
Gabriel Perdue // @gnperdue
Fermi National Accelerator Laboratory // @Fermilab
ECT, Trento, July 2018

AI for MC

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �2

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �3

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �4

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �5

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Outline• Neural networks and deep learning (and machine
learning, more broadly) for event generators.
- Two "levels":
• "That sounds promising. I see where you are going

there..."
• "Why the heck would you do that!?"

• Conclusions

�6

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

The sane... and the more... speculative.
• Various ML techniques show real promise for speeding up slow calculations.

There are many cases where we have solve very complex expressions using
algorithms with terrible (even exponential) scaling but where a ML algorithm can
approximate the result to very tolerable precision in fixed time.
- Will show examples for MC Integration, and
- parametric regression for LQCD (won't have time, but see PRD 97, 094506).
• More speculatively, we may also use ML algorithms as event generators directly:
- Demonstrated success for simple detector geometries for electromagnetic showers using

Generative Adversarial Networks,
- Success with recurrent and other sequence-based models on language problems suggest we

could produce event generators based on a mixture of theory and learned models.
• Bonus topic - also won't have time, but see arXiv 1805.00905 for an interesting application of

NNs to form factor fitting (not exactly MC work, but probably interesting to this audience).

�7

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �8

MC integration
* https://indico.cern.ch/event/568875/ (MC4BSM 2017), J. Bendavid
* arXiv 1707.00028, J. Bendavid
* arXiv 1603.02754 (xgboost)
* arXiv 1406.2661 (GAN foundation paper, many others)
* (plus more GAN references in the next section)

https://indico.cern.ch/event/568875/

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

MC Sampling
• Simplest possible approach:
- randomly sample the function with a uniform distribution,
- compute a weight for each sample based on the value and the sampling size,
- integral is the weighted sum of all samples.
- Generation with accept-reject.
• Naive implementations are very inefficient.
- Some regions of the function are much more important than others for computing an

integral - importance sampling:
• instead of sampling from a uniform distribution, use some generating probability,
• now weights are modified by the value of the generating distribution,
• maximally efficient case - the generating distribution is a good approximation of the

integral we'd like to perform (and is easy to sample from).

�9

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

VEGAS
• Smart integration algorithm - Lepage, "A New Algorithm for Adaptive

Multidimensional Integration", Journal of Computational Physics 27,
192-203 (1978)
• Iterative - at each iteration build an adaptive-binned histogram that better

approximates the target function.
• Multidimensional functions are treated as products of one-dimensional

histograms - so, fast and simple, but the algorithm has trouble when
there are complex correlations across dimensions.
• Sometimes we can change basis or transform the function to make the

problem easier, but not always.

�10

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

FOAM
• S. Jadach, physics/0203033
• Truly multidimensional sampling

function.
- Use a decision tree to divide the phase

space into optimized hyper-rectangles.
- Sample uniformly within each hyper-

rectangle to determine whether and
where to perform a binary split (until a
stopping condition is finally met within the
cell).

- Weights are proportional the integrals
over hyper-rectangles.

- Weighted sampling by hyper-rectangle,
then randomly within the volume.

�11

Monte Carlo Integration and Generation: Example
Function

S. Jadach, physics/0203033
This is the “camel” function from the original VEGAS paper,
which can be generalized to N dimensions
Factorized approach will not work well
Significant low-density regions which cannot be easily
excluded a-priori

Josh Bendavid (Caltech/LPC) ML MC Integration 4

Figure 4: Predefined division points at x1 = 0.30, 0.40, and 0.65, for 2000 cells.

The solution is simple. (It applies for the hyperrectangular subspace of the parameter
space only.) The user has a possibility to provide Foam, for each variable, with the list of
a number of predefined values: the first splitting positions of the root cell. In the Foam
algorithm, it is checked if the list of predefined division points is not empty. If it is the
case, then instead of adopting the division parameter from the usual procedure described
in Section 3, Foam takes the division parameter from the list, and removes it from the
list. In this way the first few division points are taken from the “user-defined menu”,
if available, and the next ones are chosen with the usual methods. For narrow spikes
this method helps Foam to locate and surround them with as a dense group of cells as
necessary.

In Fig. 4 we show an example with two Gaussian peaks in which we requested the
Foam program to use the three predefined division points for the x1 variable. They are
clearly seen as three vertical division lines dividing the entire root cell. In the present
case, peaks are not so narrow and there is no real need for a predefined division. The
example is just to illustrate the principle of the method.

15

MC exploration of the cell

Choose best direction (division edge)
Find out best division ratio (division plane)

Generate series of MC events inside a cell

Split root cell if necessary
Choose next cell for the split

Choose randomly a cell

Choose randomly a point inside a cell

Build−up of the foam of cells

Generate MC event

Figure 1: Two stages in the cellular algorithm of Foam.

The immediate questions are: What kind or shapes of the cells to use and how to
cover the integration domain with cells? The reader may find in Ref. [6] an example of a
rather general discussion of these questions. In the Foam program the user may opt for one
of the three geometries of the cells: (1) simplices, (2) hyperrectangles and (3) Cartesian
products of simplices and hyperrectangles. For these particular types of cells there exists
an efficient method of parametrizing them in the computer memory and handling their
geometry.

The system of many cells can be created and reorganized all at once, as in VEGAS-type
programs [3–5], or in a more evolutionary way, as the cell split process of this work. In the
Foam algorithm we rely on the binary split of cells. Starting from the entire integration
domain (unit hyperrectangle or simplex) cells are split into two daughter cells, step by
step, until the user-defined memory limit is reached. The choice of next cell to be split
and the geometry of the split in the exploration phase are driven by the “target weight
distribution” of the generation process, see Section 3. The important advantage of any cell
split algorithm is that it assures automatically the full coverage of the integration domain
– simply because the primary root cell is identical to the entire integration domain and

7

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Regression Tree (CART)
• Decision rules for each branch.
• Leaf nodes contain scores.
• Useful in classification also.
• Function approximation.

�12

Regression Tree (CART)
• regression tree (also known as classification and regression

tree):
� Decision rules same as in decision tree
� Contains one score in each leaf value

Input: age, gender, occupation, …

age < 15

is male?

+2 -1 +0.1

Y N

Y N

Does the person like computer games

prediction score in each leaf

XGBoost: A Scalable Tree Boosting System

Tianqi Chen
University of Washington

tqchen@cs.washington.edu

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

ABSTRACT
Tree boosting is a highly e↵ective and widely used machine
learning method. In this paper, we describe a scalable end-
to-end tree boosting system called XGBoost, which is used
widely by data scientists to achieve state-of-the-art results
on many machine learning challenges. We propose a novel
sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions
of examples using far fewer resources than existing systems.

Keywords
Large-scale Machine Learning

1. INTRODUCTION
Machine learning and data-driven approaches are becom-

ing very important in many areas. Smart spam classifiers
protect our email by learning from massive amounts of spam
data and user feedback; advertising systems learn to match
the right ads with the right context; fraud detection systems
protect banks from malicious attackers; anomaly event de-
tection systems help experimental physicists to find events
that lead to new physics. There are two important factors
that drive these successful applications: usage of e↵ective
(statistical) models that capture the complex data depen-
dencies and scalable learning systems that learn the model
of interest from large datasets.

Among the machine learning methods used in practice,
gradient tree boosting [10]1 is one technique that shines
in many applications. Tree boosting has been shown to
give state-of-the-art results on many standard classification
benchmarks [16]. LambdaMART [5], a variant of tree boost-
ing for ranking, achieves state-of-the-art result for ranking

1Gradient tree boosting is also known as gradient boosting
machine (GBM) or gradient boosted regression tree (GBRT)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD ’16, August 13-17, 2016, San Francisco, CA, USA

c� 2016 Copyright held by the owner/author(s).

ACM ISBN .

DOI:

problems. Besides being used as a stand-alone predictor, it
is also incorporated into real-world production pipelines for
ad click through rate prediction [15]. Finally, it is the de-
facto choice of ensemble method and is used in challenges
such as the Netflix prize [3].
In this paper, we describe XGBoost, a scalable machine

learning system for tree boosting. The system is available as
an open source package2. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions 3 published at Kaggle’s
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
sembles. For comparison, the second most popular method,
deep neural nets, was used in 11 solutions. The success
of the system was also witnessed in KDDCup 2015, where
XGBoost was used by every winning team in the top-10.
Moreover, the winning teams reported that ensemble meth-
ods outperform a well-configured XGBoost by only a small
amount [1].
These results demonstrate that our system gives state-of-

the-art results on a wide range of problems. Examples of
the problems in these winning solutions include: store sales
prediction; high energy physics event classification; web text
classification; customer behavior prediction; motion detec-
tion; ad click through rate prediction; malware classification;
product categorization; hazard risk prediction; massive on-
line course dropout rate prediction. While domain depen-
dent data analysis and feature engineering play an important
role in these solutions, the fact that XGBoost is the consen-
sus choice of learner shows the impact and importance of
our system and tree boosting.
The most important factor behind the success of XGBoost

is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.
These innovations include: a novel tree learning algorithm
is for handling sparse data; a theoretically justified weighted
quantile sketch procedure enables handling instance weights
in approximate tree learning. Parallel and distributed com-
puting makes learning faster which enables quicker model ex-
ploration. More importantly, XGBoost exploits out-of-core

2https://github.com/dmlc/xgboost
3Solutions come from of top-3 teams of each competitions.

ar
X

iv
:1

60
3.

02
75

4v
3

 [c
s.L

G
]

10
 Ju

n
20

16

XGBoost: A Scalable Tree Boosting System

Tianqi Chen
University of Washington

tqchen@cs.washington.edu

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

ABSTRACT
Tree boosting is a highly e↵ective and widely used machine
learning method. In this paper, we describe a scalable end-
to-end tree boosting system called XGBoost, which is used
widely by data scientists to achieve state-of-the-art results
on many machine learning challenges. We propose a novel
sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions
of examples using far fewer resources than existing systems.

Keywords
Large-scale Machine Learning

1. INTRODUCTION
Machine learning and data-driven approaches are becom-

ing very important in many areas. Smart spam classifiers
protect our email by learning from massive amounts of spam
data and user feedback; advertising systems learn to match
the right ads with the right context; fraud detection systems
protect banks from malicious attackers; anomaly event de-
tection systems help experimental physicists to find events
that lead to new physics. There are two important factors
that drive these successful applications: usage of e↵ective
(statistical) models that capture the complex data depen-
dencies and scalable learning systems that learn the model
of interest from large datasets.

Among the machine learning methods used in practice,
gradient tree boosting [10]1 is one technique that shines
in many applications. Tree boosting has been shown to
give state-of-the-art results on many standard classification
benchmarks [16]. LambdaMART [5], a variant of tree boost-
ing for ranking, achieves state-of-the-art result for ranking

1Gradient tree boosting is also known as gradient boosting
machine (GBM) or gradient boosted regression tree (GBRT)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD ’16, August 13-17, 2016, San Francisco, CA, USA

c� 2016 Copyright held by the owner/author(s).

ACM ISBN .

DOI:

problems. Besides being used as a stand-alone predictor, it
is also incorporated into real-world production pipelines for
ad click through rate prediction [15]. Finally, it is the de-
facto choice of ensemble method and is used in challenges
such as the Netflix prize [3].
In this paper, we describe XGBoost, a scalable machine

learning system for tree boosting. The system is available as
an open source package2. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions 3 published at Kaggle’s
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
sembles. For comparison, the second most popular method,
deep neural nets, was used in 11 solutions. The success
of the system was also witnessed in KDDCup 2015, where
XGBoost was used by every winning team in the top-10.
Moreover, the winning teams reported that ensemble meth-
ods outperform a well-configured XGBoost by only a small
amount [1].
These results demonstrate that our system gives state-of-

the-art results on a wide range of problems. Examples of
the problems in these winning solutions include: store sales
prediction; high energy physics event classification; web text
classification; customer behavior prediction; motion detec-
tion; ad click through rate prediction; malware classification;
product categorization; hazard risk prediction; massive on-
line course dropout rate prediction. While domain depen-
dent data analysis and feature engineering play an important
role in these solutions, the fact that XGBoost is the consen-
sus choice of learner shows the impact and importance of
our system and tree boosting.
The most important factor behind the success of XGBoost

is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.
These innovations include: a novel tree learning algorithm
is for handling sparse data; a theoretically justified weighted
quantile sketch procedure enables handling instance weights
in approximate tree learning. Parallel and distributed com-
puting makes learning faster which enables quicker model ex-
ploration. More importantly, XGBoost exploits out-of-core

2https://github.com/dmlc/xgboost
3Solutions come from of top-3 teams of each competitions.

ar
X

iv
:1

60
3.

02
75

4v
3

 [c
s.L

G
]

10
 Ju

n
20

16

Learning a tree on single variable
• How can we learn functions?

• Define objective (loss, regularization), and optimize it!!

• Example:
� Consider regression tree on single input t (time)
� I want to predict whether I like romantic music at time t

 t < 2011/03/01

t < 2010/03/20

Y N

Y N

0.2

Equivalently

The model is regression tree that splits on time

1.2

1.0

Piecewise step function over time

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Boosted trees for regression

�13

Boosted Decision Trees for Regression

Boosted Decision Trees can
also be used for multivariate
regression problem

Replace log likelihood ratio
with generic function f (x̄)

Minimize deviation between
training sample and
regression function

Decision trees form a series
of piecewise continuous
approximations for the
function f (x̄) in the
multidimensional input space

Josh Bendavid (Caltech/LPC) ML MC Integration 12

Use of Machine Learning Techniques for improved
Monte Carlo Integration

Josh Bendavid (Caltech/LPC)

May 12, 2017
MC4BSM
SLAC

Josh Bendavid (Caltech/LPC) ML MC Integration 1

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Tree ensemble
• Ensembling (combining many ML models and voting/summing) is widely

known to improve accuracy.
• Diversity of trees allows exploitation of combinatorics to express very

complex outcomes with relatively simple model components.

�14

Regression Tree Ensemble

age < 15

is male?

+2 -1 +0.1

Y N

Y N

Use Computer
Daily

Y N

+0.9 -0.9

tree1 tree2

f() = 2 + 0.9= 2.9 f()= -1 - 0.9= -1.9

Prediction of is sum of scores predicted by each of the tree

XGBoost: A Scalable Tree Boosting System

Tianqi Chen
University of Washington

tqchen@cs.washington.edu

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

ABSTRACT
Tree boosting is a highly e↵ective and widely used machine
learning method. In this paper, we describe a scalable end-
to-end tree boosting system called XGBoost, which is used
widely by data scientists to achieve state-of-the-art results
on many machine learning challenges. We propose a novel
sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions
of examples using far fewer resources than existing systems.

Keywords
Large-scale Machine Learning

1. INTRODUCTION
Machine learning and data-driven approaches are becom-

ing very important in many areas. Smart spam classifiers
protect our email by learning from massive amounts of spam
data and user feedback; advertising systems learn to match
the right ads with the right context; fraud detection systems
protect banks from malicious attackers; anomaly event de-
tection systems help experimental physicists to find events
that lead to new physics. There are two important factors
that drive these successful applications: usage of e↵ective
(statistical) models that capture the complex data depen-
dencies and scalable learning systems that learn the model
of interest from large datasets.

Among the machine learning methods used in practice,
gradient tree boosting [10]1 is one technique that shines
in many applications. Tree boosting has been shown to
give state-of-the-art results on many standard classification
benchmarks [16]. LambdaMART [5], a variant of tree boost-
ing for ranking, achieves state-of-the-art result for ranking

1Gradient tree boosting is also known as gradient boosting
machine (GBM) or gradient boosted regression tree (GBRT)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD ’16, August 13-17, 2016, San Francisco, CA, USA

c� 2016 Copyright held by the owner/author(s).

ACM ISBN .

DOI:

problems. Besides being used as a stand-alone predictor, it
is also incorporated into real-world production pipelines for
ad click through rate prediction [15]. Finally, it is the de-
facto choice of ensemble method and is used in challenges
such as the Netflix prize [3].
In this paper, we describe XGBoost, a scalable machine

learning system for tree boosting. The system is available as
an open source package2. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions 3 published at Kaggle’s
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
sembles. For comparison, the second most popular method,
deep neural nets, was used in 11 solutions. The success
of the system was also witnessed in KDDCup 2015, where
XGBoost was used by every winning team in the top-10.
Moreover, the winning teams reported that ensemble meth-
ods outperform a well-configured XGBoost by only a small
amount [1].
These results demonstrate that our system gives state-of-

the-art results on a wide range of problems. Examples of
the problems in these winning solutions include: store sales
prediction; high energy physics event classification; web text
classification; customer behavior prediction; motion detec-
tion; ad click through rate prediction; malware classification;
product categorization; hazard risk prediction; massive on-
line course dropout rate prediction. While domain depen-
dent data analysis and feature engineering play an important
role in these solutions, the fact that XGBoost is the consen-
sus choice of learner shows the impact and importance of
our system and tree boosting.
The most important factor behind the success of XGBoost

is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.
These innovations include: a novel tree learning algorithm
is for handling sparse data; a theoretically justified weighted
quantile sketch procedure enables handling instance weights
in approximate tree learning. Parallel and distributed com-
puting makes learning faster which enables quicker model ex-
ploration. More importantly, XGBoost exploits out-of-core

2https://github.com/dmlc/xgboost
3Solutions come from of top-3 teams of each competitions.

ar
X

iv
:1

60
3.

02
75

4v
3

 [c
s.L

G
]

10
 Ju

n
20

16

XGBoost: A Scalable Tree Boosting System

Tianqi Chen
University of Washington

tqchen@cs.washington.edu

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

ABSTRACT
Tree boosting is a highly e↵ective and widely used machine
learning method. In this paper, we describe a scalable end-
to-end tree boosting system called XGBoost, which is used
widely by data scientists to achieve state-of-the-art results
on many machine learning challenges. We propose a novel
sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions
of examples using far fewer resources than existing systems.

Keywords
Large-scale Machine Learning

1. INTRODUCTION
Machine learning and data-driven approaches are becom-

ing very important in many areas. Smart spam classifiers
protect our email by learning from massive amounts of spam
data and user feedback; advertising systems learn to match
the right ads with the right context; fraud detection systems
protect banks from malicious attackers; anomaly event de-
tection systems help experimental physicists to find events
that lead to new physics. There are two important factors
that drive these successful applications: usage of e↵ective
(statistical) models that capture the complex data depen-
dencies and scalable learning systems that learn the model
of interest from large datasets.

