Final State Interactions in GiBUU

With Kai Gallmeister

Nuclear ground state

density distribution: Woods-Saxon (or harm. Oscillator)particle momenta: 'Local Thomas-Fermi approximation'

$$f_{(n,p)}(\vec{r},\vec{p}) = \Theta\left[p_{F(n,p)}(\vec{r}) - |\vec{p}|\right]$$

Fermi-momentum:

$$p_{F(n,p)}(\vec{r}) = \left(3\pi^2 \rho_{(n,p)}(\vec{r})\right)^{1/3}$$

Fermi-energy:

$$E_{F(n,p)} = \sqrt{p_{F(n,p)}^2 + m_N^2} + U_{(n,p)}(\vec{r}, p_F)$$

potential: see above

Testparticle ansatz

 $\left[\partial_t + (\nabla_p H_i)\nabla_r - (\nabla_r H_i)\nabla_p\right]f_i(\vec{r}, t, \vec{p}) = C\left[f_i, f_j, \dots\right]$

idea:

approximate full phase-space density distribution by a sum of delta-functions

$$f(\vec{r}, t, \vec{p}) \sim \sum_{i=1}^{N_{\text{test}}} \delta\left(\vec{r} - \vec{r}_i(t)\right) \delta\left(\vec{p} - \vec{p}_i(t)\right)$$

each delta-function represents one (test-)particle with a sharp position and momentum

Iarge number of test particles needed

"full ensembles" technique

every testparticle may interact with every other onerescaling of cross section

$$\sigma_{ij} o rac{1}{N_{ ext{test}}} \sigma_{ij}$$

Pros:

Iocality of collisions

Cons:

calculational time: collisions scale with (N_{test})²

energy not conserved per ensemble, on average only

conserved quantum numbers are respected on average only ('canonical')

 $\underbrace{K} + \underbrace{\overline{K}} \rightarrow \pi\pi$

ensemble i ensemble j

Ensemble techniques

"parallel ensembles" technique idea:

testparticle index is also ensemble index

N_{test} independent runs, densities etc. may be averaged

Pros:

Calculational time: collisions scale with N_{test}

conserved quantum numbers are strictly respected ('microcanonical')

Cons:

non-locality of collisions

$$\sigma_{ij} \simeq 30 \,\mathrm{mb} \ \rightarrow \ r = 1 \,\mathrm{fm}$$

Time evolution

- time axis is discretized
- collisions only happen at discrete time steps,
- between collisions: propagation (through mean fields)
- **Lypical time-step size:** $\Delta t = 0.1 0.2 \, \text{fm}/c$
- start at t=0 and run N timesteps until t_{max}
- typically:

$$N \Delta t = t_{\rm max} \approx 20\text{-}50 \,\mathrm{fm}/c$$

 $\implies N \approx 100\text{-}1000$

density/potentials: if not analytically, recalc at every step

Collision term

Contains one-, two-, and three-body collisions $C = C_{1 \to X} + C_{2 \to X} + C_{3 \to X}$

(1) resonance decays
(2) two-body collisions
elastic and inelastic
any number of particles in final state
baryon-meson, baryon-baryon, meson-meson
(3) three-body collisions (only relevant at high densities)

Now energies: cross sections based on resonances e.g. $\pi N \rightarrow N^*$, $NN \rightarrow NN^*$

high energies: string fragmentation

Collision term

2-to-2 term $(12 \leftrightarrow 1'2')$ $C^{(2,2)}(x,p_1)$ $= C_{\text{sain}}^{(2,2)}(x,p_1) - C_{\text{loss}}^{(2,2)}(x,p_1)$ $=\frac{\mathcal{S}_{1'2'}}{2p_1^0 q_{1'} q_{2'}} \int \frac{\mathrm{d}^4 p_2}{(2\pi)^4 2p_2^0} \int \frac{\mathrm{d}^4 p_{1'}}{(2\pi)^4 2p_{1'}^0} \int \frac{\mathrm{d}^4 p_{2'}}{(2\pi)^4 2p_{1'}^0}$ $\times (2\pi)^4 \delta^{(4)} \left(p_1 + p_2 - p_{1'} - p_{2'} \right) \overline{|\mathcal{M}_{12 \to 1'2'}|^2}$ $\times [F_{1'}(x, p_{1'})F_{2'}(x, p_{2'})\overline{F}_1(x, p_1)\overline{F}_2(x, p_2)]$ $-F_1(x,p_1)F_2(x,p_2)\overline{F}_{1'}(x,p_{1'})\overline{F}_{2'}(x,p_{2'})$

