### NuWro FSI model

Kajetan Niewczas and Jan T. Sobczyk

Wrocław University

ECT\* workshop, Trento, July 9-13, 2018

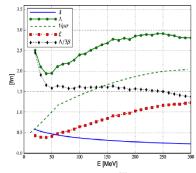


#### Cascade model – basic assumptions

- energies transfered to the target are large relative to nucleons binding energy
- particle wave packets allow for sufficient identification of particle position, momentum, energy
- lacksquare particle de Broglie wavelength  $\hat{\lambda}$  is much smaller than average internucleon distance d
- $\hat{\lambda}$  is also much smaller than mean free path  $\Lambda$
- nucleus radius R is much larger than A: many scattering are expected and interference terms between scattered waves will cancell each other
- lacksquare d is smaller than  $\Lambda$  and the time between scatterings  $\Delta t$  is larger than the interaction time T



#### Cascade model – basic assumptions


altogether

$$\hat{\lambda} << d < \Lambda < R$$
.

 $\blacksquare$  assuming that interaction time is  $\mathcal{T} \sim 10^{-23} \text{s}$  (from  $\Delta$  width)

$$\frac{\Lambda}{\beta c} > T \quad \rightarrow \quad \frac{\Lambda}{3\beta} > 1 \text{fm}.$$

- on the right: Pauli blocking effect (difference between  $\Lambda$  and  $\frac{1}{\rho\sigma}$ ) is important
- consider  $p^{208}$ Pb scattering
- assume that nucleon entering lead nucleus gains kinetic energy
   40 MeV.



**Fig. 1.** Central collision proton on  $^{208}$ Pb: $\hat{\lambda}$ ,  $\Lambda$ ,  $\xi = N\hat{\lambda}/10$ ,  $1/\rho\sigma$  and  $N/3\beta$  as a function of incident proton energy.

from Y Yariv

With  $d \approx 2$  fm, a condition  $d, \Lambda > 5\hat{\lambda}$  implies E > 60 MeV (i.e.

ho > 340 MeV/c). The cascade model makes sense.

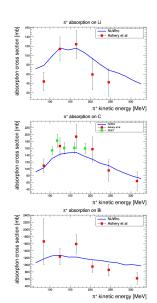


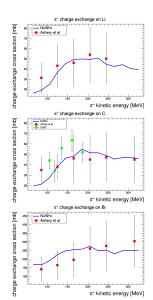
#### Cascade model – sampling reinteraction points

For a particle at point  $\vec{r}$ :

- lacksquare a probability to travel distance x is  $P(x) = \exp\left(-\frac{x}{\lambda}\right)$
- mean free path is calculated

$$\lambda(\vec{r}) = \frac{1}{\sigma_n(\vec{r})\rho_n(\vec{r}) + \sigma_p(\vec{r})\rho_p(\vec{r})}$$


where  $\rho_p$  and  $\rho_n$  are densities of protons and neutrons;  $\sigma_p$  and  $\sigma_n$  are total cross sections for scattering off proton and neutrons


The simplest cascade model realization

- select a step e.g. 0.2 fm
  - $\blacksquare$  not too large ( $\lambda$  is defined only locally)
  - not too small (limited computer time)
- with the MC algorithm decide if an interaction occured
  - if YES, select its type
    - check for Pauli blocking and generate it
  - if NO, move particle by 0.2 fm



#### Performance of NuWro cascade for pions







# NuWro cascade for nucleons In-medium modifications

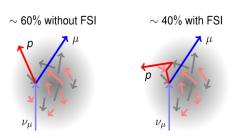
- V.R. Pandharipande, S. Piper corrections to the elastic part
  - ightarrow Reduced relative nucleon velocity and interaction phase space
  - $\rightarrow$  Potential obtained from Urbana  $v_{14}$  + TNI Hamiltonian

V.R. Pandharipande, S. Piper, Phys. Rev. C45 (1992) 791-798

- Inelasitc cross section modification:  $\sigma_{
  m NN}^*=(1-0.2\rho/\rho_0)\sigma_{
  m NN}^{\rm free}$  Y. Zhang, Z. Li, and P. Danielewicz, Phys. Rev. C75 (2007) 034615
- nucleon-nucleon correlation effects included

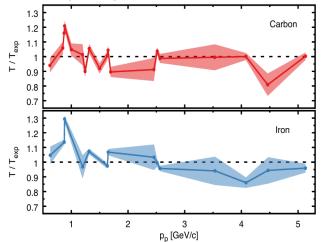
How to test the model?

- Proton transperency
- Important to distinguish MC and experimental transparency.




## Nuclear transparency

#### Definition


Nuclear transparency is the average **probability** for a knocked-out **proton** to **escape** the nucleus **without significant reinteraction**.

e.g. measured for Carbon:  $T \simeq$  0.60 [D. Abbott *et al.*, PRL 80 (1998), 5072]





# Nuclear transparency



Simulations done for NC  $\nu_e$  scattering on protons with Spectral Function