Among the machine learning methods used in practice,
gradient tree boosting [10]1 is one technique that shines
in many applications. Tree boosting has been shown to
give state-of-the-art results on many standard classification
benchmarks [16]. LambdaMART [5], a variant of tree boost-
ing for ranking, achieves state-of-the-art result for ranking

1Gradient tree boosting is also known as gradient boosting
machine (GBM) or gradient boosted regression tree (GBRT)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD ’16, August 13-17, 2016, San Francisco, CA, USA

c� 2016 Copyright held by the owner/author(s).

ACM ISBN .

DOI:

problems. Besides being used as a stand-alone predictor, it
is also incorporated into real-world production pipelines for
ad click through rate prediction [15]. Finally, it is the de-
facto choice of ensemble method and is used in challenges
such as the Netflix prize [3].
In this paper, we describe XGBoost, a scalable machine

learning system for tree boosting. The system is available as
an open source package2. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions 3 published at Kaggle’s
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
sembles. For comparison, the second most popular method,
deep neural nets, was used in 11 solutions. The success
of the system was also witnessed in KDDCup 2015, where
XGBoost was used by every winning team in the top-10.
Moreover, the winning teams reported that ensemble meth-
ods outperform a well-configured XGBoost by only a small
amount [1].
These results demonstrate that our system gives state-of-

the-art results on a wide range of problems. Examples of
the problems in these winning solutions include: store sales
prediction; high energy physics event classification; web text
classification; customer behavior prediction; motion detec-
tion; ad click through rate prediction; malware classification;
product categorization; hazard risk prediction; massive on-
line course dropout rate prediction. While domain depen-
dent data analysis and feature engineering play an important
role in these solutions, the fact that XGBoost is the consen-
sus choice of learner shows the impact and importance of
our system and tree boosting.
The most important factor behind the success of XGBoost

is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.
These innovations include: a novel tree learning algorithm
is for handling sparse data; a theoretically justified weighted
quantile sketch procedure enables handling instance weights
in approximate tree learning. Parallel and distributed com-
puting makes learning faster which enables quicker model ex-
ploration. More importantly, XGBoost exploits out-of-core

2https://github.com/dmlc/xgboost
3Solutions come from of top-3 teams of each competitions.

ar
X

iv
:1

60
3.

02
75

4v
3

 [c
s.L

G
]

10
 Ju

n
20

16

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �15

Coming back: Objective for Tree Ensemble
• Model: assuming we have K trees

• Objective

• Possible ways to define ?
� Number of nodes in the tree, depth
� L2 norm of the leaf weights
� … detailed later

Training loss Complexity of the Trees

Regression Tree is not just for regression!
• Regression tree ensemble defines how you make the

prediction score, it can be used for
� Classification, Regression, Ranking….
� ….

• It all depends on how you define the objective function!

• So far we have learned:
� Using Square loss

� Will results in common gradient boosted machine

� Using Logistic loss
� Will results in LogitBoost

XGBoost: A Scalable Tree Boosting System

Tianqi Chen
University of Washington

tqchen@cs.washington.edu

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

ABSTRACT
Tree boosting is a highly e↵ective and widely used machine
learning method. In this paper, we describe a scalable end-
to-end tree boosting system called XGBoost, which is used
widely by data scientists to achieve state-of-the-art results
on many machine learning challenges. We propose a novel
sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions
of examples using far fewer resources than existing systems.

Keywords
Large-scale Machine Learning

1. INTRODUCTION
Machine learning and data-driven approaches are becom-

ing very important in many areas. Smart spam classifiers
protect our email by learning from massive amounts of spam
data and user feedback; advertising systems learn to match
the right ads with the right context; fraud detection systems
protect banks from malicious attackers; anomaly event de-
tection systems help experimental physicists to find events
that lead to new physics. There are two important factors
that drive these successful applications: usage of e↵ective
(statistical) models that capture the complex data depen-
dencies and scalable learning systems that learn the model
of interest from large datasets.

Among the machine learning methods used in practice,
gradient tree boosting [10]1 is one technique that shines
in many applications. Tree boosting has been shown to
give state-of-the-art results on many standard classification
benchmarks [16]. LambdaMART [5], a variant of tree boost-
ing for ranking, achieves state-of-the-art result for ranking

1Gradient tree boosting is also known as gradient boosting
machine (GBM) or gradient boosted regression tree (GBRT)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD ’16, August 13-17, 2016, San Francisco, CA, USA

c� 2016 Copyright held by the owner/author(s).

ACM ISBN .

DOI:

problems. Besides being used as a stand-alone predictor, it
is also incorporated into real-world production pipelines for
ad click through rate prediction [15]. Finally, it is the de-
facto choice of ensemble method and is used in challenges
such as the Netflix prize [3].
In this paper, we describe XGBoost, a scalable machine

learning system for tree boosting. The system is available as
an open source package2. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions 3 published at Kaggle’s
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
sembles. For comparison, the second most popular method,
deep neural nets, was used in 11 solutions. The success
of the system was also witnessed in KDDCup 2015, where
XGBoost was used by every winning team in the top-10.
Moreover, the winning teams reported that ensemble meth-
ods outperform a well-configured XGBoost by only a small
amount [1].
These results demonstrate that our system gives state-of-

the-art results on a wide range of problems. Examples of
the problems in these winning solutions include: store sales
prediction; high energy physics event classification; web text
classification; customer behavior prediction; motion detec-
tion; ad click through rate prediction; malware classification;
product categorization; hazard risk prediction; massive on-
line course dropout rate prediction. While domain depen-
dent data analysis and feature engineering play an important
role in these solutions, the fact that XGBoost is the consen-
sus choice of learner shows the impact and importance of
our system and tree boosting.
The most important factor behind the success of XGBoost

is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.
These innovations include: a novel tree learning algorithm
is for handling sparse data; a theoretically justified weighted
quantile sketch procedure enables handling instance weights
in approximate tree learning. Parallel and distributed com-
puting makes learning faster which enables quicker model ex-
ploration. More importantly, XGBoost exploits out-of-core

2https://github.com/dmlc/xgboost
3Solutions come from of top-3 teams of each competitions.

ar
X

iv
:1

60
3.

02
75

4v
3

 [c
s.L

G
]

10
 Ju

n
20

16

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �16

So How do we Learn?
• Objective:

• We can not use methods such as SGD, to find f (since they are
trees, instead of just numerical vectors)

• Solution: Additive Training (Boosting)
� Start from constant prediction, add a new function each time

Model at training round t

New function

Keep functions added in previous round

XGBoost: A Scalable Tree Boosting System

Tianqi Chen
University of Washington

tqchen@cs.washington.edu

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

ABSTRACT
Tree boosting is a highly e↵ective and widely used machine
learning method. In this paper, we describe a scalable end-
to-end tree boosting system called XGBoost, which is used
widely by data scientists to achieve state-of-the-art results
on many machine learning challenges. We propose a novel
sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions
of examples using far fewer resources than existing systems.

Keywords
Large-scale Machine Learning

1. INTRODUCTION
Machine learning and data-driven approaches are becom-

ing very important in many areas. Smart spam classifiers
protect our email by learning from massive amounts of spam
data and user feedback; advertising systems learn to match
the right ads with the right context; fraud detection systems
protect banks from malicious attackers; anomaly event de-
tection systems help experimental physicists to find events
that lead to new physics. There are two important factors
that drive these successful applications: usage of e↵ective
(statistical) models that capture the complex data depen-
dencies and scalable learning systems that learn the model
of interest from large datasets.

Among the machine learning methods used in practice,
gradient tree boosting [10]1 is one technique that shines
in many applications. Tree boosting has been shown to
give state-of-the-art results on many standard classification
benchmarks [16]. LambdaMART [5], a variant of tree boost-
ing for ranking, achieves state-of-the-art result for ranking

1Gradient tree boosting is also known as gradient boosting
machine (GBM) or gradient boosted regression tree (GBRT)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD ’16, August 13-17, 2016, San Francisco, CA, USA

c� 2016 Copyright held by the owner/author(s).

ACM ISBN .

DOI:

problems. Besides being used as a stand-alone predictor, it
is also incorporated into real-world production pipelines for
ad click through rate prediction [15]. Finally, it is the de-
facto choice of ensemble method and is used in challenges
such as the Netflix prize [3].
In this paper, we describe XGBoost, a scalable machine

learning system for tree boosting. The system is available as
an open source package2. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions 3 published at Kaggle’s
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
sembles. For comparison, the second most popular method,
deep neural nets, was used in 11 solutions. The success
of the system was also witnessed in KDDCup 2015, where
XGBoost was used by every winning team in the top-10.
Moreover, the winning teams reported that ensemble meth-
ods outperform a well-configured XGBoost by only a small
amount [1].
These results demonstrate that our system gives state-of-

the-art results on a wide range of problems. Examples of
the problems in these winning solutions include: store sales
prediction; high energy physics event classification; web text
classification; customer behavior prediction; motion detec-
tion; ad click through rate prediction; malware classification;
product categorization; hazard risk prediction; massive on-
line course dropout rate prediction. While domain depen-
dent data analysis and feature engineering play an important
role in these solutions, the fact that XGBoost is the consen-
sus choice of learner shows the impact and importance of
our system and tree boosting.
The most important factor behind the success of XGBoost

is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.
These innovations include: a novel tree learning algorithm
is for handling sparse data; a theoretically justified weighted
quantile sketch procedure enables handling instance weights
in approximate tree learning. Parallel and distributed com-
puting makes learning faster which enables quicker model ex-
ploration. More importantly, XGBoost exploits out-of-core

2https://github.com/dmlc/xgboost
3Solutions come from of top-3 teams of each competitions.

ar
X

iv
:1

60
3.

02
75

4v
3

 [c
s.L

G
]

10
 Ju

n
20

16

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �17

Taylor Expansion Approximation of Loss
• Goal

� Seems still complicated except for the case of square loss

• Take Taylor expansion of the objective
� Recall
� Define

• If you are not comfortable with this, think of square loss

• Compare what we get to previous slide

This is why we call this method "gradient" boosting.

Compare to, e.g. adaptive boosting - weight examples to highlight losses
from the previous round choose a split in a "decision stump" based on the
maximum information gain in a split of the newly weighted sample.

XGBoost: A Scalable Tree Boosting System

Tianqi Chen
University of Washington

tqchen@cs.washington.edu

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

ABSTRACT
Tree boosting is a highly e↵ective and widely used machine
learning method. In this paper, we describe a scalable end-
to-end tree boosting system called XGBoost, which is used
widely by data scientists to achieve state-of-the-art results
on many machine learning challenges. We propose a novel
sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions
of examples using far fewer resources than existing systems.

Keywords
Large-scale Machine Learning

1. INTRODUCTION
Machine learning and data-driven approaches are becom-

ing very important in many areas. Smart spam classifiers
protect our email by learning from massive amounts of spam
data and user feedback; advertising systems learn to match
the right ads with the right context; fraud detection systems
protect banks from malicious attackers; anomaly event de-
tection systems help experimental physicists to find events
that lead to new physics. There are two important factors
that drive these successful applications: usage of e↵ective
(statistical) models that capture the complex data depen-
dencies and scalable learning systems that learn the model
of interest from large datasets.

Among the machine learning methods used in practice,
gradient tree boosting [10]1 is one technique that shines
in many applications. Tree boosting has been shown to
give state-of-the-art results on many standard classification
benchmarks [16]. LambdaMART [5], a variant of tree boost-
ing for ranking, achieves state-of-the-art result for ranking

1Gradient tree boosting is also known as gradient boosting
machine (GBM) or gradient boosted regression tree (GBRT)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD ’16, August 13-17, 2016, San Francisco, CA, USA

c� 2016 Copyright held by the owner/author(s).

ACM ISBN .

DOI:

problems. Besides being used as a stand-alone predictor, it
is also incorporated into real-world production pipelines for
ad click through rate prediction [15]. Finally, it is the de-
facto choice of ensemble method and is used in challenges
such as the Netflix prize [3].
In this paper, we describe XGBoost, a scalable machine

learning system for tree boosting. The system is available as
an open source package2. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions 3 published at Kaggle’s
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
sembles. For comparison, the second most popular method,
deep neural nets, was used in 11 solutions. The success
of the system was also witnessed in KDDCup 2015, where
XGBoost was used by every winning team in the top-10.
Moreover, the winning teams reported that ensemble meth-
ods outperform a well-configured XGBoost by only a small
amount [1].
These results demonstrate that our system gives state-of-

the-art results on a wide range of problems. Examples of
the problems in these winning solutions include: store sales
prediction; high energy physics event classification; web text
classification; customer behavior prediction; motion detec-
tion; ad click through rate prediction; malware classification;
product categorization; hazard risk prediction; massive on-
line course dropout rate prediction. While domain depen-
dent data analysis and feature engineering play an important
role in these solutions, the fact that XGBoost is the consen-
sus choice of learner shows the impact and importance of
our system and tree boosting.
The most important factor behind the success of XGBoost

is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.
These innovations include: a novel tree learning algorithm
is for handling sparse data; a theoretically justified weighted
quantile sketch procedure enables handling instance weights
in approximate tree learning. Parallel and distributed com-
puting makes learning faster which enables quicker model ex-
ploration. More importantly, XGBoost exploits out-of-core

2https://github.com/dmlc/xgboost
3Solutions come from of top-3 teams of each competitions.

ar
X

iv
:1

60
3.

02
75

4v
3

 [c
s.L

G
]

10
 Ju

n
20

16

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Gradient boosting for function approximation
• Build an additive series of piecewise continuous approximations.
• Can represent more complex functions than a single tree (ensemble advantages).
• Allows for more efficient MC sampling / integration?

�18

Gradient Boosting

x
0 0.2 0.4 0.6 0.8 1

y

1−

0.5−

0

0.5

1
Data

Regression

(a) Single Tree

x
0 0.2 0.4 0.6 0.8 1

y

1−

0.5−

0

0.5

1 Data

Regression

Intermediate

(b) Gradient Boosted (⇠ 20 trees)

Decision trees form an additive series of piecewise continuous
approximations for the function f (x̄) in the multidimensional input space

Additive series can represent more complex functions than single tree
with a given number of nodes

Trivial example of Sine in 1d with relatively few trees

Josh Bendavid (Caltech/LPC) ML MC Integration 13

Use of Machine Learning Techniques for improved
Monte Carlo Integration

Josh Bendavid (Caltech/LPC)

May 12, 2017
MC4BSM
SLAC

Josh Bendavid (Caltech/LPC) ML MC Integration 1

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Gradient boosting - 4D Camel

�19

Some results - 4D Camel Function Integration

Comparing Vegas,Foam, GBRIntegrator for 4-dimensional camel function (since this appears in both

VEGAS and Foam papers).

Given relative weight variance �
w

/ < w > after training/grid building, relative uncertainty on integral

evaluated with N additional events is �
I

/I =

1p
N

�
w

/ < w >

Algorithm # of Func. Evals �
w

/ < w > �
I

/I
(2e6 add. evts)

VEGAS 300,000 2.820 ±2.0⇥ 10�3

Foam 3,855,289 0.319 ±2.3⇥ 10�4

GBRIntegrator 300,000 0.082 ±5.8⇥ 10�5

GBRIntegrator (staged) 300,000 0.077 ±5.4⇥ 10�5

3x smaller weight variance to foam with 10x less function evaluations

Substantially improved performance with respect to initial version of GBRIntegrator algorithm (lacking

primary/secondary BDT paradigm)

For this particular function VEGAS performance saturates at relatively poor weight variance

Josh Bendavid (Caltech/LPC) ML MC Integration 18

Diagnostic Plots - 4D Camel Function

d, distance along multidimensional diagonal (a.u.)
0 0.2 0.4 0.6 0.8 1

fu
nc

tio
n

va
lu

e
(a

.u
.)

0

100

200

300

400

500

Graph

) (Camel)xf(

 (Primary BDT))xh(e

) (Secondary BDT)xg(

Graph

(a) linear

d, distance along multidimensional diagonal (a.u.)
0 0.2 0.4 0.6 0.8 1

fu
nc

tio
n

va
lu

e
(a

.u
.)

16−10

14−10

12−10

10−10

8−10

6−10

4−10

2−10

1

210

Graph

) (Camel)xf(

 (Primary BDT))xh(e

) (Secondary BDT)xg(

Graph

(b) log

Secondary sampling BDT approximates function slightly worse
in very low probability regions (related to initialization values,
positive definite constraint during training, and lack of
transformation). For this particular case, e↵ect is small. (but
this is the reason staged variation achieves slightly better
precision)

Josh Bendavid (Caltech/LPC) ML MC Integration 19

Use of Machine Learning Techniques for improved
Monte Carlo Integration

Josh Bendavid (Caltech/LPC)

May 12, 2017
MC4BSM
SLAC

Josh Bendavid (Caltech/LPC) ML MC Integration 1

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Generative adversarial neural networks
• Generative adversarial networks (GANs) pair a generator network and a

discriminator network. The training is adversarial in that the loss functions are
coupled - the discriminator attempts to label "real" and "generated" data and
the generator attempts to fool the discriminator.
• Convergence is challenging, and the networks can be very difficult to train,

but the results are promising...
- And the horrifying source of the fake news apocalypse, e.g. arXiv 1805.11714,
- https://www.youtube.com/watch?reload=9&v=qc5P2bvfl44

�20

Generative Adversarial Networks

Generative adversarial networks train a deep neural network to generate
samples starting from a known prior distribution p(z̄) which is easy to
sample from (e.g. an N-dimensional normal distribution)
The generative network Ḡ transforms the input samples to the output
space x̄ , ie G(z̄) = x̄

A discriminator network D (e.g. a standard DNN classifier) is trained to
distinguish the generated samples from the training samples

Training proceeds iteratively such that the D is trained to maximally

discriminate and G is trained to minimize the discrimination power of D

until the generated samples follow the ⇠ same distribution as the training

set (MINIMAX problem/saddle point, di�cult to train)

arXiv:1406.2661

Josh Bendavid (Caltech/LPC) ML MC Integration 23

Generative Adversarial Networks

Generative adversarial networks train a deep neural network to generate
samples starting from a known prior distribution p(z̄) which is easy to
sample from (e.g. an N-dimensional normal distribution)
The generative network Ḡ transforms the input samples to the output
space x̄ , ie G(z̄) = x̄

A discriminator network D (e.g. a standard DNN classifier) is trained to
distinguish the generated samples from the training samples

Training proceeds iteratively such that the D is trained to maximally

discriminate and G is trained to minimize the discrimination power of D

until the generated samples follow the ⇠ same distribution as the training

set (MINIMAX problem/saddle point, di�cult to train)

arXiv:1406.2661

Josh Bendavid (Caltech/LPC) ML MC Integration 23

https://www.youtube.com/watch?reload=9&v=qc5P2bvfl44

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �21

Setting up the GAN system

• First term, probability that a fake sample is
classified as fake

• Second term, probability that a real sample is
classified as real

• Generator wants to minimize this, discriminator
wants to maximize this

Finding an Equilibrium

• If we allow D, G, to be from space of all continuous
functions, then

• There exists a unique Nash equilibrium (no
“player” incentivize to deviate off path)

• G exactly recovers , the data distribution
Unstable Equilibrium

• Standard formulation is highly unstable

• Optimizing generator is futile if discriminator
doesn't propagate gradients well

• Mode collapse

• Saturating discriminator output (gradients vanish at
very-fake or very-real)

LOTS of tricks! Very active area of research...