 $F(x,p) = 2\pi g f(x,p) \mathcal{A}(x,p)$ $\overline{F}(x,p) = 2\pi g [1 - f(x,p)] \mathcal{A}(x,p)$

Pauli-blocking

Cross section: Geometric interpretation

Eparticle i and particle j collide, if during timestep Δt

$$r_{ij}(t) = |\vec{r}_i(t) - \vec{r}_j(t)| \stackrel{!}{\leq} \frac{\sqrt{\sigma_{ij}}}{\pi}$$

problem 1: only for 2-body collisions

problem 2: not invariant under Lorentz-Trafos

different frames may lead to different ordering of collisionsspecific frame ('calculational frame') needed

Relativistically correct collision criterion

Kodama criterion:

Colliding particle's coordinates in cm system:

 $\vec{x}_{i}^{cm}(t^{cm}) = \vec{x}_{i}^{cm}(t_{i}^{cm}) + \vec{\beta}_{i}^{cm}(t^{cm} - t_{i}^{cm}).$

Spatial distance of colliding particles as function of time in cm system:

$$\begin{aligned} d^2(t^{cm}) &= \left(\vec{x}_{12}^{\,cm} + \vec{\beta}_{12}^{\,cm} t^{cm}\right)^2 \\ \vec{x}_{12}^{\,cm} &= \vec{x}_1^{\,cm} - \vec{x}_2^{\,cm} - \vec{\beta}_1^{\,cm} t_1^{cm} + \vec{\beta}_2^{\,cm} t_2^{cm} \\ \vec{\beta}_{12}^{\,cm} &= \vec{\beta}_1^{\,cm} - \vec{\beta}_2^{\,cm} \end{aligned}$$

Impact parameter:

$$b^{2} = (\vec{x}_{12}^{cm})^{2} - \frac{\left(\vec{x}_{12}^{cm} \cdot \vec{\beta}_{12}^{cm}\right)^{2}}{\left(\vec{\beta}_{12}^{cm}\right)^{2}} \qquad \qquad t_{min}^{cm} = -\frac{\vec{x}_{12}^{cm} \cdot \vec{\beta}_{12}^{cm}}{\left(\vec{\beta}_{12}^{cm}\right)^{2}}$$

Cross section: Stochastic interpretation

Collision rate per unit phase space

massless, no $(2\pi)^3$

$$\frac{\Delta N_{\text{coll}}^{2 \to 2}}{\Delta t \Delta^3 x \Delta^3 p_1} = \frac{\Delta^3 p_2}{2E_1 2E_2} f_1 f_2 \int \frac{\mathrm{d}^3 p_1'}{2E_1'} \frac{\mathrm{d}^3 p_2'}{2E_2'} |\mathcal{M}| \delta^{(4)}(p_1 + p_2 - p_1' - p_2')$$

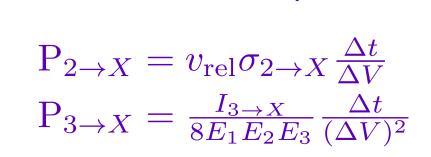
$$\sigma_{22} = \frac{1}{2s} \int \frac{\mathrm{d}^3 p_1'}{2E_1'} \frac{\mathrm{d}^3 p_2'}{2E_2'} |\mathcal{M}| \delta^{(4)}(p_1 + p_2 - p_1' - p_2')$$
$$f_i = \frac{\Delta N_i}{\Delta^3 x \Delta^3 p}$$

Collision probability in unit box $\Delta^3 x$ and unit time Δt

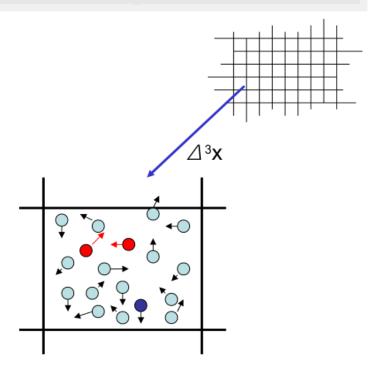
$$P_{22} = \frac{\Delta N_{\text{coll}}^{2 \to 2}}{\Delta N_1 \Delta N_2} = v_{\text{rel}} \sigma_{22} \frac{\Delta t}{\Delta^3 x} \qquad \left(v_{\text{rel}} = \frac{s}{2E_1 E_2} \right)$$

generalisable to n-body collisions

Cross section: Stochastic interpretation



discretize time and space



together with 'full ensemble'

n particles in cell, randomly select n/2 pairs

$$\mathbf{P}_2 \to \frac{n(n-1)/2}{n/2} \mathbf{P}_2$$

calculational time: collisions scale approx. with N_{test}
 labeled as "local ensemble method"

