protons is shown
for comparison.
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FIG. 6. Point-proton density distributions of 34Si and 36S.
Gorkov ADC(2) results are compared to (left panel) Gorkov
ADC(1) and (right panel) Dyson ADC(2) calculations.

- 34Si is unstable, charge distribution is still unknown

- Suggested central depletion from mean-field 
simulations

- Ab-initio theory confirms predictions

- Other theoretical and experimental evidence:
Phys. Rev. C 79, 034318 (2009),
Nature Physics 13, 152–156 (2017).

Duguet,*Somà,*Lecuse,*CB,*Navrátil,
Phys.Rev.*C95,*034319 (2017)
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