Learning Particle Physics by Example:
Generative Adversarial Networks for Simulation

! @lukede0
" lukedeo@vaitech.io
https://ldo.io

Luke de Oliveira
Founder, Vai Technologies

Visiting Researcher, Lawrence Berkeley National Lab

arXiv:1701.05927
arXiv:1705.02355

with 
Michela Paganini and Ben Nachman

Yale, LBNL LBNL

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Probability sampling
• Given a generating network G and input space z and output space x (and

assuming z and x have the same dimension) we may compute the generating
probability density g from the sampling prior and the Jacobian determinant:

• Then, if the function to be integrated has some probability density pf = f/Int(f),
the KL divergence between f and the generating pdf is

�22

Direct Probability Density Sampling

For Monte Carlo integration or unweighting, target probability
density is known (up to a normalizing constant), but initially
samples are not available and cannot be easily generated
For any given state of the generative network G , and in the
special case that the input space z̄ and output space x̄ have
the same dimensionality d , the generating probability density
g(x̄) can be determined from the sampling prior p(z̄) and the
jacobian determinant according to

p(z̄) = g(x̄)

����

����
@Ḡ (z̄)

@z̄

����

���� (2)

If the function to be integrated f (x̄) has a probability density
p

f

(x̄) = f (x̄)/I
f

, the the KL divergence wrt the generating
pdf can be written as

D

KL

=

Z
g(x̄) ln

g(x̄)

p

f

(x̄)
dx̄ (3)

Josh Bendavid (Caltech/LPC) ML MC Integration 24

Direct Probability Density Sampling

For Monte Carlo integration or unweighting, target probability
density is known (up to a normalizing constant), but initially
samples are not available and cannot be easily generated
For any given state of the generative network G , and in the
special case that the input space z̄ and output space x̄ have
the same dimensionality d , the generating probability density
g(x̄) can be determined from the sampling prior p(z̄) and the
jacobian determinant according to

p(z̄) = g(x̄)

����

����
@Ḡ (z̄)

@z̄

����

���� (2)

If the function to be integrated f (x̄) has a probability density
p

f

(x̄) = f (x̄)/I
f

, the the KL divergence wrt the generating
pdf can be written as

D

KL

=

Z
g(x̄) ln

g(x̄)

p

f

(x̄)
dx̄ (3)

Josh Bendavid (Caltech/LPC) ML MC Integration 24

Direct Probability Density Sampling

For Monte Carlo integration or unweighting, target probability
density is known (up to a normalizing constant), but initially
samples are not available and cannot be easily generated
For any given state of the generative network G , and in the
special case that the input space z̄ and output space x̄ have
the same dimensionality d , the generating probability density
g(x̄) can be determined from the sampling prior p(z̄) and the
jacobian determinant according to

p(z̄) = g(x̄)

����

����
@Ḡ (z̄)

@z̄

����

���� (2)

If the function to be integrated f (x̄) has a probability density
p

f

(x̄) = f (x̄)/I
f

, the the KL divergence wrt the generating
pdf can be written as

D

KL

=

Z
g(x̄) ln

g(x̄)

p

f

(x̄)
dx̄ (3)

Josh Bendavid (Caltech/LPC) ML MC Integration 24

Use of Machine Learning Techniques for improved
Monte Carlo Integration

Josh Bendavid (Caltech/LPC)

May 12, 2017
MC4BSM
SLAC

Josh Bendavid (Caltech/LPC) ML MC Integration 1

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Network objective
• KL divergence may be approximated from a set of samples from p

• ... where p is the sampling prior, G is the generative network, and f is the
function to be integrated. NIf is a constant we can ignore in training.
• For deep networks, G (using proper activation functions, etc.), we may use

this relationship for the loss function in stochastic gradient descent provided f
is differentiable and a function we can evaluate at a point, etc.
- Plus a trick for getting a differentiable representation of the determinant!
• Sampling from the trained network is straightforward.

�23

Direct Probability Density Sampling

This KL divergence can be approximated numerically from a
finite data set sampled from the prior p(z̄)

D

KL

=
X

p(z̄)


ln p(z̄)� ln

����

����
@Ḡ (z̄)

@z̄

����

����� ln f (x̄)

�
+ NI

f

(4)

where NI

f

is a constant and can be neglected (such that we
can proceed without needing to know the integral of f)
If G is a deep neural network with d inputs and d outputs and
suitably continuous activation functions, the above can be
used directly as a di↵erentiable loss function in SGD provided

that f (x̄) is easily computed and di↵erentiable

n.b. the determinant is normally computed from a
non-di↵erentiable matrix decomposition, but the derivative
can be evaluated from Jacobi’s formula according to

@

@t
ln ||A|| = tr

✓
A

�1

@

@t
A

◆
(5)

Josh Bendavid (Caltech/LPC) ML MC Integration 25

Use of Machine Learning Techniques for improved
Monte Carlo Integration

Josh Bendavid (Caltech/LPC)

May 12, 2017
MC4BSM
SLAC

Josh Bendavid (Caltech/LPC) ML MC Integration 1

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Function comparisons

�24

Some results - 4D Camel Function Integration

Comparing Vegas,Foam, GBRIntegrator, Generative DNN for 4-dimensional camel function (since this

appears in both VEGAS and Foam papers).

Given relative weight variance �
w

/ < w > after training/grid building, relative uncertainty on integral

evaluated with N additional events is �
I

/I =

1p
N

�
w

/ < w >

Algorithm # of Func. Evals �
w

/ < w > �
I

/I
(2e6 add. evts)

VEGAS 300,000 2.820 ±2.0⇥ 10�3

Foam 3,855,289 0.319 ±2.3⇥ 10�4

GBRIntegrator 300,000 0.082 ±5.8⇥ 10�5

GBRIntegrator (staged) 300,000 0.077 ±5.4⇥ 10�5

Generative DNN 294,912 0.083 ±5.9⇥ 10�5

Generative DNN (staged) 294,912 0.030 ±2.1⇥ 10�5

3x smaller weight variance to foam with 10x less function evaluations

Substantially improved performance with respect to initial version of GBRIntegrator algorithm (lacking

primary/secondary BDT paradigm)

Generative DNN comparable to generative BDT (but Generative DNN + DNN Regression does even

better)

For this particular function VEGAS performance saturates at relatively poor weight variance

Josh Bendavid (Caltech/LPC) ML MC Integration 32

Invertibility of Generative DNN Model

Interesting limitation: Probability density for generative DNN
model can not be evaluated for an arbitrary phase space point
x̄ , since one needs to know the corresponding point in the
prior space z̄ , and the model is not trivially invertible

Not a problem for integration or unweighting where all the
phase space points are anyways generated by sampling from
the prior

Nevertheless exploring the possibility/requirements to
analytically invert such a model, since this might be
convenient for diagnostic purposes, and would enable
multi-channeling-like extensions

Josh Bendavid (Caltech/LPC) ML MC Integration 38

Use of Machine Learning Techniques for improved
Monte Carlo Integration

Josh Bendavid (Caltech/LPC)

May 12, 2017
MC4BSM
SLAC

Josh Bendavid (Caltech/LPC) ML MC Integration 1

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

BDT vs NNs

�25

Use of Machine Learning Techniques for improved
Monte Carlo Integration

Josh Bendavid (Caltech/LPC)

May 12, 2017
MC4BSM
SLAC

Josh Bendavid (Caltech/LPC) ML MC Integration 1

BDT vs DNN

Both approaches are able to encode and e�ciently sample from
multi-dimensional distributions with non-trivial correlations between
dimensions

Underlying sampling method is entirely di↵erent in the two cases
(FOAM-based vs inverse-CDF-like)

For the purpose of integration and unweighting, the generative BDT has
quite strict limitations on positive-definite weights/linear mapping to
output and a lack of flexibility for the loss function which makes
minimization di�cult and enforces very slow convergence for good
performance

Generative DNN models are more flexible in this respect and are therefore
expected to have better scaling with the number of parameters and
dimensionality (already observed for test cases) as well as more room for
improvement

Software infrastructure for training large DNN’s is also more widely
supported by data scientists and computing industry

Plan to pursue the DNN-based algorithm and stop work on the BDT’s

Josh Bendavid (Caltech/LPC) ML MC Integration 40

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �26

Learned generators
* http://colah.github.io/posts/2015-08-Understanding-LSTMs/
* http://karpathy.github.io/2015/05/21/rnn-effectiveness/
* https://arxiv.org/abs/1705.02355
* https://arxiv.org/abs/1702.00748
* https://arxiv.org/abs/1505.07818

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://arxiv.org/abs/1705.02355
https://arxiv.org/abs/1702.00748
https://arxiv.org/abs/1505.07818

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Generative models for simulation
• Future simulation needs (e.g., HL-

LHC) appear likely to outstrip even
optimistic resource projections.
- Requires creative, "outside the box"

thinking.
• Shower libraries face problems rooted

in incompleteness and heavy data
access.
• Generative models offer a potentially

incredible speed-up along with better
flexibility by modeling very complex
distributions.

�27

Can obtain an evaluation time speed up of 100,000x on GPU!

YaleComputing

LAGAN and CaloGAN: 
Generative Adversarial Networks for

Jet Images and Calorimeter Simulation

Michela Paganini*, Luke de Oliveira, Ben Nachman

Yale

DS@HEP 2017

But that’s not enough… !
● Scale of industry at or above R&D

– Commercial clouds offering increased value
for decreased cost compared to the past

To
ta

l D
at

a
Vo

lu
m

e
in

 P
et

ab
yt

es

You are here

● High Energy Physics computing will need 10-100x
current capacity

B. Holzman, SC17

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �28

Calorimeter Images

• Challenges:

- sparsity

- dynamic range

- location specificity

• Advantages:

- compositionality

- quantifiable properties
—> available projections
of data distributions onto
set of physical 1 or 2D
manifolds

3x96

12x12

12x6

• Main idea: closer and closer to raw detector
output

Learning Particle Physics by Example:
Generative Adversarial Networks for Simulation

! @lukede0
" lukedeo@vaitech.io
https://ldo.io

Luke de Oliveira
Founder, Vai Technologies

Visiting Researcher, Lawrence Berkeley National Lab

arXiv:1701.05927
arXiv:1705.02355

with 
Michela Paganini and Ben Nachman

Yale, LBNL LBNL

Learning Particle Physics by Example:
Generative Adversarial Networks for Simulation

! @lukede0
" lukedeo@vaitech.io
https://ldo.io

Luke de Oliveira
Founder, Vai Technologies

Visiting Researcher, Lawrence Berkeley National Lab

arXiv:1701.05927
arXiv:1705.02355

with 
Michela Paganini and Ben Nachman

Yale, LBNL LBNL

ACAT 2017

Generative Adversarial Networks (GAN)

tries to tell fake/real

Turn generative modeling into a
two player, non-cooperative game.

tries to produce real looking samples

Learning Particle Physics by Example:
Generative Adversarial Networks for Simulation

! @lukede0
" lukedeo@vaitech.io
https://ldo.io

Luke de Oliveira
Founder, Vai Technologies

Visiting Researcher, Lawrence Berkeley National Lab

arXiv:1701.05927
arXiv:1705.02355

with 
Michela Paganini and Ben Nachman

Yale, LBNL LBNL

DL engine for fast simulation in GeantV

´ 3d GAN represent first proof of concept
´ We aim at a generic fully configurable tool

´ Optimal network design depends on the problem to solve
´ Embedded algorithms for hyper-parameters tuning and meta-

optimization
´ Studying parallelization on clusters

29

Generative models
for fast simulation
Sofia Vallecorsa*
for the GeantV project

ACAT 2017
21-25 August 2017
University of Washington, Seattle* Gangneung-Wonju U. & CERN

Generative models
for fast simulation
Sofia Vallecorsa*
for the GeantV project

ACAT 2017
21-25 August 2017
University of Washington, Seattle* Gangneung-Wonju U. & CERN

Qualitative Performance (1)

GEANT GEANT GEANTGAN GAN GAN

Yale

LAGAN and CaloGAN: 
Generative Adversarial Networks for

Jet Images and Calorimeter Simulation

Michela Paganini*, Luke de Oliveira, Ben Nachman

Yale

DS@HEP 2017

Also: arXiv 1806.11484

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Language models == particle models?
• Recent success in machine learning is dominated by two kinds of data:
- visual data - images, video, etc. - we now have algorithms for parsing and analyzing this

sort of very high-dimensional data, and
- sequence data - speech recognition, language processing, game playing, etc. - all revolve

around sequences of data and the patterns buried in these data.
• Can we map problems in physics into these domains?
- Yes!
- Image data is obvious and easy - see, for example, convolutional neural nets for event

reconstruction and classification (e.g., J. Nowak's presentation yesterday on event
classification in LArTPCs).

- Sequence data is trickier... but several inspired applications at the LHC suggest we may
be able to treat particle sequences in an event like words in a sentence. The semantics of
ordering are different, but there are successful examples of leveraging this paradigm for
event classification.

�29

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

• Recurrent neural networks can operate over sequences of vectors (in principle, of
arbitrary length).
• The network structure explicitly contains input from its own output - it contains loops.

These loops could theoretically extend back into infinity for all the examples the
network is asked to operate on, but in practice, we truncate the series.
• This means we can effectively "unroll" the network, which makes the loop structure

less mysterious.

�30

12/19/17, 12(27 PMUnderstanding LSTM Networks -- colah's blog

Page 2 of 13http://colah.github.io/posts/2015-08-Understanding-LSTMs/

An unrolled recurrent neural network.

This chain-like nature reveals that recurrent neural networks are intimately
related to sequences and lists. They’re the natural architecture of neural
network to use for such data.

And they certainly are used! In the last few years, there have been incredible
success applying RNNs to a variety of problems: speech recognition, language
modeling, translation, image captioning… The list goes on. I’ll leave
discussion of the amazing feats one can achieve with RNNs to Andrej
Karpathy’s excellent blog post, The Unreasonable Effectiveness of Recurrent
Neural Networks. But they really are pretty amazing.

Essential to these successes is the use of “LSTMs,” a very special kind of
recurrent neural network which works, for many tasks, much much better
than the standard version. Almost all exciting results based on recurrent
neural networks are achieved with them. It’s these LSTMs that this essay will
explore.

The Problem of Long-Term Dependencies

One of the appeals of RNNs is the idea that they might be able to connect
previous information to the present task, such as using previous video frames
might inform the understanding of the present frame. If RNNs could do this,
they’d be extremely useful. But can they? It depends.

L S T M & G A I T I N G

•I highly recommend this
site for learning about
LSTM & GRU vs. vanilla
RNN.

• http://colah.github.io/posts/2015-08-Understanding-LSTMs/

•Replace simple non-
linearity with an LSTM
module with gates

•

!14

• Excerpt from: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent networks for sequence analysis

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �31

About Hacker's guide to Neural Networks

The Unreasonable Effectiveness of Recurrent Neural
Networks
May 21, 2015

There’s something magical about Recurrent Neural Networks (RNNs). I still remember when I trained my first
recurrent network for Image Captioning. Within a few dozen minutes of training my first baby model (with rather
arbitrarily-chosen hyperparameters) started to generate very nice looking descriptions of images that were on
the edge of making sense. Sometimes the ratio of how simple your model is to the quality of the results you get
out of it blows past your expectations, and this was one of those times. What made this result so shocking at the
time was that the common wisdom was that RNNs were supposed to be difficult to train (with more experience
I’ve in fact reached the opposite conclusion). Fast forward about a year: I’m training RNNs all the time and I’ve
witnessed their power and robustness many times, and yet their magical outputs still find ways of amusing me.
This post is about sharing some of that magic with you.

By the way, together with this post I am also releasing code on Github that allows you to train character-level
language models based on multi-layer LSTMs. You give it a large chunk of text and it will learn to generate text
like it one character at a time. You can also use it to reproduce my experiments below. But we’re getting ahead
of ourselves; What are RNNs anyway?

Recurrent Neural Networks
Sequences. Depending on your background you might be wondering: What makes Recurrent Networks so
special? A glaring limitation of Vanilla Neural Networks (and also Convolutional Networks) is that their API is too
constrained: they accept a fixed-sized vector as input (e.g. an image) and produce a fixed-sized vector as
output (e.g. probabilities of different classes). Not only that: These models perform this mapping using a fixed
amount of computational steps (e.g. the number of layers in the model). The core reason that recurrent nets are
more exciting is that they allow us to operate over sequences of vectors: Sequences in the input, the output, or
in the most general case both. A few examples may make this more concrete:

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are in
blue and green vectors hold the RNN's state (more on this soon). From left to right: (1) Vanilla mode of processing without RNN,
from fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image captioning takes an
image and outputs a sentence of words). (3) Sequence input (e.g. sentiment analysis where a given sentence is classified as
expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g. Machine Translation: an RNN reads a
sentence in English and then outputs a sentence in French). (5) Synced sequence input and output (e.g. video classification
where we wish to label each frame of the video). Notice that in every case are no pre-specified constraints on the lengths
sequences because the recurrent transformation (green) is fixed and can be applied as many times as we like.