Resonance Model

■ resonance parameters, decays modes, widths: **D.Manley, E.Saleski, PRD45 (1992) 4002** PWA of $\pi N \rightarrow \pi N$ and $\pi N \rightarrow \pi \pi N$, **consistency**!!!

	$M_0 \qquad \Gamma_0 \qquad \mathcal{M}^2 /16\pi \;[\mathrm{mb}\mathrm{GeV}^2]$					branching ratio in $\%$						
	rating	[MeV]	[MeV]	NR	ΔR	πN	ηN	$\pi \Delta$	ho N	σN	$\pi N^*(1440)$	$\sigma \Delta$
$P_{11}(1440)$	****	1462	391	70		69		22_P		9		
$S_{11}(1535)$	***	1534	151	8	60	51	43		$2_{S} + 1_{D}$	1	2	
$S_{11}(1650)$	****	1659	173	4	12	89	3	2_D	3_D	2	1	
$D_{13}(1520)$	****	1524	124	4	12	59		$5_{S} + 15_{D}$	21_S			
$D_{15}(1675)$	****	1676	159	17		47		53_D				
$P_{13}(1720)$	*	1717	383	4	12	13			87_P			
$F_{15}(1680)$	****	1684	139	4	12	70		$10_P + 1_F$	$5_P + 2_F$	12		
$P_{33}(1232)$	****	1232	118	OBE	210	100						
$S_{31}(1620)$	**	1672	154	7	21	9		62_D	$25_{S} + 4_{D}$			
$D_{33}(1700)$	*	1762	599	7	21	14		$74_{S} + 4_{D}$	8_S			
$P_{31}(1910)$	****	1882	239	14		23					67	10_P
$P_{33}(1600)$	***	1706	430	14		12		68_P			20	
$F_{35}(1905)$	***	1881	327	7	21	12		1_P	87_P			
$F_{37}(1950)$	****	1945	300	14		38		18_F				44_F

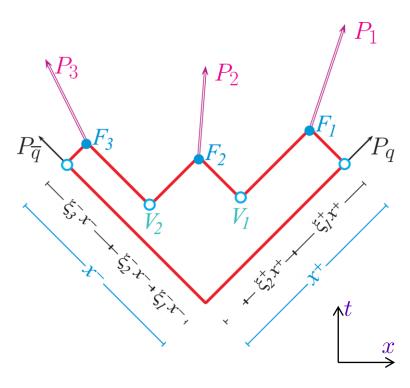
$$\Gamma_{R \to ab}(m) = \Gamma_{R \to ab}^{0} \frac{\rho_{ab}(m)}{\rho_{ab}(M^{0})}$$
$$\rho_{ab}(m) = \int p_{a}^{2} p_{b}^{2} \mathcal{A}_{a}(p_{a}^{2}) \mathcal{A}_{b}(p_{b}^{2}) \frac{p_{ab}}{m} B_{L_{ab}}^{2}(p_{ab}R) \mathcal{F}_{ab}^{2}(m)$$

(Lund) String-fragmentation (Pythia)

idea:

hard qq scattering (pQCD) creates a color flux tube ('string') which then fragments into hadrons (via qq pair production)

- high energy: 10 GeV...
- "Lund string model" implementation: Pythia (Jetset)
- only low-lying resonances
- phenomenological fragmentation function (when and how does a string break?)
- parameters fitted to data (different 'tunes', e.g. to HERMES data, available)



Init

in principle: 1)initialize nucleons 2)perform one initial elementary event on one nucleon 3)propagate nucleons and final state particles correct, but 'waste of time'

idea:

final state particles do not really disturb the nucleus

2 particle classes:

- 'real particles'
- 'perturbative particles'

Particle classes

'real particles'
nucleons
may interact among each other
interaction products are again 'real particles'

'perturbative particles'
final state particles of initial event
may only interact with 'real particles'
interaction products are again 'perturbative particles'

'real particles' behave as if other particles are not there

total energy, total baryon number, etc. not conserved!