As you might expect, the sequence regime of operation is much more powerful compared to fixed networks that
are doomed from the get-go by a fixed number of computational steps, and hence also much more appealing
for those of us who aspire to build more intelligent systems. Moreover, as we’ll see in a bit, RNNs combine the
input vector with their state vector with a fixed (but learned) function to produce a new state vector. This can in
programming terms be interpreted as running a fixed program with certain inputs and some internal variables.
Viewed this way, RNNs essentially describe programs. In fact, it is known that RNNs are Turing-Complete in the
sense that they can to simulate arbitrary programs (with proper weights). But similar to universal approximation
theorems for neural nets you shouldn’t read too much into this. In fact, forget I said anything.

Sequential processing in absence of sequences. You might be thinking that having sequences as inputs or
outputs could be relatively rare, but an important point to realize is that even if your inputs/outputs are fixed
vectors, it is still possible to use this powerful formalism to process them in a sequential manner. For instance,
the figure below shows results from two very nice papers from DeepMind. On the left, an algorithm learns a
recurrent network policy that steers its attention around an image; In particular, it learns to read out house
numbers from left to right (Ba et al.). On the right, a recurrent network generates images of digits by learning to
sequentially add color to a canvas (Gregor et al.):

Left: RNN learns to read house numbers. Right: RNN learns to paint house numbers.

The takeaway is that even if your data is not in form of sequences, you can still formulate and train powerful
models that learn to process it sequentially. You’re learning stateful programs that process your fixed-sized
data.

RNN computation. So how do these things work? At the core, RNNs have a deceptively simple API: They
accept an input vector x and give you an output vector y . However, crucially this output vector’s contents
are influenced not only by the input you just fed in, but also on the entire history of inputs you’ve fed in in the
past. Written as a class, the RNN’s API consists of a single step function:

rnn = RNN()
y = rnn.step(x) # x is an input vector, y is the RNN's output vector

The RNN class has some internal state that it gets to update every time step is called. In the simplest case
this state consists of a single hidden vector h . Here is an implementation of the step function in a Vanilla RNN:

class RNN:
 # ...
 def step(self, x):
 # update the hidden state
 self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))
 # compute the output vector
 y = np.dot(self.W_hy, self.h)
 return y

The above specifies the forward pass of a vanilla RNN. This RNN’s parameters are the three matrices W_hh,
W_xh, W_hy . The hidden state self.h is initialized with the zero vector. The np.tanh function implements
a non-linearity that squashes the activations to the range [-1, 1] . Notice briefly how this works: There are
two terms inside of the tanh: one is based on the previous hidden state and one is based on the current input.
In numpy np.dot is matrix multiplication. The two intermediates interact with addition, and then get squashed
by the tanh into the new state vector. If you’re more comfortable with math notation, we can also write the
hidden state update as , where tanh is applied elementwise.

We initialize the matrices of the RNN with random numbers and the bulk of work during training goes into
finding the matrices that give rise to desirable behavior, as measured with some loss function that expresses
your preference to what kinds of outputs y you’d like to see in response to your input sequences x .

Going deep. RNNs are neural networks and everything works monotonically better (if done right) if you put on
your deep learning hat and start stacking models up like pancakes. For instance, we can form a 2-layer
recurrent network as follows:

y1 = rnn1.step(x)
y = rnn2.step(y1)

In other words we have two separate RNNs: One RNN is receiving the input vectors and the second RNN is
receiving the output of the first RNN as its input. Except neither of these RNNs know or care - it’s all just vectors
coming in and going out, and some gradients flowing through each module during backpropagation.

Getting fancy. I’d like to briefly mention that in practice most of us use a slightly different formulation than what
I presented above called a Long Short-Term Memory (LSTM) network. The LSTM is a particular type of recurrent
network that works slightly better in practice, owing to its more powerful update equation and some appealing
backpropagation dynamics. I won’t go into details, but everything I’ve said about RNNs stays exactly the same,
except the mathematical form for computing the update (the line self.h = ...) gets a little more
complicated. From here on I will use the terms “RNN/LSTM” interchangeably but all experiments in this post use
an LSTM.

Character-Level Language Models
Okay, so we have an idea about what RNNs are, why they are super exciting, and how they work. We’ll now
ground this in a fun application: We’ll train RNN character-level language models. That is, we’ll give the RNN a
huge chunk of text and ask it to model the probability distribution of the next character in the sequence given a
sequence of previous characters. This will then allow us to generate new text one character at a time.

As a working example, suppose we only had a vocabulary of four possible letters “helo”, and wanted to train an
RNN on the training sequence “hello”. This training sequence is in fact a source of 4 separate training
examples: 1. The probability of “e” should be likely given the context of “h”, 2. “l” should be likely in the context
of “he”, 3. “l” should also be likely given the context of “hel”, and finally 4. “o” should be likely given the context
of “hell”.

Concretely, we will encode each character into a vector using 1-of-k encoding (i.e. all zero except for a single
one at the index of the character in the vocabulary), and feed them into the RNN one at a time with the step
function. We will then observe a sequence of 4-dimensional output vectors (one dimension per character),
which we interpret as the confidence the RNN currently assigns to each character coming next in the
sequence. Here’s a diagram:

An example RNN with 4-dimensional input and output layers, and a hidden layer of 3 units (neurons). This diagram shows the
activations in the forward pass when the RNN is fed the characters "hell" as input. The output layer contains confidences the

RNN assigns for the next character (vocabulary is "h,e,l,o"); We want the green numbers to be high and red numbers to be low.

For example, we see that in the first time step when the RNN saw the character “h” it assigned confidence of
1.0 to the next letter being “h”, 2.2 to letter “e”, -3.0 to “l”, and 4.1 to “o”. Since in our training data (the string
“hello”) the next correct character is “e”, we would like to increase its confidence (green) and decrease the
confidence of all other letters (red). Similarly, we have a desired target character at every one of the 4 time
steps that we’d like the network to assign a greater confidence to. Since the RNN consists entirely of
differentiable operations we can run the backpropagation algorithm (this is just a recursive application of the
chain rule from calculus) to figure out in what direction we should adjust every one of its weights to increase the
scores of the correct targets (green bold numbers). We can then perform a parameter update, which nudges
every weight a tiny amount in this gradient direction. If we were to feed the same inputs to the RNN after the
parameter update we would find that the scores of the correct characters (e.g. “e” in the first time step) would
be slightly higher (e.g. 2.3 instead of 2.2), and the scores of incorrect characters would be slightly lower. We
then repeat this process over and over many times until the network converges and its predictions are
eventually consistent with the training data in that correct characters are always predicted next.

A more technical explanation is that we use the standard Softmax classifier (also commonly referred to as the
cross-entropy loss) on every output vector simultaneously. The RNN is trained with mini-batch Stochastic
Gradient Descent and I like to use RMSProp or Adam (per-parameter adaptive learning rate methods) to
stablilize the updates.

Notice also that the first time the character “l” is input, the target is “l”, but the second time the target is “o”. The
RNN therefore cannot rely on the input alone and must use its recurrent connection to keep track of the context
to achieve this task.

At test time, we feed a character into the RNN and get a distribution over what characters are likely to come
next. We sample from this distribution, and feed it right back in to get the next letter. Repeat this process and
you’re sampling text! Lets now train an RNN on different datasets and see what happens.

To further clarify, for educational purposes I also wrote a minimal character-level RNN language model in
Python/numpy. It is only about 100 lines long and hopefully it gives a concise, concrete and useful summary of
the above if you’re better at reading code than text. We’ll now dive into example results, produced with the
much more efficient Lua/Torch codebase.

Fun with RNNs
All 5 example character models below were trained with the code I’m releasing on Github. The input in each
case is a single file with some text, and we’re training an RNN to predict the next character in the sequence.

Paul Graham generator
Lets first try a small dataset of English as a sanity check. My favorite fun dataset is the concatenation of Paul
Graham’s essays. The basic idea is that there’s a lot of wisdom in these essays, but unfortunately Paul Graham
is a relatively slow generator. Wouldn’t it be great if we could sample startup wisdom on demand? That’s where
an RNN comes in.

Concatenating all pg essays over the last ~5 years we get approximately 1MB text file, or about 1 million
characters (this is considered a very small dataset by the way). Technical: Lets train a 2-layer LSTM with 512
hidden nodes (approx. 3.5 million parameters), and with dropout of 0.5 after each layer. We’ll train with batches
of 100 examples and truncated backpropagation through time of length 100 characters. With these settings one
batch on a TITAN Z GPU takes about 0.46 seconds (this can be cut in half with 50 character BPTT at negligible
cost in performance). Without further ado, lets see a sample from the RNN:

“The surprised in investors weren’t going to raise money. I’m not the company with the time there are all
interesting quickly, don’t have to get off the same programmers. There’s a super-angel round fundraising, why
do you can do. If you have a different physical investment are become in people who reduced in a startup with
the way to argument the acquirer could see them just that you’re also the founders will part of users’ affords that
and an alternation to the idea. [2] Don’t work at first member to see the way kids will seem in advance of a bad
successful startup. And if you have to act the big company too.”

Okay, clearly the above is unfortunately not going to replace Paul Graham anytime soon, but remember that the
RNN had to learn English completely from scratch and with a small dataset (including where you put commas,
apostrophes and spaces). I also like that it learns to support its own arguments (e.g. [2], above). Sometimes it
says something that offers a glimmer of insight, such as “a company is a meeting to think to investors”. Here’s a
link to 50K character sample if you’d like to see more.

Temperature. We can also play with the temperature of the Softmax during sampling. Decreasing the
temperature from 1 to some lower number (e.g. 0.5) makes the RNN more confident, but also more conservative
in its samples. Conversely, higher temperatures will give more diversity but at cost of more mistakes (e.g.
spelling mistakes, etc). In particular, setting temperature very near zero will give the most likely thing that Paul
Graham might say:

“is that they were all the same thing that was a startup is that they were all the same thing that was a startup is
that they were all the same thing that was a startup is that they were all the same”

looks like we’ve reached an infinite loop about startups.

Shakespeare
It looks like we can learn to spell English words. But how about if there is more structure and style in the data?
To examine this I downloaded all the works of Shakespeare and concatenated them into a single (4.4MB) file.
We can now afford to train a larger network, in this case lets try a 3-layer RNN with 512 hidden nodes on each
layer. After we train the network for a few hours we obtain samples such as:

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Remember, all the RNN knows are characters, so in particular it samples both speaker’s names and the
contents. Sometimes we also get relatively extented monologue passages, such as:

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.

KING LEAR:
O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

I can barely recognize these samples from actual Shakespeare :) If you like Shakespeare, you might appreciate
this 100,000 character sample. Of course, you can also generate an infinite amount of your own samples at
different temperatures with the provided code.

Wikipedia
We saw that the LSTM can learn to spell words and copy general syntactic structures. Lets further increase the
difficulty and train on structured markdown. In particular, lets take the Hutter Prize 100MB dataset of raw
Wikipedia and train an LSTM. Following Graves et al., I used the first 96MB for training, the rest for validation
and ran a few models overnight. We can now sample Wikipedia articles! Below are a few fun excerpts. First,
some basic markdown output:

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom
of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known
in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal
and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,
was starting to signing a major tripad of aid exile.]]

In case you were wondering, the yahoo url above doesn’t actually exist, the model just hallucinated it. Also, note
that the model learns to open and close the parenthesis correctly. There’s also quite a lot of structured
markdown that the model learns, for example sometimes it creates headings, lists, etc.:

{ { cite journal | id=Cerling Nonforest Department|format=Newlymeslated|none } }
''www.e-complete''.

'''See also''': [[List of ethical consent processing]]

== See also ==
*[[Iender dome of the ED]]
*[[Anti-autism]]

===[[Religion|Religion]]===
*[[French Writings]]
*[[Maria]]
*[[Revelation]]
*[[Mount Agamul]]

== External links==
* [http://www.biblegateway.nih.gov/entrepre/ Website of the World Festival. The labour of India-county defeats at the Ripper of California Road.]

==External links==
* [http://www.romanology.com/ Constitution of the Netherlands and Hispanic Competition for Bilabial and Commonwealth Industry (Republican Constitution of the Extent of the Netherlands)]

Sometimes the model snaps into a mode of generating random but valid XML:

<page>
 <title>Antichrist</title>
 <id>865</id>
 <revision>
 <id>15900676</id>
 <timestamp>2002-08-03T18:14:12Z</timestamp>
 <contributor>
 <username>Paris</username>
 <id>23</id>
 </contributor>
 <minor />
 <comment>Automated conversion</comment>
 <text xml:space="preserve">#REDIRECT [[Christianity]]</text>
 </revision>
</page>

The model completely makes up the timestamp, id, and so on. Also, note that it closes the correct tags
appropriately and in the correct nested order. Here are 100,000 characters of sampled wikipedia if you’re
interested to see more.

Algebraic Geometry (Latex)
The results above suggest that the model is actually quite good at learning complex syntactic structures.
Impressed by these results, my labmate (Justin Johnson) and I decided to push even further into structured
territories and got a hold of this book on algebraic stacks/geometry. We downloaded the raw Latex source file
(a 16MB file) and trained a multilayer LSTM. Amazingly, the resulting sampled Latex almost compiles. We had to
step in and fix a few issues manually but then you get plausible looking math, it’s quite astonishing:

Sampled (fake) algebraic geometry. Here's the actual pdf.

Here’s another sample:

More hallucinated algebraic geometry. Nice try on the diagram (right).

As you can see above, sometimes the model tries to generate latex diagrams, but clearly it hasn’t really figured
them out. I also like the part where it chooses to skip a proof (“Proof omitted.”, top left). Of course, keep in mind
that latex has a relatively difficult structured syntactic format that I haven’t even fully mastered myself. For
instance, here is a raw sample from the model (unedited):

\begin{proof}
We may assume that \mathcal{I} is an abelian sheaf on \mathcal{C}.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$
is an injective and let $\mathfrak q$ be an abelian sheaf on X.
Let \mathcal{F} be a fibered complex. Let \mathcal{F} be a category.
\begin{enumerate}
\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}
Let \mathcal{F} be an abelian quasi-coherent sheaf on \mathcal{C}.
Let \mathcal{F} be a coherent \mathcal{O}_X-module. Then
\mathcal{F} is an abelian catenary over \mathcal{C}.
\item The following are equivalent
\begin{enumerate}
\item \mathcal{F} is an \mathcal{O}_X-module.
\end{lemma}

This sample from a relatively decent model illustrates a few common mistakes. For example, the model opens a
\begin{proof} environment but then ends it with a \end{lemma} . This is an example of a problem we’d

have to fix manually, and is likely due to the fact that the dependency is too long-term: By the time the model is
done with the proof it has forgotten whether it was doing a proof or a lemma. Similarly, it opens an
\begin{enumerate} but then forgets to close it. We observed that these became less common with

larger/better models, but nonetheless, these are the kinds of mistakes that come up.

Linux Source Code
I wanted to push structured data to its limit, so for the final challenge I decided to use code. In particular, I took
all the source and header files found in the Linux repo on Github, concatenated all of them in a single giant file
(474MB of C code) (I was originally going to train only on the kernel but that by itself is only ~16MB). Then I
trained several as-large-as-fits-on-my-GPU 3-layer LSTMs over a period of a few days. These models have
about 10 million parameters, which is still on the lower end for RNN models. The results are superfun:

/*
 * Increment the size file of the new incorrect UI_FILTER group information
 * of the size generatively.
 */
static int indicate_policy(void)
{
 int error;
 if (fd == MARN_EPT) {
 /*
 * The kernel blank will coeld it to userspace.
 */
 if (ss->segment < mem_total)
 unblock_graph_and_set_blocked();
 else
 ret = 1;
 goto bail;
 }
 segaddr = in_SB(in.addr);
 selector = seg / 16;
 setup_works = true;
 for (i = 0; i < blocks; i++) {
 seq = buf[i++];
 bpf = bd->bd.next + i * search;
 if (fd) {
 current = blocked;
 }
 }
 rw->name = "Getjbbregs";
 bprm_self_clearl(&iv->version);
 regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12;
 return segtable;
}

The code looks really quite great overall. Of course, I don’t think it compiles but when you scroll through the
generate code it feels very much like a giant C code base. Notice that the RNN peppers its code with
comments here and there at random. It is also very good at making very few syntactic errors. For example, it
uses strings properly, pointer notation, etc. It also opens and closes brackets {[correctly and learns to indent
its code very well. A common error is that it can’t keep track of variable names: It often uses undefined
variables (e.g. rw above), declares variables it never uses (e.g. int error), or returns non-existing
variables. Lets see a few more examples. Here’s another snippet that shows a wider array of operations that the
RNN learns:

/*
 * If this error is set, we will need anything right after that BSD.
 */
static void action_new_function(struct s_stat_info *wb)
{
 unsigned long flags;
 int lel_idx_bit = e->edd, *sys & ~((unsigned long) *FIRST_COMPAT);
 buf[0] = 0xFFFFFFFF & (bit << 4);
 min(inc, slist->bytes);
 printk(KERN_WARNING "Memory allocated %02x/%02x, "
 "original MLL instead\n"),
 min(min(multi_run - s->len, max) * num_data_in),
 frame_pos, sz + first_seg);
 div_u64_w(val, inb_p);
 spin_unlock(&disk->queue_lock);
 mutex_unlock(&s->sock->mutex);
 mutex_unlock(&func->mutex);
 return disassemble(info->pending_bh);
}

static void num_serial_settings(struct tty_struct *tty)
{
 if (tty == tty)
 disable_single_st_p(dev);
 pci_disable_spool(port);
 return 0;
}

static void do_command(struct seq_file *m, void *v)
{
 int column = 32 << (cmd[2] & 0x80);
 if (state)
 cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
 else
 seq = 1;
 for (i = 0; i < 16; i++) {
 if (k & (1 << 1))
 pipe = (in_use & UMXTHREAD_UNCCA) +
 ((count & 0x00000000fffffff8) & 0x000000f) << 8;
 if (count == 0)
 sub(pid, ppc_md.kexec_handle, 0x20000000);
 pipe_set_bytes(i, 0);
 }
 /* Free our user pages pointer to place camera if all dash */
 subsystem_info = &of_changes[PAGE_SIZE];
 rek_controls(offset, idx, &soffset);
 /* Now we want to deliberately put it to device */
 control_check_polarity(&context, val, 0);
 for (i = 0; i < COUNTER; i++)
 seq_puts(s, "policy ");
}

Notice that in the second function the model compares tty == tty , which is vacuously true. On the other
hand, at least the variable tty exists in the scope this time! In the last function, notice that the code does not
return anything, which happens to be correct since the function signature is void . However, the first two
functions were also declared void and did return values. This is again a form of a common mistake due to
long-term interactions.