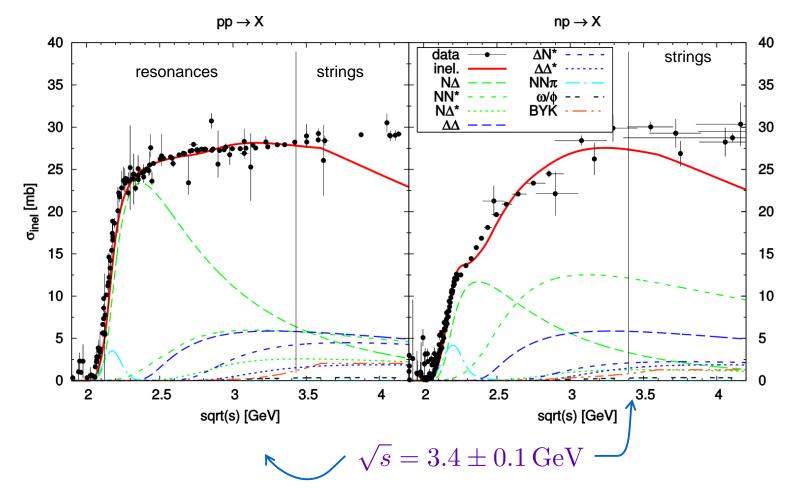
init

- 1)initialize nucleons
- 2)perform one initial elementary event on every nucleon3)propagate nucleons and final state particles
- final states particles are 'perturbative particles'different final states do not interfere
- every final state particle gets a 'perturbative weight':
 value: cross section of initial event
 is inherited in every FSI
 for final spectra the 'perturbative weights' have to be added, not only the particle numbers