Sometimes the model decides that it’s time to sample a new file. This is usually a very amusing part: The model
first recites the GNU license character by character, samples a few includes, generates some macros and then
dives into the code:

/*
 * Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 *
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kexec.h>

#include <linux/errno.h>

= tanh(+)ht Whhht−1 Wxhxt

Andrej Karpathy blog

6/24/18, 1)36 PM
Page 1 of 1

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

• In general, recurrent neural networks have trouble "remembering" details from more than a few steps back.
• This matters for us (eventually) because we would like to generate a sequence of particles (of arbitrary

length). We need the network to remember what we've already generated.
• There are many solutions to this problem built around structures like the one above (LSTM - long short-term

memory) - "memory" cells that bring extra copies of the information from previous steps in the sequence.
LSTMs are important in language processing where order and context matter - this particular structure is not
necessarily right for an event generator producing lists of particles, but we'll look at it as an example
anyway...

�32

12/19/17, 12(27 PMUnderstanding LSTM Networks -- colah's blog

Page 5 of 13http://colah.github.io/posts/2015-08-Understanding-LSTMs/

simple structure, such as a single tanh layer.

The repeating module in a standard RNN contains a single layer.

LSTMs also have this chain like structure, but the repeating module has a
different structure. Instead of having a single neural network layer, there are
four, interacting in a very special way.

The repeating module in an LSTM contains four interacting layers.

Don’t worry about the details of what’s going on. We’ll walk through the
LSTM diagram step by step later. For now, let’s just try to get comfortable
with the notation we’ll be using.

LSTMs

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

• The cell state (usually initialized to zero) runs through the entire chain,
possibly with some linear interactions.
• Information can flow along unchanged - but the LSTM has the ability to add or

subtract information passing along through the cell state.
• This is regulated by structures called gates.

�33

12/19/17, 12(27 PMUnderstanding LSTM Networks -- colah's blog

Page 6 of 13http://colah.github.io/posts/2015-08-Understanding-LSTMs/

In the above diagram, each line carries an entire vector, from the output of
one node to the inputs of others. The pink circles represent pointwise
operations, like vector addition, while the yellow boxes are learned neural
network layers. Lines merging denote concatenation, while a line forking
denote its content being copied and the copies going to different locations.

The Core Idea Behind LSTMs

The key to LSTMs is the cell state, the horizontal line running through the top
of the diagram.

The cell state is kind of like a conveyor belt. It runs straight down the entire
chain, with only some minor linear interactions. It’s very easy for information
to just flow along it unchanged.

The LSTM does have the ability to remove or add information to the cell
state, carefully regulated by structures called gates.

Gates are a way to optionally let information through. They are composed out

12/19/17, 12(27 PMUnderstanding LSTM Networks -- colah's blog

Page 6 of 13http://colah.github.io/posts/2015-08-Understanding-LSTMs/

In the above diagram, each line carries an entire vector, from the output of
one node to the inputs of others. The pink circles represent pointwise
operations, like vector addition, while the yellow boxes are learned neural
network layers. Lines merging denote concatenation, while a line forking
denote its content being copied and the copies going to different locations.

The Core Idea Behind LSTMs

The key to LSTMs is the cell state, the horizontal line running through the top
of the diagram.

The cell state is kind of like a conveyor belt. It runs straight down the entire
chain, with only some minor linear interactions. It’s very easy for information
to just flow along it unchanged.

The LSTM does have the ability to remove or add information to the cell
state, carefully regulated by structures called gates.

Gates are a way to optionally let information through. They are composed out

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

• Gates are composed of sigmoid activation functions (value from 0 to 1 controls how much
of the component should come through - from nothing to everything) and point-wise
multiplication.

• The first of these gates is the "forget gate layer", and consumes the output from the
pervious recurrent cell call.

• In a language model this controls when the LSTM can forget about earlier words for
context.

• In a particle context, the semantics are less obvious, but some information must be learned
to always be retained (four momentum sums, for example!).

�34

12/19/17, 12(27 PMUnderstanding LSTM Networks -- colah's blog

Page 7 of 13http://colah.github.io/posts/2015-08-Understanding-LSTMs/

of a sigmoid neural net layer and a pointwise multiplication operation.

The sigmoid layer outputs numbers between zero and one, describing how
much of each component should be let through. A value of zero means “let
nothing through,” while a value of one means “let everything through!”

An LSTM has three of these gates, to protect and control the cell state.

Step-by-Step LSTM Walk Through

The first step in our LSTM is to decide what information we’re going to throw
away from the cell state. This decision is made by a sigmoid layer called the
“forget gate layer.” It looks at ht−1 and xt, and outputs a number between 0
and 1 for each number in the cell state Ct−1. A 1 represents “completely keep
this” while a 0 represents “completely get rid of this.”

Let’s go back to our example of a language model trying to predict the next
word based on all the previous ones. In such a problem, the cell state might
include the gender of the present subject, so that the correct pronouns can be
used. When we see a new subject, we want to forget the gender of the old
subject.

The next step is to decide what new information we’re going to store in the
cell state. This has two parts. First, a sigmoid layer called the “input gate

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

• Next an LSTM needs to decide what "new" information it wants to keep in the cell
state.

• First, a sigmoid layer decides how much information to propagate into the state
vector. Then, a tanh layer creates new candidate values based on the immediately
preceding output that could be included in the state.

• Very often in a language model these gates control information replacement when old
information is forgotten. In a particle context, they represent a change in focus as we
process the sequence.

�35

12/19/17, 12(27 PMUnderstanding LSTM Networks -- colah's blog

Page 8 of 13http://colah.github.io/posts/2015-08-Understanding-LSTMs/

layer” decides which values we’ll update. Next, a tanh layer creates a vector of
new candidate values, C ̃ t, that could be added to the state. In the next step,
we’ll combine these two to create an update to the state.

In the example of our language model, we’d want to add the gender of the
new subject to the cell state, to replace the old one we’re forgetting.

It’s now time to update the old cell state, Ct−1, into the new cell state Ct. The
previous steps already decided what to do, we just need to actually do it.

We multiply the old state by ft, forgetting the things we decided to forget
earlier. Then we add it∗C ̃ t. This is the new candidate values, scaled by how
much we decided to update each state value.

In the case of the language model, this is where we’d actually drop the
information about the old subject’s gender and add the new information, as
we decided in the previous steps.

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

• Once we have decided what to drop and what to add to the running cell state, we
must apply the changes to the state vector.
• We multiply the cell state by the output of a sigmoid to modulate older information,

then we add new information (which was multiplied by sigmoid and tanh layers to
modulate new information and allow additive and subtractive changes).

�36

12/19/17, 12(27 PMUnderstanding LSTM Networks -- colah's blog

Page 9 of 13http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Finally, we need to decide what we’re going to output. This output will be
based on our cell state, but will be a filtered version. First, we run a sigmoid
layer which decides what parts of the cell state we’re going to output. Then,
we put the cell state through tanh (to push the values to be between −1 and 1)
and multiply it by the output of the sigmoid gate, so that we only output the
parts we decided to.

For the language model example, since it just saw a subject, it might want to
output information relevant to a verb, in case that’s what is coming next. For
example, it might output whether the subject is singular or plural, so that we
know what form a verb should be conjugated into if that’s what follows next.

Variants on Long Short Term Memory

What I’ve described so far is a pretty normal LSTM. But not all LSTMs are the

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

• Then, we regulate output by using a sigmoid layer to decide which values
make it to the output, and combine it with the cell state, after passing those
values through a tanh layer.
• This output is split and passed out as a classifier value or a generated value

and also passed back into the LSTM.

�37

12/19/17, 12(27 PMUnderstanding LSTM Networks -- colah's blog

Page 9 of 13http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Finally, we need to decide what we’re going to output. This output will be
based on our cell state, but will be a filtered version. First, we run a sigmoid
layer which decides what parts of the cell state we’re going to output. Then,
we put the cell state through tanh (to push the values to be between −1 and 1)
and multiply it by the output of the sigmoid gate, so that we only output the
parts we decided to.

For the language model example, since it just saw a subject, it might want to
output information relevant to a verb, in case that’s what is coming next. For
example, it might output whether the subject is singular or plural, so that we
know what form a verb should be conjugated into if that’s what follows next.

Variants on Long Short Term Memory

What I’ve described so far is a pretty normal LSTM. But not all LSTMs are the

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �38

About Hacker's guide to Neural Networks

The Unreasonable Effectiveness of Recurrent Neural
Networks
May 21, 2015

There’s something magical about Recurrent Neural Networks (RNNs). I still remember when I trained my first
recurrent network for Image Captioning. Within a few dozen minutes of training my first baby model (with rather
arbitrarily-chosen hyperparameters) started to generate very nice looking descriptions of images that were on
the edge of making sense. Sometimes the ratio of how simple your model is to the quality of the results you get
out of it blows past your expectations, and this was one of those times. What made this result so shocking at the
time was that the common wisdom was that RNNs were supposed to be difficult to train (with more experience
I’ve in fact reached the opposite conclusion). Fast forward about a year: I’m training RNNs all the time and I’ve
witnessed their power and robustness many times, and yet their magical outputs still find ways of amusing me.
This post is about sharing some of that magic with you.

By the way, together with this post I am also releasing code on Github that allows you to train character-level
language models based on multi-layer LSTMs. You give it a large chunk of text and it will learn to generate text
like it one character at a time. You can also use it to reproduce my experiments below. But we’re getting ahead
of ourselves; What are RNNs anyway?

Recurrent Neural Networks
Sequences. Depending on your background you might be wondering: What makes Recurrent Networks so
special? A glaring limitation of Vanilla Neural Networks (and also Convolutional Networks) is that their API is too
constrained: they accept a fixed-sized vector as input (e.g. an image) and produce a fixed-sized vector as
output (e.g. probabilities of different classes). Not only that: These models perform this mapping using a fixed
amount of computational steps (e.g. the number of layers in the model). The core reason that recurrent nets are
more exciting is that they allow us to operate over sequences of vectors: Sequences in the input, the output, or
in the most general case both. A few examples may make this more concrete:

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are in
blue and green vectors hold the RNN's state (more on this soon). From left to right: (1) Vanilla mode of processing without RNN,
from fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image captioning takes an
image and outputs a sentence of words). (3) Sequence input (e.g. sentiment analysis where a given sentence is classified as
expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g. Machine Translation: an RNN reads a
sentence in English and then outputs a sentence in French). (5) Synced sequence input and output (e.g. video classification
where we wish to label each frame of the video). Notice that in every case are no pre-specified constraints on the lengths
sequences because the recurrent transformation (green) is fixed and can be applied as many times as we like.

As you might expect, the sequence regime of operation is much more powerful compared to fixed networks that
are doomed from the get-go by a fixed number of computational steps, and hence also much more appealing
for those of us who aspire to build more intelligent systems. Moreover, as we’ll see in a bit, RNNs combine the
input vector with their state vector with a fixed (but learned) function to produce a new state vector. This can in
programming terms be interpreted as running a fixed program with certain inputs and some internal variables.
Viewed this way, RNNs essentially describe programs. In fact, it is known that RNNs are Turing-Complete in the
sense that they can to simulate arbitrary programs (with proper weights). But similar to universal approximation
theorems for neural nets you shouldn’t read too much into this. In fact, forget I said anything.

Sequential processing in absence of sequences. You might be thinking that having sequences as inputs or
outputs could be relatively rare, but an important point to realize is that even if your inputs/outputs are fixed
vectors, it is still possible to use this powerful formalism to process them in a sequential manner. For instance,
the figure below shows results from two very nice papers from DeepMind. On the left, an algorithm learns a
recurrent network policy that steers its attention around an image; In particular, it learns to read out house
numbers from left to right (Ba et al.). On the right, a recurrent network generates images of digits by learning to
sequentially add color to a canvas (Gregor et al.):

Left: RNN learns to read house numbers. Right: RNN learns to paint house numbers.

The takeaway is that even if your data is not in form of sequences, you can still formulate and train powerful
models that learn to process it sequentially. You’re learning stateful programs that process your fixed-sized
data.

RNN computation. So how do these things work? At the core, RNNs have a deceptively simple API: They
accept an input vector x and give you an output vector y . However, crucially this output vector’s contents
are influenced not only by the input you just fed in, but also on the entire history of inputs you’ve fed in in the
past. Written as a class, the RNN’s API consists of a single step function:

rnn = RNN()
y = rnn.step(x) # x is an input vector, y is the RNN's output vector

The RNN class has some internal state that it gets to update every time step is called. In the simplest case
this state consists of a single hidden vector h . Here is an implementation of the step function in a Vanilla RNN:

class RNN:
 # ...
 def step(self, x):
 # update the hidden state
 self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))
 # compute the output vector
 y = np.dot(self.W_hy, self.h)
 return y

The above specifies the forward pass of a vanilla RNN. This RNN’s parameters are the three matrices W_hh,
W_xh, W_hy . The hidden state self.h is initialized with the zero vector. The np.tanh function implements
a non-linearity that squashes the activations to the range [-1, 1] . Notice briefly how this works: There are
two terms inside of the tanh: one is based on the previous hidden state and one is based on the current input.
In numpy np.dot is matrix multiplication. The two intermediates interact with addition, and then get squashed
by the tanh into the new state vector. If you’re more comfortable with math notation, we can also write the
hidden state update as , where tanh is applied elementwise.

We initialize the matrices of the RNN with random numbers and the bulk of work during training goes into
finding the matrices that give rise to desirable behavior, as measured with some loss function that expresses
your preference to what kinds of outputs y you’d like to see in response to your input sequences x .

Going deep. RNNs are neural networks and everything works monotonically better (if done right) if you put on
your deep learning hat and start stacking models up like pancakes. For instance, we can form a 2-layer
recurrent network as follows:

y1 = rnn1.step(x)
y = rnn2.step(y1)

In other words we have two separate RNNs: One RNN is receiving the input vectors and the second RNN is
receiving the output of the first RNN as its input. Except neither of these RNNs know or care - it’s all just vectors
coming in and going out, and some gradients flowing through each module during backpropagation.

Getting fancy. I’d like to briefly mention that in practice most of us use a slightly different formulation than what
I presented above called a Long Short-Term Memory (LSTM) network. The LSTM is a particular type of recurrent
network that works slightly better in practice, owing to its more powerful update equation and some appealing
backpropagation dynamics. I won’t go into details, but everything I’ve said about RNNs stays exactly the same,
except the mathematical form for computing the update (the line self.h = ...) gets a little more
complicated. From here on I will use the terms “RNN/LSTM” interchangeably but all experiments in this post use
an LSTM.

Character-Level Language Models
Okay, so we have an idea about what RNNs are, why they are super exciting, and how they work. We’ll now
ground this in a fun application: We’ll train RNN character-level language models. That is, we’ll give the RNN a
huge chunk of text and ask it to model the probability distribution of the next character in the sequence given a
sequence of previous characters. This will then allow us to generate new text one character at a time.

As a working example, suppose we only had a vocabulary of four possible letters “helo”, and wanted to train an
RNN on the training sequence “hello”. This training sequence is in fact a source of 4 separate training
examples: 1. The probability of “e” should be likely given the context of “h”, 2. “l” should be likely in the context
of “he”, 3. “l” should also be likely given the context of “hel”, and finally 4. “o” should be likely given the context
of “hell”.

Concretely, we will encode each character into a vector using 1-of-k encoding (i.e. all zero except for a single
one at the index of the character in the vocabulary), and feed them into the RNN one at a time with the step
function. We will then observe a sequence of 4-dimensional output vectors (one dimension per character),
which we interpret as the confidence the RNN currently assigns to each character coming next in the
sequence. Here’s a diagram:

An example RNN with 4-dimensional input and output layers, and a hidden layer of 3 units (neurons). This diagram shows the
activations in the forward pass when the RNN is fed the characters "hell" as input. The output layer contains confidences the

RNN assigns for the next character (vocabulary is "h,e,l,o"); We want the green numbers to be high and red numbers to be low.

For example, we see that in the first time step when the RNN saw the character “h” it assigned confidence of
1.0 to the next letter being “h”, 2.2 to letter “e”, -3.0 to “l”, and 4.1 to “o”. Since in our training data (the string
“hello”) the next correct character is “e”, we would like to increase its confidence (green) and decrease the
confidence of all other letters (red). Similarly, we have a desired target character at every one of the 4 time
steps that we’d like the network to assign a greater confidence to. Since the RNN consists entirely of
differentiable operations we can run the backpropagation algorithm (this is just a recursive application of the
chain rule from calculus) to figure out in what direction we should adjust every one of its weights to increase the
scores of the correct targets (green bold numbers). We can then perform a parameter update, which nudges
every weight a tiny amount in this gradient direction. If we were to feed the same inputs to the RNN after the
parameter update we would find that the scores of the correct characters (e.g. “e” in the first time step) would
be slightly higher (e.g. 2.3 instead of 2.2), and the scores of incorrect characters would be slightly lower. We
then repeat this process over and over many times until the network converges and its predictions are
eventually consistent with the training data in that correct characters are always predicted next.

A more technical explanation is that we use the standard Softmax classifier (also commonly referred to as the
cross-entropy loss) on every output vector simultaneously. The RNN is trained with mini-batch Stochastic
Gradient Descent and I like to use RMSProp or Adam (per-parameter adaptive learning rate methods) to
stablilize the updates.

Notice also that the first time the character “l” is input, the target is “l”, but the second time the target is “o”. The
RNN therefore cannot rely on the input alone and must use its recurrent connection to keep track of the context
to achieve this task.