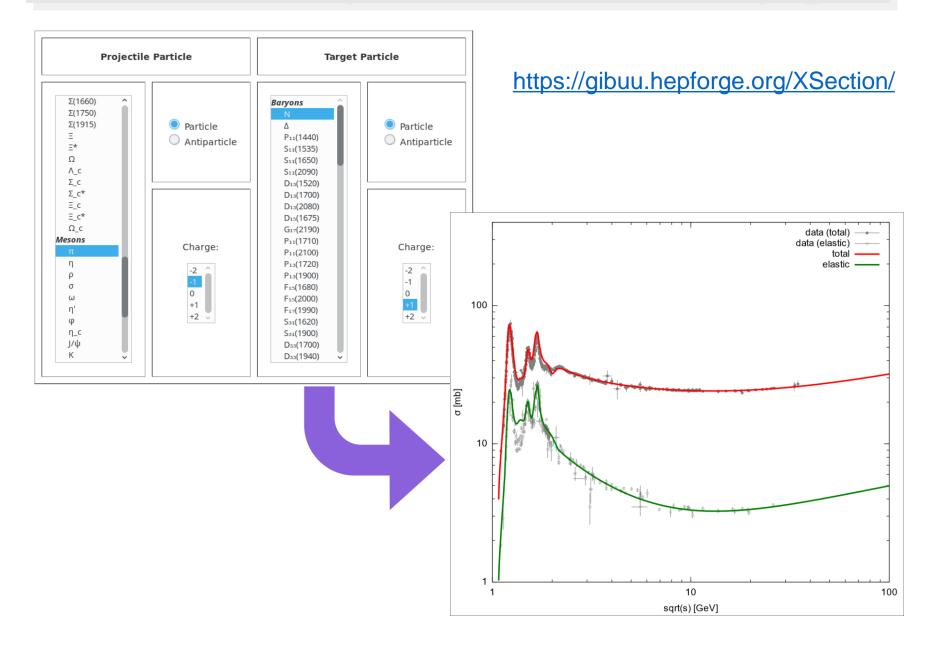
Test of FSI

Baryon-Baryon Collisions

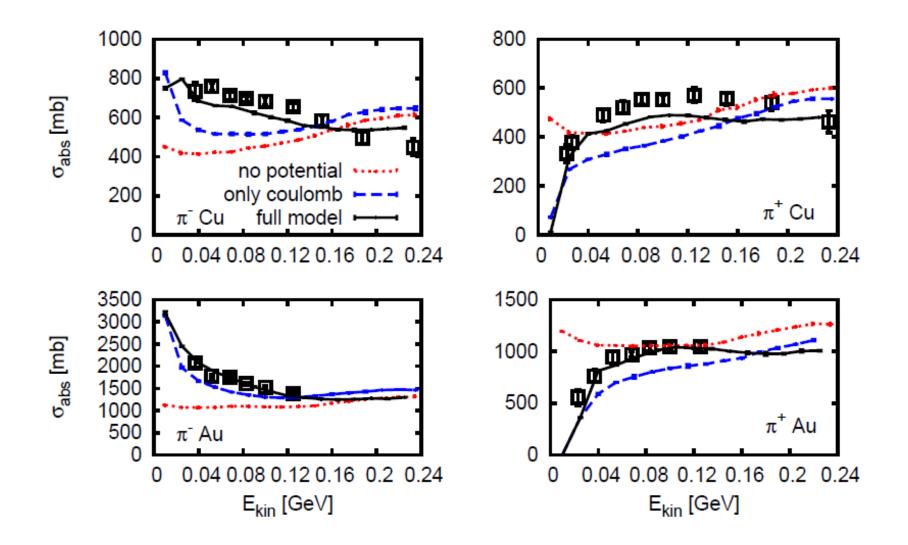
low energy: resonance model, high energy: string model no nice peaks due to two-body kinematics $NN \rightarrow NR, \Delta R \ (R=\Delta, N^*, \Delta^*)$



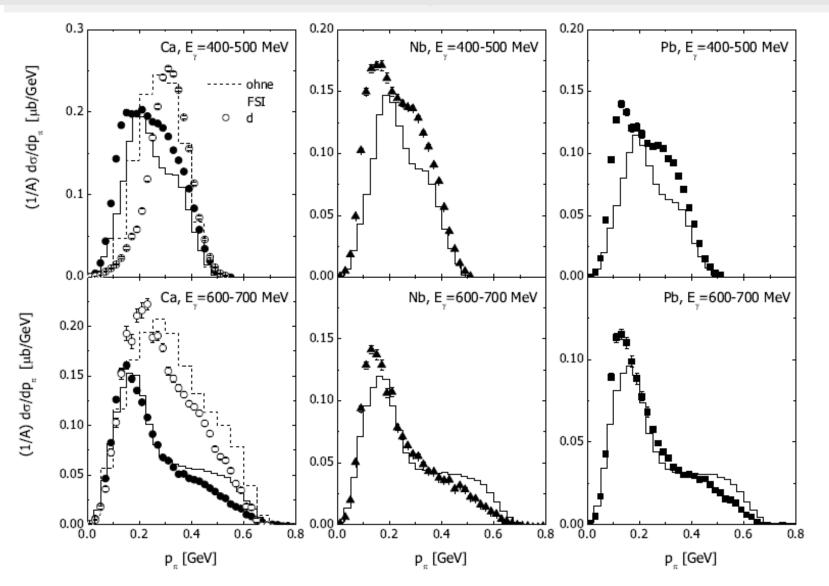
Cross section plotter on GiBUU homepage



Pion absorption

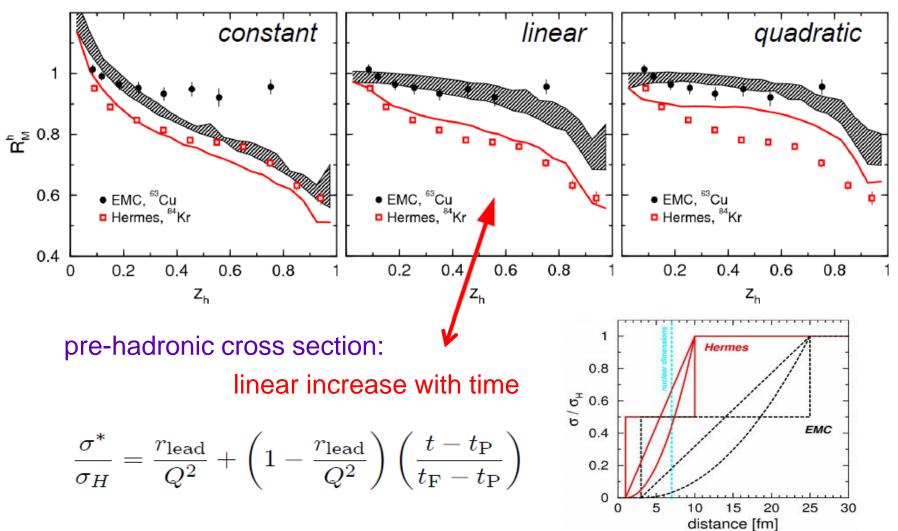


Pi0 Photoproduction



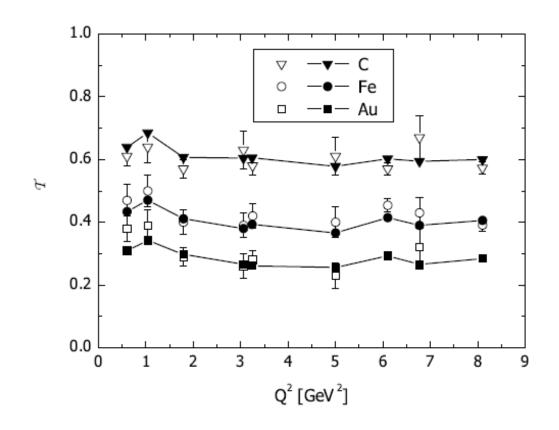
EMC & Hermes

describe simultanously: • EMC@100...280GeV • Hermes@27GeV



cf. also Dokshitzer et al.; Farrar et al.