At test time, we feed a character into the RNN and get a distribution over what characters are likely to come
next. We sample from this distribution, and feed it right back in to get the next letter. Repeat this process and
you’re sampling text! Lets now train an RNN on different datasets and see what happens.

To further clarify, for educational purposes I also wrote a minimal character-level RNN language model in
Python/numpy. It is only about 100 lines long and hopefully it gives a concise, concrete and useful summary of
the above if you’re better at reading code than text. We’ll now dive into example results, produced with the
much more efficient Lua/Torch codebase.

Fun with RNNs
All 5 example character models below were trained with the code I’m releasing on Github. The input in each
case is a single file with some text, and we’re training an RNN to predict the next character in the sequence.

Paul Graham generator
Lets first try a small dataset of English as a sanity check. My favorite fun dataset is the concatenation of Paul
Graham’s essays. The basic idea is that there’s a lot of wisdom in these essays, but unfortunately Paul Graham
is a relatively slow generator. Wouldn’t it be great if we could sample startup wisdom on demand? That’s where
an RNN comes in.

Concatenating all pg essays over the last ~5 years we get approximately 1MB text file, or about 1 million
characters (this is considered a very small dataset by the way). Technical: Lets train a 2-layer LSTM with 512
hidden nodes (approx. 3.5 million parameters), and with dropout of 0.5 after each layer. We’ll train with batches
of 100 examples and truncated backpropagation through time of length 100 characters. With these settings one
batch on a TITAN Z GPU takes about 0.46 seconds (this can be cut in half with 50 character BPTT at negligible
cost in performance). Without further ado, lets see a sample from the RNN:

“The surprised in investors weren’t going to raise money. I’m not the company with the time there are all
interesting quickly, don’t have to get off the same programmers. There’s a super-angel round fundraising, why
do you can do. If you have a different physical investment are become in people who reduced in a startup with
the way to argument the acquirer could see them just that you’re also the founders will part of users’ affords that
and an alternation to the idea. [2] Don’t work at first member to see the way kids will seem in advance of a bad
successful startup. And if you have to act the big company too.”

Okay, clearly the above is unfortunately not going to replace Paul Graham anytime soon, but remember that the
RNN had to learn English completely from scratch and with a small dataset (including where you put commas,
apostrophes and spaces). I also like that it learns to support its own arguments (e.g. [2], above). Sometimes it
says something that offers a glimmer of insight, such as “a company is a meeting to think to investors”. Here’s a
link to 50K character sample if you’d like to see more.

Temperature. We can also play with the temperature of the Softmax during sampling. Decreasing the
temperature from 1 to some lower number (e.g. 0.5) makes the RNN more confident, but also more conservative
in its samples. Conversely, higher temperatures will give more diversity but at cost of more mistakes (e.g.
spelling mistakes, etc). In particular, setting temperature very near zero will give the most likely thing that Paul
Graham might say:

“is that they were all the same thing that was a startup is that they were all the same thing that was a startup is
that they were all the same thing that was a startup is that they were all the same”

looks like we’ve reached an infinite loop about startups.

Shakespeare
It looks like we can learn to spell English words. But how about if there is more structure and style in the data?
To examine this I downloaded all the works of Shakespeare and concatenated them into a single (4.4MB) file.
We can now afford to train a larger network, in this case lets try a 3-layer RNN with 512 hidden nodes on each
layer. After we train the network for a few hours we obtain samples such as:

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Remember, all the RNN knows are characters, so in particular it samples both speaker’s names and the
contents. Sometimes we also get relatively extented monologue passages, such as:

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.

KING LEAR:
O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

I can barely recognize these samples from actual Shakespeare :) If you like Shakespeare, you might appreciate
this 100,000 character sample. Of course, you can also generate an infinite amount of your own samples at
different temperatures with the provided code.

Wikipedia
We saw that the LSTM can learn to spell words and copy general syntactic structures. Lets further increase the
difficulty and train on structured markdown. In particular, lets take the Hutter Prize 100MB dataset of raw
Wikipedia and train an LSTM. Following Graves et al., I used the first 96MB for training, the rest for validation
and ran a few models overnight. We can now sample Wikipedia articles! Below are a few fun excerpts. First,
some basic markdown output:

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom
of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known
in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal
and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,
was starting to signing a major tripad of aid exile.]]

In case you were wondering, the yahoo url above doesn’t actually exist, the model just hallucinated it. Also, note
that the model learns to open and close the parenthesis correctly. There’s also quite a lot of structured
markdown that the model learns, for example sometimes it creates headings, lists, etc.:

{ { cite journal | id=Cerling Nonforest Department|format=Newlymeslated|none } }
''www.e-complete''.

'''See also''': [[List of ethical consent processing]]

== See also ==
*[[Iender dome of the ED]]
*[[Anti-autism]]

===[[Religion|Religion]]===
*[[French Writings]]
*[[Maria]]
*[[Revelation]]
*[[Mount Agamul]]

== External links==
* [http://www.biblegateway.nih.gov/entrepre/ Website of the World Festival. The labour of India-county defeats at the Ripper of California Road.]

==External links==
* [http://www.romanology.com/ Constitution of the Netherlands and Hispanic Competition for Bilabial and Commonwealth Industry (Republican Constitution of the Extent of the Netherlands)]

Sometimes the model snaps into a mode of generating random but valid XML:

<page>
 <title>Antichrist</title>
 <id>865</id>
 <revision>
 <id>15900676</id>
 <timestamp>2002-08-03T18:14:12Z</timestamp>
 <contributor>
 <username>Paris</username>
 <id>23</id>
 </contributor>
 <minor />
 <comment>Automated conversion</comment>
 <text xml:space="preserve">#REDIRECT [[Christianity]]</text>
 </revision>
</page>

The model completely makes up the timestamp, id, and so on. Also, note that it closes the correct tags
appropriately and in the correct nested order. Here are 100,000 characters of sampled wikipedia if you’re
interested to see more.

Algebraic Geometry (Latex)
The results above suggest that the model is actually quite good at learning complex syntactic structures.
Impressed by these results, my labmate (Justin Johnson) and I decided to push even further into structured
territories and got a hold of this book on algebraic stacks/geometry. We downloaded the raw Latex source file
(a 16MB file) and trained a multilayer LSTM. Amazingly, the resulting sampled Latex almost compiles. We had to
step in and fix a few issues manually but then you get plausible looking math, it’s quite astonishing:

Sampled (fake) algebraic geometry. Here's the actual pdf.

Here’s another sample:

More hallucinated algebraic geometry. Nice try on the diagram (right).

As you can see above, sometimes the model tries to generate latex diagrams, but clearly it hasn’t really figured
them out. I also like the part where it chooses to skip a proof (“Proof omitted.”, top left). Of course, keep in mind
that latex has a relatively difficult structured syntactic format that I haven’t even fully mastered myself. For
instance, here is a raw sample from the model (unedited):

\begin{proof}
We may assume that \mathcal{I} is an abelian sheaf on \mathcal{C}.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$
is an injective and let $\mathfrak q$ be an abelian sheaf on X.
Let \mathcal{F} be a fibered complex. Let \mathcal{F} be a category.
\begin{enumerate}
\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}
Let \mathcal{F} be an abelian quasi-coherent sheaf on \mathcal{C}.
Let \mathcal{F} be a coherent \mathcal{O}_X-module. Then
\mathcal{F} is an abelian catenary over \mathcal{C}.
\item The following are equivalent
\begin{enumerate}
\item \mathcal{F} is an \mathcal{O}_X-module.
\end{lemma}

This sample from a relatively decent model illustrates a few common mistakes. For example, the model opens a
\begin{proof} environment but then ends it with a \end{lemma} . This is an example of a problem we’d

have to fix manually, and is likely due to the fact that the dependency is too long-term: By the time the model is
done with the proof it has forgotten whether it was doing a proof or a lemma. Similarly, it opens an
\begin{enumerate} but then forgets to close it. We observed that these became less common with

larger/better models, but nonetheless, these are the kinds of mistakes that come up.

Linux Source Code
I wanted to push structured data to its limit, so for the final challenge I decided to use code. In particular, I took
all the source and header files found in the Linux repo on Github, concatenated all of them in a single giant file
(474MB of C code) (I was originally going to train only on the kernel but that by itself is only ~16MB). Then I
trained several as-large-as-fits-on-my-GPU 3-layer LSTMs over a period of a few days. These models have
about 10 million parameters, which is still on the lower end for RNN models. The results are superfun:

/*
 * Increment the size file of the new incorrect UI_FILTER group information
 * of the size generatively.
 */
static int indicate_policy(void)
{
 int error;
 if (fd == MARN_EPT) {
 /*
 * The kernel blank will coeld it to userspace.
 */
 if (ss->segment < mem_total)
 unblock_graph_and_set_blocked();
 else
 ret = 1;
 goto bail;
 }
 segaddr = in_SB(in.addr);
 selector = seg / 16;
 setup_works = true;
 for (i = 0; i < blocks; i++) {
 seq = buf[i++];
 bpf = bd->bd.next + i * search;
 if (fd) {
 current = blocked;
 }
 }
 rw->name = "Getjbbregs";
 bprm_self_clearl(&iv->version);
 regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12;
 return segtable;
}

The code looks really quite great overall. Of course, I don’t think it compiles but when you scroll through the
generate code it feels very much like a giant C code base. Notice that the RNN peppers its code with
comments here and there at random. It is also very good at making very few syntactic errors. For example, it
uses strings properly, pointer notation, etc. It also opens and closes brackets {[correctly and learns to indent
its code very well. A common error is that it can’t keep track of variable names: It often uses undefined
variables (e.g. rw above), declares variables it never uses (e.g. int error), or returns non-existing
variables. Lets see a few more examples. Here’s another snippet that shows a wider array of operations that the
RNN learns:

/*
 * If this error is set, we will need anything right after that BSD.
 */
static void action_new_function(struct s_stat_info *wb)
{
 unsigned long flags;
 int lel_idx_bit = e->edd, *sys & ~((unsigned long) *FIRST_COMPAT);
 buf[0] = 0xFFFFFFFF & (bit << 4);
 min(inc, slist->bytes);
 printk(KERN_WARNING "Memory allocated %02x/%02x, "
 "original MLL instead\n"),
 min(min(multi_run - s->len, max) * num_data_in),
 frame_pos, sz + first_seg);
 div_u64_w(val, inb_p);
 spin_unlock(&disk->queue_lock);
 mutex_unlock(&s->sock->mutex);
 mutex_unlock(&func->mutex);
 return disassemble(info->pending_bh);
}

static void num_serial_settings(struct tty_struct *tty)
{
 if (tty == tty)
 disable_single_st_p(dev);
 pci_disable_spool(port);
 return 0;
}

static void do_command(struct seq_file *m, void *v)
{
 int column = 32 << (cmd[2] & 0x80);
 if (state)
 cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
 else
 seq = 1;
 for (i = 0; i < 16; i++) {
 if (k & (1 << 1))
 pipe = (in_use & UMXTHREAD_UNCCA) +
 ((count & 0x00000000fffffff8) & 0x000000f) << 8;
 if (count == 0)
 sub(pid, ppc_md.kexec_handle, 0x20000000);
 pipe_set_bytes(i, 0);
 }
 /* Free our user pages pointer to place camera if all dash */
 subsystem_info = &of_changes[PAGE_SIZE];
 rek_controls(offset, idx, &soffset);
 /* Now we want to deliberately put it to device */
 control_check_polarity(&context, val, 0);
 for (i = 0; i < COUNTER; i++)
 seq_puts(s, "policy ");
}

Notice that in the second function the model compares tty == tty , which is vacuously true. On the other
hand, at least the variable tty exists in the scope this time! In the last function, notice that the code does not
return anything, which happens to be correct since the function signature is void . However, the first two
functions were also declared void and did return values. This is again a form of a common mistake due to
long-term interactions.

Sometimes the model decides that it’s time to sample a new file. This is usually a very amusing part: The model
first recites the GNU license character by character, samples a few includes, generates some macros and then
dives into the code:

/*
 * Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 *
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kexec.h>

#include <linux/errno.h>

= tanh(+)ht Whhht−1 Wxhxt

Andrej Karpathy blog

6/24/18, 1)36 PM
Page 1 of 1

About Hacker's guide to Neural Networks

The Unreasonable Effectiveness of Recurrent Neural
Networks
May 21, 2015

There’s something magical about Recurrent Neural Networks (RNNs). I still remember when I trained my first
recurrent network for Image Captioning. Within a few dozen minutes of training my first baby model (with rather
arbitrarily-chosen hyperparameters) started to generate very nice looking descriptions of images that were on
the edge of making sense. Sometimes the ratio of how simple your model is to the quality of the results you get
out of it blows past your expectations, and this was one of those times. What made this result so shocking at the
time was that the common wisdom was that RNNs were supposed to be difficult to train (with more experience
I’ve in fact reached the opposite conclusion). Fast forward about a year: I’m training RNNs all the time and I’ve
witnessed their power and robustness many times, and yet their magical outputs still find ways of amusing me.
This post is about sharing some of that magic with you.

By the way, together with this post I am also releasing code on Github that allows you to train character-level
language models based on multi-layer LSTMs. You give it a large chunk of text and it will learn to generate text
like it one character at a time. You can also use it to reproduce my experiments below. But we’re getting ahead
of ourselves; What are RNNs anyway?

Recurrent Neural Networks
Sequences. Depending on your background you might be wondering: What makes Recurrent Networks so
special? A glaring limitation of Vanilla Neural Networks (and also Convolutional Networks) is that their API is too
constrained: they accept a fixed-sized vector as input (e.g. an image) and produce a fixed-sized vector as
output (e.g. probabilities of different classes). Not only that: These models perform this mapping using a fixed
amount of computational steps (e.g. the number of layers in the model). The core reason that recurrent nets are
more exciting is that they allow us to operate over sequences of vectors: Sequences in the input, the output, or
in the most general case both. A few examples may make this more concrete:

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are in
blue and green vectors hold the RNN's state (more on this soon). From left to right: (1) Vanilla mode of processing without RNN,
from fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image captioning takes an
image and outputs a sentence of words). (3) Sequence input (e.g. sentiment analysis where a given sentence is classified as
expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g. Machine Translation: an RNN reads a
sentence in English and then outputs a sentence in French). (5) Synced sequence input and output (e.g. video classification
where we wish to label each frame of the video). Notice that in every case are no pre-specified constraints on the lengths
sequences because the recurrent transformation (green) is fixed and can be applied as many times as we like.

As you might expect, the sequence regime of operation is much more powerful compared to fixed networks that
are doomed from the get-go by a fixed number of computational steps, and hence also much more appealing
for those of us who aspire to build more intelligent systems. Moreover, as we’ll see in a bit, RNNs combine the
input vector with their state vector with a fixed (but learned) function to produce a new state vector. This can in
programming terms be interpreted as running a fixed program with certain inputs and some internal variables.
Viewed this way, RNNs essentially describe programs. In fact, it is known that RNNs are Turing-Complete in the
sense that they can to simulate arbitrary programs (with proper weights). But similar to universal approximation
theorems for neural nets you shouldn’t read too much into this. In fact, forget I said anything.

Sequential processing in absence of sequences. You might be thinking that having sequences as inputs or
outputs could be relatively rare, but an important point to realize is that even if your inputs/outputs are fixed
vectors, it is still possible to use this powerful formalism to process them in a sequential manner. For instance,
the figure below shows results from two very nice papers from DeepMind. On the left, an algorithm learns a
recurrent network policy that steers its attention around an image; In particular, it learns to read out house
numbers from left to right (Ba et al.). On the right, a recurrent network generates images of digits by learning to
sequentially add color to a canvas (Gregor et al.):

Left: RNN learns to read house numbers. Right: RNN learns to paint house numbers.

The takeaway is that even if your data is not in form of sequences, you can still formulate and train powerful
models that learn to process it sequentially. You’re learning stateful programs that process your fixed-sized
data.

RNN computation. So how do these things work? At the core, RNNs have a deceptively simple API: They
accept an input vector x and give you an output vector y . However, crucially this output vector’s contents
are influenced not only by the input you just fed in, but also on the entire history of inputs you’ve fed in in the
past. Written as a class, the RNN’s API consists of a single step function:

rnn = RNN()
y = rnn.step(x) # x is an input vector, y is the RNN's output vector

The RNN class has some internal state that it gets to update every time step is called. In the simplest case
this state consists of a single hidden vector h . Here is an implementation of the step function in a Vanilla RNN:

class RNN:
 # ...
 def step(self, x):
 # update the hidden state
 self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))
 # compute the output vector
 y = np.dot(self.W_hy, self.h)
 return y

The above specifies the forward pass of a vanilla RNN. This RNN’s parameters are the three matrices W_hh,
W_xh, W_hy . The hidden state self.h is initialized with the zero vector. The np.tanh function implements
a non-linearity that squashes the activations to the range [-1, 1] . Notice briefly how this works: There are
two terms inside of the tanh: one is based on the previous hidden state and one is based on the current input.
In numpy np.dot is matrix multiplication. The two intermediates interact with addition, and then get squashed
by the tanh into the new state vector. If you’re more comfortable with math notation, we can also write the
hidden state update as , where tanh is applied elementwise.

We initialize the matrices of the RNN with random numbers and the bulk of work during training goes into
finding the matrices that give rise to desirable behavior, as measured with some loss function that expresses
your preference to what kinds of outputs y you’d like to see in response to your input sequences x .

Going deep. RNNs are neural networks and everything works monotonically better (if done right) if you put on
your deep learning hat and start stacking models up like pancakes. For instance, we can form a 2-layer
recurrent network as follows:

y1 = rnn1.step(x)
y = rnn2.step(y1)

In other words we have two separate RNNs: One RNN is receiving the input vectors and the second RNN is
receiving the output of the first RNN as its input. Except neither of these RNNs know or care - it’s all just vectors
coming in and going out, and some gradients flowing through each module during backpropagation.

Getting fancy. I’d like to briefly mention that in practice most of us use a slightly different formulation than what
I presented above called a Long Short-Term Memory (LSTM) network. The LSTM is a particular type of recurrent
network that works slightly better in practice, owing to its more powerful update equation and some appealing
backpropagation dynamics. I won’t go into details, but everything I’ve said about RNNs stays exactly the same,
except the mathematical form for computing the update (the line self.h = ...) gets a little more
complicated. From here on I will use the terms “RNN/LSTM” interchangeably but all experiments in this post use
an LSTM.

Character-Level Language Models
Okay, so we have an idea about what RNNs are, why they are super exciting, and how they work. We’ll now
ground this in a fun application: We’ll train RNN character-level language models. That is, we’ll give the RNN a
huge chunk of text and ask it to model the probability distribution of the next character in the sequence given a
sequence of previous characters. This will then allow us to generate new text one character at a time.

As a working example, suppose we only had a vocabulary of four possible letters “helo”, and wanted to train an
RNN on the training sequence “hello”. This training sequence is in fact a source of 4 separate training
examples: 1. The probability of “e” should be likely given the context of “h”, 2. “l” should be likely in the context
of “he”, 3. “l” should also be likely given the context of “hel”, and finally 4. “o” should be likely given the context
of “hell”.

Concretely, we will encode each character into a vector using 1-of-k encoding (i.e. all zero except for a single
one at the index of the character in the vocabulary), and feed them into the RNN one at a time with the step
function. We will then observe a sequence of 4-dimensional output vectors (one dimension per character),
which we interpret as the confidence the RNN currently assigns to each character coming next in the
sequence. Here’s a diagram:

An example RNN with 4-dimensional input and output layers, and a hidden layer of 3 units (neurons). This diagram shows the
activations in the forward pass when the RNN is fed the characters "hell" as input. The output layer contains confidences the

RNN assigns for the next character (vocabulary is "h,e,l,o"); We want the green numbers to be high and red numbers to be low.

For example, we see that in the first time step when the RNN saw the character “h” it assigned confidence of
1.0 to the next letter being “h”, 2.2 to letter “e”, -3.0 to “l”, and 4.1 to “o”. Since in our training data (the string
“hello”) the next correct character is “e”, we would like to increase its confidence (green) and decrease the
confidence of all other letters (red). Similarly, we have a desired target character at every one of the 4 time
steps that we’d like the network to assign a greater confidence to. Since the RNN consists entirely of
differentiable operations we can run the backpropagation algorithm (this is just a recursive application of the
chain rule from calculus) to figure out in what direction we should adjust every one of its weights to increase the
scores of the correct targets (green bold numbers). We can then perform a parameter update, which nudges
every weight a tiny amount in this gradient direction. If we were to feed the same inputs to the RNN after the
parameter update we would find that the scores of the correct characters (e.g. “e” in the first time step) would
be slightly higher (e.g. 2.3 instead of 2.2), and the scores of incorrect characters would be slightly lower. We
then repeat this process over and over many times until the network converges and its predictions are
eventually consistent with the training data in that correct characters are always predicted next.

A more technical explanation is that we use the standard Softmax classifier (also commonly referred to as the
cross-entropy loss) on every output vector simultaneously. The RNN is trained with mini-batch Stochastic
Gradient Descent and I like to use RMSProp or Adam (per-parameter adaptive learning rate methods) to
stablilize the updates.

Notice also that the first time the character “l” is input, the target is “l”, but the second time the target is “o”. The
RNN therefore cannot rely on the input alone and must use its recurrent connection to keep track of the context
to achieve this task.

At test time, we feed a character into the RNN and get a distribution over what characters are likely to come
next. We sample from this distribution, and feed it right back in to get the next letter. Repeat this process and
you’re sampling text! Lets now train an RNN on different datasets and see what happens.

To further clarify, for educational purposes I also wrote a minimal character-level RNN language model in
Python/numpy. It is only about 100 lines long and hopefully it gives a concise, concrete and useful summary of
the above if you’re better at reading code than text. We’ll now dive into example results, produced with the
much more efficient Lua/Torch codebase.

Fun with RNNs
All 5 example character models below were trained with the code I’m releasing on Github. The input in each
case is a single file with some text, and we’re training an RNN to predict the next character in the sequence.

Paul Graham generator
Lets first try a small dataset of English as a sanity check. My favorite fun dataset is the concatenation of Paul
Graham’s essays. The basic idea is that there’s a lot of wisdom in these essays, but unfortunately Paul Graham
is a relatively slow generator. Wouldn’t it be great if we could sample startup wisdom on demand? That’s where
an RNN comes in.

Concatenating all pg essays over the last ~5 years we get approximately 1MB text file, or about 1 million
characters (this is considered a very small dataset by the way). Technical: Lets train a 2-layer LSTM with 512
hidden nodes (approx. 3.5 million parameters), and with dropout of 0.5 after each layer. We’ll train with batches
of 100 examples and truncated backpropagation through time of length 100 characters. With these settings one
batch on a TITAN Z GPU takes about 0.46 seconds (this can be cut in half with 50 character BPTT at negligible
cost in performance). Without further ado, lets see a sample from the RNN:

“The surprised in investors weren’t going to raise money. I’m not the company with the time there are all
interesting quickly, don’t have to get off the same programmers. There’s a super-angel round fundraising, why
do you can do. If you have a different physical investment are become in people who reduced in a startup with
the way to argument the acquirer could see them just that you’re also the founders will part of users’ affords that
and an alternation to the idea. [2] Don’t work at first member to see the way kids will seem in advance of a bad
successful startup. And if you have to act the big company too.”

Okay, clearly the above is unfortunately not going to replace Paul Graham anytime soon, but remember that the
RNN had to learn English completely from scratch and with a small dataset (including where you put commas,
apostrophes and spaces). I also like that it learns to support its own arguments (e.g. [2], above). Sometimes it
says something that offers a glimmer of insight, such as “a company is a meeting to think to investors”. Here’s a
link to 50K character sample if you’d like to see more.

Temperature. We can also play with the temperature of the Softmax during sampling. Decreasing the
temperature from 1 to some lower number (e.g. 0.5) makes the RNN more confident, but also more conservative
in its samples. Conversely, higher temperatures will give more diversity but at cost of more mistakes (e.g.
spelling mistakes, etc). In particular, setting temperature very near zero will give the most likely thing that Paul
Graham might say:

“is that they were all the same thing that was a startup is that they were all the same thing that was a startup is
that they were all the same thing that was a startup is that they were all the same”

looks like we’ve reached an infinite loop about startups.

Shakespeare
It looks like we can learn to spell English words. But how about if there is more structure and style in the data?
To examine this I downloaded all the works of Shakespeare and concatenated them into a single (4.4MB) file.
We can now afford to train a larger network, in this case lets try a 3-layer RNN with 512 hidden nodes on each
layer. After we train the network for a few hours we obtain samples such as:

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Remember, all the RNN knows are characters, so in particular it samples both speaker’s names and the
contents. Sometimes we also get relatively extented monologue passages, such as:

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.

KING LEAR:
O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

I can barely recognize these samples from actual Shakespeare :) If you like Shakespeare, you might appreciate
this 100,000 character sample. Of course, you can also generate an infinite amount of your own samples at
different temperatures with the provided code.

Wikipedia
We saw that the LSTM can learn to spell words and copy general syntactic structures. Lets further increase the
difficulty and train on structured markdown. In particular, lets take the Hutter Prize 100MB dataset of raw
Wikipedia and train an LSTM. Following Graves et al., I used the first 96MB for training, the rest for validation
and ran a few models overnight. We can now sample Wikipedia articles! Below are a few fun excerpts. First,
some basic markdown output:

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom
of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known
in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal
and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,
was starting to signing a major tripad of aid exile.]]

In case you were wondering, the yahoo url above doesn’t actually exist, the model just hallucinated it. Also, note
that the model learns to open and close the parenthesis correctly. There’s also quite a lot of structured
markdown that the model learns, for example sometimes it creates headings, lists, etc.:

{ { cite journal | id=Cerling Nonforest Department|format=Newlymeslated|none } }
''www.e-complete''.

'''See also''': [[List of ethical consent processing]]

== See also ==
*[[Iender dome of the ED]]
*[[Anti-autism]]

===[[Religion|Religion]]===
*[[French Writings]]
*[[Maria]]
*[[Revelation]]
*[[Mount Agamul]]

== External links==
* [http://www.biblegateway.nih.gov/entrepre/ Website of the World Festival. The labour of India-county defeats at the Ripper of California Road.]

==External links==
* [http://www.romanology.com/ Constitution of the Netherlands and Hispanic Competition for Bilabial and Commonwealth Industry (Republican Constitution of the Extent of the Netherlands)]

Sometimes the model snaps into a mode of generating random but valid XML:

<page>
 <title>Antichrist</title>
 <id>865</id>
 <revision>
 <id>15900676</id>
 <timestamp>2002-08-03T18:14:12Z</timestamp>
 <contributor>
 <username>Paris</username>
 <id>23</id>
 </contributor>
 <minor />
 <comment>Automated conversion</comment>
 <text xml:space="preserve">#REDIRECT [[Christianity]]</text>
 </revision>
</page>

The model completely makes up the timestamp, id, and so on. Also, note that it closes the correct tags
appropriately and in the correct nested order. Here are 100,000 characters of sampled wikipedia if you’re
interested to see more.

Algebraic Geometry (Latex)
The results above suggest that the model is actually quite good at learning complex syntactic structures.
Impressed by these results, my labmate (Justin Johnson) and I decided to push even further into structured
territories and got a hold of this book on algebraic stacks/geometry. We downloaded the raw Latex source file
(a 16MB file) and trained a multilayer LSTM. Amazingly, the resulting sampled Latex almost compiles. We had to
step in and fix a few issues manually but then you get plausible looking math, it’s quite astonishing:

Sampled (fake) algebraic geometry. Here's the actual pdf.

Here’s another sample:

More hallucinated algebraic geometry. Nice try on the diagram (right).

As you can see above, sometimes the model tries to generate latex diagrams, but clearly it hasn’t really figured
them out. I also like the part where it chooses to skip a proof (“Proof omitted.”, top left). Of course, keep in mind
that latex has a relatively difficult structured syntactic format that I haven’t even fully mastered myself. For
instance, here is a raw sample from the model (unedited):

\begin{proof}
We may assume that \mathcal{I} is an abelian sheaf on \mathcal{C}.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$
is an injective and let $\mathfrak q$ be an abelian sheaf on X.
Let \mathcal{F} be a fibered complex. Let \mathcal{F} be a category.
\begin{enumerate}
\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}
Let \mathcal{F} be an abelian quasi-coherent sheaf on \mathcal{C}.
Let \mathcal{F} be a coherent \mathcal{O}_X-module. Then
\mathcal{F} is an abelian catenary over \mathcal{C}.
\item The following are equivalent
\begin{enumerate}
\item \mathcal{F} is an \mathcal{O}_X-module.
\end{lemma}

This sample from a relatively decent model illustrates a few common mistakes. For example, the model opens a
\begin{proof} environment but then ends it with a \end{lemma} . This is an example of a problem we’d

have to fix manually, and is likely due to the fact that the dependency is too long-term: By the time the model is
done with the proof it has forgotten whether it was doing a proof or a lemma. Similarly, it opens an
\begin{enumerate} but then forgets to close it. We observed that these became less common with

larger/better models, but nonetheless, these are the kinds of mistakes that come up.

Linux Source Code
I wanted to push structured data to its limit, so for the final challenge I decided to use code. In particular, I took
all the source and header files found in the Linux repo on Github, concatenated all of them in a single giant file
(474MB of C code) (I was originally going to train only on the kernel but that by itself is only ~16MB). Then I
trained several as-large-as-fits-on-my-GPU 3-layer LSTMs over a period of a few days. These models have
about 10 million parameters, which is still on the lower end for RNN models. The results are superfun:

/*
 * Increment the size file of the new incorrect UI_FILTER group information
 * of the size generatively.
 */
static int indicate_policy(void)
{
 int error;
 if (fd == MARN_EPT) {
 /*
 * The kernel blank will coeld it to userspace.
 */
 if (ss->segment < mem_total)
 unblock_graph_and_set_blocked();
 else
 ret = 1;
 goto bail;
 }
 segaddr = in_SB(in.addr);
 selector = seg / 16;
 setup_works = true;
 for (i = 0; i < blocks; i++) {
 seq = buf[i++];
 bpf = bd->bd.next + i * search;
 if (fd) {
 current = blocked;
 }
 }
 rw->name = "Getjbbregs";
 bprm_self_clearl(&iv->version);
 regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12;
 return segtable;
}

The code looks really quite great overall. Of course, I don’t think it compiles but when you scroll through the
generate code it feels very much like a giant C code base. Notice that the RNN peppers its code with
comments here and there at random. It is also very good at making very few syntactic errors. For example, it
uses strings properly, pointer notation, etc. It also opens and closes brackets {[correctly and learns to indent
its code very well. A common error is that it can’t keep track of variable names: It often uses undefined
variables (e.g. rw above), declares variables it never uses (e.g. int error), or returns non-existing
variables. Lets see a few more examples. Here’s another snippet that shows a wider array of operations that the
RNN learns:

/*
 * If this error is set, we will need anything right after that BSD.
 */
static void action_new_function(struct s_stat_info *wb)
{
 unsigned long flags;
 int lel_idx_bit = e->edd, *sys & ~((unsigned long) *FIRST_COMPAT);
 buf[0] = 0xFFFFFFFF & (bit << 4);
 min(inc, slist->bytes);
 printk(KERN_WARNING "Memory allocated %02x/%02x, "
 "original MLL instead\n"),
 min(min(multi_run - s->len, max) * num_data_in),
 frame_pos, sz + first_seg);
 div_u64_w(val, inb_p);
 spin_unlock(&disk->queue_lock);
 mutex_unlock(&s->sock->mutex);
 mutex_unlock(&func->mutex);
 return disassemble(info->pending_bh);
}

static void num_serial_settings(struct tty_struct *tty)
{
 if (tty == tty)
 disable_single_st_p(dev);
 pci_disable_spool(port);
 return 0;
}

static void do_command(struct seq_file *m, void *v)
{
 int column = 32 << (cmd[2] & 0x80);
 if (state)
 cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
 else
 seq = 1;
 for (i = 0; i < 16; i++) {
 if (k & (1 << 1))
 pipe = (in_use & UMXTHREAD_UNCCA) +
 ((count & 0x00000000fffffff8) & 0x000000f) << 8;
 if (count == 0)
 sub(pid, ppc_md.kexec_handle, 0x20000000);
 pipe_set_bytes(i, 0);
 }
 /* Free our user pages pointer to place camera if all dash */
 subsystem_info = &of_changes[PAGE_SIZE];
 rek_controls(offset, idx, &soffset);
 /* Now we want to deliberately put it to device */
 control_check_polarity(&context, val, 0);
 for (i = 0; i < COUNTER; i++)
 seq_puts(s, "policy ");
}

Notice that in the second function the model compares tty == tty , which is vacuously true. On the other
hand, at least the variable tty exists in the scope this time! In the last function, notice that the code does not
return anything, which happens to be correct since the function signature is void . However, the first two
functions were also declared void and did return values. This is again a form of a common mistake due to
long-term interactions.

Sometimes the model decides that it’s time to sample a new file. This is usually a very amusing part: The model
first recites the GNU license character by character, samples a few includes, generates some macros and then
dives into the code:

/*
 * Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 *
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kexec.h>

#include <linux/errno.h>

= tanh(+)ht Whhht−1 Wxhxt

Andrej Karpathy blog

6/24/18, 1)36 PM
Page 1 of 1

RNNs can be easily trained to predict certain types of sequences based on an
input seed / sequence. Here, for example is an RNN trained by consuming text
from Wikipedia:

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �39

About Hacker's guide to Neural Networks

The Unreasonable Effectiveness of Recurrent Neural
Networks
May 21, 2015

There’s something magical about Recurrent Neural Networks (RNNs). I still remember when I trained my first
recurrent network for Image Captioning. Within a few dozen minutes of training my first baby model (with rather
arbitrarily-chosen hyperparameters) started to generate very nice looking descriptions of images that were on
the edge of making sense. Sometimes the ratio of how simple your model is to the quality of the results you get
out of it blows past your expectations, and this was one of those times. What made this result so shocking at the
time was that the common wisdom was that RNNs were supposed to be difficult to train (with more experience
I’ve in fact reached the opposite conclusion). Fast forward about a year: I’m training RNNs all the time and I’ve
witnessed their power and robustness many times, and yet their magical outputs still find ways of amusing me.
This post is about sharing some of that magic with you.

By the way, together with this post I am also releasing code on Github that allows you to train character-level
language models based on multi-layer LSTMs. You give it a large chunk of text and it will learn to generate text
like it one character at a time. You can also use it to reproduce my experiments below. But we’re getting ahead
of ourselves; What are RNNs anyway?

Recurrent Neural Networks
Sequences. Depending on your background you might be wondering: What makes Recurrent Networks so
special? A glaring limitation of Vanilla Neural Networks (and also Convolutional Networks) is that their API is too
constrained: they accept a fixed-sized vector as input (e.g. an image) and produce a fixed-sized vector as
output (e.g. probabilities of different classes). Not only that: These models perform this mapping using a fixed
amount of computational steps (e.g. the number of layers in the model). The core reason that recurrent nets are
more exciting is that they allow us to operate over sequences of vectors: Sequences in the input, the output, or
in the most general case both. A few examples may make this more concrete:

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are in
blue and green vectors hold the RNN's state (more on this soon). From left to right: (1) Vanilla mode of processing without RNN,
from fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image captioning takes an
image and outputs a sentence of words). (3) Sequence input (e.g. sentiment analysis where a given sentence is classified as
expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g. Machine Translation: an RNN reads a
sentence in English and then outputs a sentence in French). (5) Synced sequence input and output (e.g. video classification
where we wish to label each frame of the video). Notice that in every case are no pre-specified constraints on the lengths
sequences because the recurrent transformation (green) is fixed and can be applied as many times as we like.

As you might expect, the sequence regime of operation is much more powerful compared to fixed networks that
are doomed from the get-go by a fixed number of computational steps, and hence also much more appealing
for those of us who aspire to build more intelligent systems. Moreover, as we’ll see in a bit, RNNs combine the
input vector with their state vector with a fixed (but learned) function to produce a new state vector. This can in
programming terms be interpreted as running a fixed program with certain inputs and some internal variables.
Viewed this way, RNNs essentially describe programs. In fact, it is known that RNNs are Turing-Complete in the
sense that they can to simulate arbitrary programs (with proper weights). But similar to universal approximation
theorems for neural nets you shouldn’t read too much into this. In fact, forget I said anything.