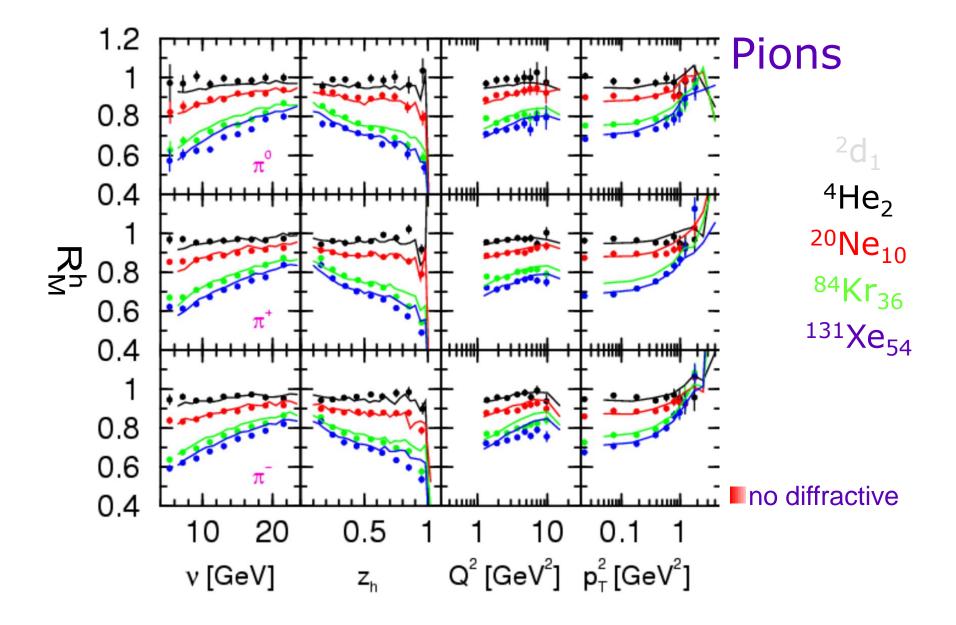
Nucleon transparencies



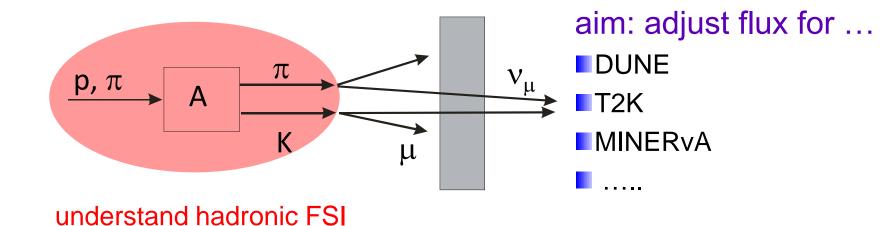
Data from JLAB, SLAC

Excellent agreement over wide kinematical range

Hermes@27: A.Airapetian et al., NPB780(2007)1



HARP, NA61/Shine

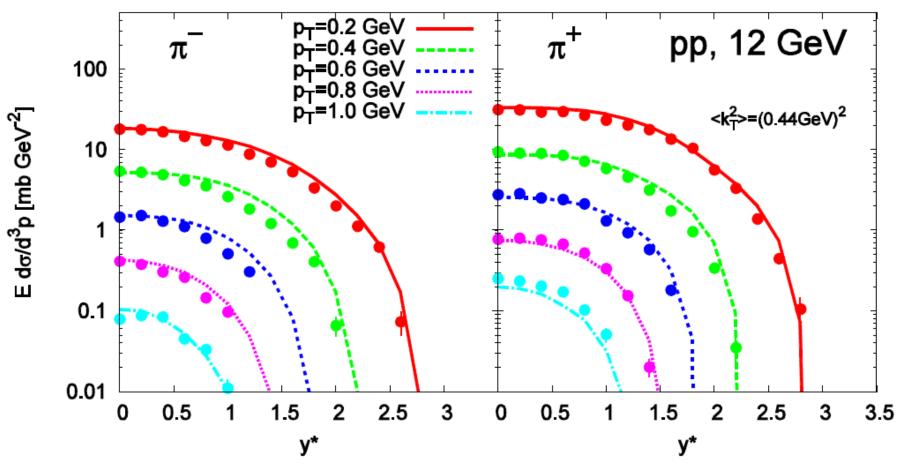


proton, pion beambeam energies: 3 – 30 GeV/c

critical test for hadronic fsi

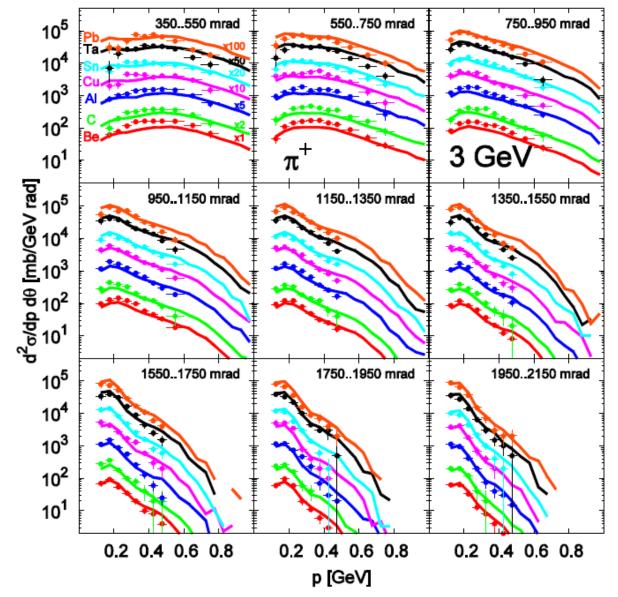
elementary: $pp \rightarrow \pi^{\pm} X$

data: V. Blobel et al.. Nucl. Phys. B69 (1974) 454



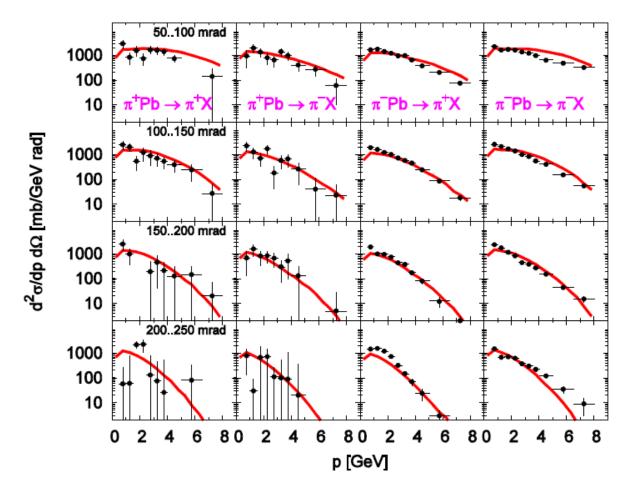
GiBUU (Pythia v6.4) describes elementary data very well

$pA \rightarrow \pi^+ X$ (backward, 3 GeV/c)



$p^{\pm} Pb \rightarrow \pi^{\pm} X$ (forward, 12 GeV/c)

data: M.G. Catanesi et al. (HARP), arXiv:0902.2105 [hep-ex]



forward production described very wellpion beam slightly better described than proton beam

Conclusions

- Transport Theory allows to bind nuclei and propagate hadrons in their potentials
- No extra binding energy corrections needed
- Transport will (must) replace simple MCs