Sequential processing in absence of sequences. You might be thinking that having sequences as inputs or
outputs could be relatively rare, but an important point to realize is that even if your inputs/outputs are fixed
vectors, it is still possible to use this powerful formalism to process them in a sequential manner. For instance,
the figure below shows results from two very nice papers from DeepMind. On the left, an algorithm learns a
recurrent network policy that steers its attention around an image; In particular, it learns to read out house
numbers from left to right (Ba et al.). On the right, a recurrent network generates images of digits by learning to
sequentially add color to a canvas (Gregor et al.):

Left: RNN learns to read house numbers. Right: RNN learns to paint house numbers.

The takeaway is that even if your data is not in form of sequences, you can still formulate and train powerful
models that learn to process it sequentially. You’re learning stateful programs that process your fixed-sized
data.

RNN computation. So how do these things work? At the core, RNNs have a deceptively simple API: They
accept an input vector x and give you an output vector y . However, crucially this output vector’s contents
are influenced not only by the input you just fed in, but also on the entire history of inputs you’ve fed in in the
past. Written as a class, the RNN’s API consists of a single step function:

rnn = RNN()
y = rnn.step(x) # x is an input vector, y is the RNN's output vector

The RNN class has some internal state that it gets to update every time step is called. In the simplest case
this state consists of a single hidden vector h . Here is an implementation of the step function in a Vanilla RNN:

class RNN:
 # ...
 def step(self, x):
 # update the hidden state
 self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))
 # compute the output vector
 y = np.dot(self.W_hy, self.h)
 return y

The above specifies the forward pass of a vanilla RNN. This RNN’s parameters are the three matrices W_hh,
W_xh, W_hy . The hidden state self.h is initialized with the zero vector. The np.tanh function implements
a non-linearity that squashes the activations to the range [-1, 1] . Notice briefly how this works: There are
two terms inside of the tanh: one is based on the previous hidden state and one is based on the current input.
In numpy np.dot is matrix multiplication. The two intermediates interact with addition, and then get squashed
by the tanh into the new state vector. If you’re more comfortable with math notation, we can also write the
hidden state update as , where tanh is applied elementwise.

We initialize the matrices of the RNN with random numbers and the bulk of work during training goes into
finding the matrices that give rise to desirable behavior, as measured with some loss function that expresses
your preference to what kinds of outputs y you’d like to see in response to your input sequences x .

Going deep. RNNs are neural networks and everything works monotonically better (if done right) if you put on
your deep learning hat and start stacking models up like pancakes. For instance, we can form a 2-layer
recurrent network as follows:

y1 = rnn1.step(x)
y = rnn2.step(y1)

In other words we have two separate RNNs: One RNN is receiving the input vectors and the second RNN is
receiving the output of the first RNN as its input. Except neither of these RNNs know or care - it’s all just vectors
coming in and going out, and some gradients flowing through each module during backpropagation.

Getting fancy. I’d like to briefly mention that in practice most of us use a slightly different formulation than what
I presented above called a Long Short-Term Memory (LSTM) network. The LSTM is a particular type of recurrent
network that works slightly better in practice, owing to its more powerful update equation and some appealing
backpropagation dynamics. I won’t go into details, but everything I’ve said about RNNs stays exactly the same,
except the mathematical form for computing the update (the line self.h = ...) gets a little more
complicated. From here on I will use the terms “RNN/LSTM” interchangeably but all experiments in this post use
an LSTM.

Character-Level Language Models
Okay, so we have an idea about what RNNs are, why they are super exciting, and how they work. We’ll now
ground this in a fun application: We’ll train RNN character-level language models. That is, we’ll give the RNN a
huge chunk of text and ask it to model the probability distribution of the next character in the sequence given a
sequence of previous characters. This will then allow us to generate new text one character at a time.

As a working example, suppose we only had a vocabulary of four possible letters “helo”, and wanted to train an
RNN on the training sequence “hello”. This training sequence is in fact a source of 4 separate training
examples: 1. The probability of “e” should be likely given the context of “h”, 2. “l” should be likely in the context
of “he”, 3. “l” should also be likely given the context of “hel”, and finally 4. “o” should be likely given the context
of “hell”.

Concretely, we will encode each character into a vector using 1-of-k encoding (i.e. all zero except for a single
one at the index of the character in the vocabulary), and feed them into the RNN one at a time with the step
function. We will then observe a sequence of 4-dimensional output vectors (one dimension per character),
which we interpret as the confidence the RNN currently assigns to each character coming next in the
sequence. Here’s a diagram:

An example RNN with 4-dimensional input and output layers, and a hidden layer of 3 units (neurons). This diagram shows the
activations in the forward pass when the RNN is fed the characters "hell" as input. The output layer contains confidences the

RNN assigns for the next character (vocabulary is "h,e,l,o"); We want the green numbers to be high and red numbers to be low.

For example, we see that in the first time step when the RNN saw the character “h” it assigned confidence of
1.0 to the next letter being “h”, 2.2 to letter “e”, -3.0 to “l”, and 4.1 to “o”. Since in our training data (the string
“hello”) the next correct character is “e”, we would like to increase its confidence (green) and decrease the
confidence of all other letters (red). Similarly, we have a desired target character at every one of the 4 time
steps that we’d like the network to assign a greater confidence to. Since the RNN consists entirely of
differentiable operations we can run the backpropagation algorithm (this is just a recursive application of the
chain rule from calculus) to figure out in what direction we should adjust every one of its weights to increase the
scores of the correct targets (green bold numbers). We can then perform a parameter update, which nudges
every weight a tiny amount in this gradient direction. If we were to feed the same inputs to the RNN after the
parameter update we would find that the scores of the correct characters (e.g. “e” in the first time step) would
be slightly higher (e.g. 2.3 instead of 2.2), and the scores of incorrect characters would be slightly lower. We
then repeat this process over and over many times until the network converges and its predictions are
eventually consistent with the training data in that correct characters are always predicted next.

A more technical explanation is that we use the standard Softmax classifier (also commonly referred to as the
cross-entropy loss) on every output vector simultaneously. The RNN is trained with mini-batch Stochastic
Gradient Descent and I like to use RMSProp or Adam (per-parameter adaptive learning rate methods) to
stablilize the updates.

Notice also that the first time the character “l” is input, the target is “l”, but the second time the target is “o”. The
RNN therefore cannot rely on the input alone and must use its recurrent connection to keep track of the context
to achieve this task.

At test time, we feed a character into the RNN and get a distribution over what characters are likely to come
next. We sample from this distribution, and feed it right back in to get the next letter. Repeat this process and
you’re sampling text! Lets now train an RNN on different datasets and see what happens.

To further clarify, for educational purposes I also wrote a minimal character-level RNN language model in
Python/numpy. It is only about 100 lines long and hopefully it gives a concise, concrete and useful summary of
the above if you’re better at reading code than text. We’ll now dive into example results, produced with the
much more efficient Lua/Torch codebase.

Fun with RNNs
All 5 example character models below were trained with the code I’m releasing on Github. The input in each
case is a single file with some text, and we’re training an RNN to predict the next character in the sequence.

Paul Graham generator
Lets first try a small dataset of English as a sanity check. My favorite fun dataset is the concatenation of Paul
Graham’s essays. The basic idea is that there’s a lot of wisdom in these essays, but unfortunately Paul Graham
is a relatively slow generator. Wouldn’t it be great if we could sample startup wisdom on demand? That’s where
an RNN comes in.

Concatenating all pg essays over the last ~5 years we get approximately 1MB text file, or about 1 million
characters (this is considered a very small dataset by the way). Technical: Lets train a 2-layer LSTM with 512
hidden nodes (approx. 3.5 million parameters), and with dropout of 0.5 after each layer. We’ll train with batches
of 100 examples and truncated backpropagation through time of length 100 characters. With these settings one
batch on a TITAN Z GPU takes about 0.46 seconds (this can be cut in half with 50 character BPTT at negligible
cost in performance). Without further ado, lets see a sample from the RNN:

“The surprised in investors weren’t going to raise money. I’m not the company with the time there are all
interesting quickly, don’t have to get off the same programmers. There’s a super-angel round fundraising, why
do you can do. If you have a different physical investment are become in people who reduced in a startup with
the way to argument the acquirer could see them just that you’re also the founders will part of users’ affords that
and an alternation to the idea. [2] Don’t work at first member to see the way kids will seem in advance of a bad
successful startup. And if you have to act the big company too.”

Okay, clearly the above is unfortunately not going to replace Paul Graham anytime soon, but remember that the
RNN had to learn English completely from scratch and with a small dataset (including where you put commas,
apostrophes and spaces). I also like that it learns to support its own arguments (e.g. [2], above). Sometimes it
says something that offers a glimmer of insight, such as “a company is a meeting to think to investors”. Here’s a
link to 50K character sample if you’d like to see more.

Temperature. We can also play with the temperature of the Softmax during sampling. Decreasing the
temperature from 1 to some lower number (e.g. 0.5) makes the RNN more confident, but also more conservative
in its samples. Conversely, higher temperatures will give more diversity but at cost of more mistakes (e.g.
spelling mistakes, etc). In particular, setting temperature very near zero will give the most likely thing that Paul
Graham might say:

“is that they were all the same thing that was a startup is that they were all the same thing that was a startup is
that they were all the same thing that was a startup is that they were all the same”

looks like we’ve reached an infinite loop about startups.

Shakespeare
It looks like we can learn to spell English words. But how about if there is more structure and style in the data?
To examine this I downloaded all the works of Shakespeare and concatenated them into a single (4.4MB) file.
We can now afford to train a larger network, in this case lets try a 3-layer RNN with 512 hidden nodes on each
layer. After we train the network for a few hours we obtain samples such as:

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Remember, all the RNN knows are characters, so in particular it samples both speaker’s names and the
contents. Sometimes we also get relatively extented monologue passages, such as:

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.

KING LEAR:
O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

I can barely recognize these samples from actual Shakespeare :) If you like Shakespeare, you might appreciate
this 100,000 character sample. Of course, you can also generate an infinite amount of your own samples at
different temperatures with the provided code.

Wikipedia
We saw that the LSTM can learn to spell words and copy general syntactic structures. Lets further increase the
difficulty and train on structured markdown. In particular, lets take the Hutter Prize 100MB dataset of raw
Wikipedia and train an LSTM. Following Graves et al., I used the first 96MB for training, the rest for validation
and ran a few models overnight. We can now sample Wikipedia articles! Below are a few fun excerpts. First,
some basic markdown output:

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom
of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known
in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal
and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,
was starting to signing a major tripad of aid exile.]]

In case you were wondering, the yahoo url above doesn’t actually exist, the model just hallucinated it. Also, note
that the model learns to open and close the parenthesis correctly. There’s also quite a lot of structured
markdown that the model learns, for example sometimes it creates headings, lists, etc.:

{ { cite journal | id=Cerling Nonforest Department|format=Newlymeslated|none } }
''www.e-complete''.

'''See also''': [[List of ethical consent processing]]

== See also ==
*[[Iender dome of the ED]]
*[[Anti-autism]]

===[[Religion|Religion]]===
*[[French Writings]]
*[[Maria]]
*[[Revelation]]
*[[Mount Agamul]]

== External links==
* [http://www.biblegateway.nih.gov/entrepre/ Website of the World Festival. The labour of India-county defeats at the Ripper of California Road.]

==External links==
* [http://www.romanology.com/ Constitution of the Netherlands and Hispanic Competition for Bilabial and Commonwealth Industry (Republican Constitution of the Extent of the Netherlands)]

Sometimes the model snaps into a mode of generating random but valid XML:

<page>
 <title>Antichrist</title>
 <id>865</id>
 <revision>
 <id>15900676</id>
 <timestamp>2002-08-03T18:14:12Z</timestamp>
 <contributor>
 <username>Paris</username>
 <id>23</id>
 </contributor>
 <minor />
 <comment>Automated conversion</comment>
 <text xml:space="preserve">#REDIRECT [[Christianity]]</text>
 </revision>
</page>

The model completely makes up the timestamp, id, and so on. Also, note that it closes the correct tags
appropriately and in the correct nested order. Here are 100,000 characters of sampled wikipedia if you’re
interested to see more.

Algebraic Geometry (Latex)
The results above suggest that the model is actually quite good at learning complex syntactic structures.
Impressed by these results, my labmate (Justin Johnson) and I decided to push even further into structured
territories and got a hold of this book on algebraic stacks/geometry. We downloaded the raw Latex source file
(a 16MB file) and trained a multilayer LSTM. Amazingly, the resulting sampled Latex almost compiles. We had to
step in and fix a few issues manually but then you get plausible looking math, it’s quite astonishing:

Sampled (fake) algebraic geometry. Here's the actual pdf.

Here’s another sample:

More hallucinated algebraic geometry. Nice try on the diagram (right).

As you can see above, sometimes the model tries to generate latex diagrams, but clearly it hasn’t really figured
them out. I also like the part where it chooses to skip a proof (“Proof omitted.”, top left). Of course, keep in mind
that latex has a relatively difficult structured syntactic format that I haven’t even fully mastered myself. For
instance, here is a raw sample from the model (unedited):

\begin{proof}
We may assume that \mathcal{I} is an abelian sheaf on \mathcal{C}.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$
is an injective and let $\mathfrak q$ be an abelian sheaf on X.
Let \mathcal{F} be a fibered complex. Let \mathcal{F} be a category.
\begin{enumerate}
\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}
Let \mathcal{F} be an abelian quasi-coherent sheaf on \mathcal{C}.
Let \mathcal{F} be a coherent \mathcal{O}_X-module. Then
\mathcal{F} is an abelian catenary over \mathcal{C}.
\item The following are equivalent
\begin{enumerate}
\item \mathcal{F} is an \mathcal{O}_X-module.
\end{lemma}

This sample from a relatively decent model illustrates a few common mistakes. For example, the model opens a
\begin{proof} environment but then ends it with a \end{lemma} . This is an example of a problem we’d

have to fix manually, and is likely due to the fact that the dependency is too long-term: By the time the model is
done with the proof it has forgotten whether it was doing a proof or a lemma. Similarly, it opens an
\begin{enumerate} but then forgets to close it. We observed that these became less common with

larger/better models, but nonetheless, these are the kinds of mistakes that come up.

Linux Source Code
I wanted to push structured data to its limit, so for the final challenge I decided to use code. In particular, I took
all the source and header files found in the Linux repo on Github, concatenated all of them in a single giant file
(474MB of C code) (I was originally going to train only on the kernel but that by itself is only ~16MB). Then I
trained several as-large-as-fits-on-my-GPU 3-layer LSTMs over a period of a few days. These models have
about 10 million parameters, which is still on the lower end for RNN models. The results are superfun:

/*
 * Increment the size file of the new incorrect UI_FILTER group information
 * of the size generatively.
 */
static int indicate_policy(void)
{
 int error;
 if (fd == MARN_EPT) {
 /*
 * The kernel blank will coeld it to userspace.
 */
 if (ss->segment < mem_total)
 unblock_graph_and_set_blocked();
 else
 ret = 1;
 goto bail;
 }
 segaddr = in_SB(in.addr);
 selector = seg / 16;
 setup_works = true;
 for (i = 0; i < blocks; i++) {
 seq = buf[i++];
 bpf = bd->bd.next + i * search;
 if (fd) {
 current = blocked;
 }
 }
 rw->name = "Getjbbregs";
 bprm_self_clearl(&iv->version);
 regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12;
 return segtable;
}

The code looks really quite great overall. Of course, I don’t think it compiles but when you scroll through the
generate code it feels very much like a giant C code base. Notice that the RNN peppers its code with
comments here and there at random. It is also very good at making very few syntactic errors. For example, it
uses strings properly, pointer notation, etc. It also opens and closes brackets {[correctly and learns to indent
its code very well. A common error is that it can’t keep track of variable names: It often uses undefined
variables (e.g. rw above), declares variables it never uses (e.g. int error), or returns non-existing
variables. Lets see a few more examples. Here’s another snippet that shows a wider array of operations that the
RNN learns:

/*
 * If this error is set, we will need anything right after that BSD.
 */
static void action_new_function(struct s_stat_info *wb)
{
 unsigned long flags;
 int lel_idx_bit = e->edd, *sys & ~((unsigned long) *FIRST_COMPAT);
 buf[0] = 0xFFFFFFFF & (bit << 4);
 min(inc, slist->bytes);
 printk(KERN_WARNING "Memory allocated %02x/%02x, "
 "original MLL instead\n"),
 min(min(multi_run - s->len, max) * num_data_in),
 frame_pos, sz + first_seg);
 div_u64_w(val, inb_p);
 spin_unlock(&disk->queue_lock);
 mutex_unlock(&s->sock->mutex);
 mutex_unlock(&func->mutex);
 return disassemble(info->pending_bh);
}

static void num_serial_settings(struct tty_struct *tty)
{
 if (tty == tty)
 disable_single_st_p(dev);
 pci_disable_spool(port);
 return 0;
}

static void do_command(struct seq_file *m, void *v)
{
 int column = 32 << (cmd[2] & 0x80);
 if (state)
 cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
 else
 seq = 1;
 for (i = 0; i < 16; i++) {
 if (k & (1 << 1))
 pipe = (in_use & UMXTHREAD_UNCCA) +
 ((count & 0x00000000fffffff8) & 0x000000f) << 8;
 if (count == 0)
 sub(pid, ppc_md.kexec_handle, 0x20000000);
 pipe_set_bytes(i, 0);
 }
 /* Free our user pages pointer to place camera if all dash */
 subsystem_info = &of_changes[PAGE_SIZE];
 rek_controls(offset, idx, &soffset);
 /* Now we want to deliberately put it to device */
 control_check_polarity(&context, val, 0);
 for (i = 0; i < COUNTER; i++)
 seq_puts(s, "policy ");
}

Notice that in the second function the model compares tty == tty , which is vacuously true. On the other
hand, at least the variable tty exists in the scope this time! In the last function, notice that the code does not
return anything, which happens to be correct since the function signature is void . However, the first two
functions were also declared void and did return values. This is again a form of a common mistake due to
long-term interactions.

Sometimes the model decides that it’s time to sample a new file. This is usually a very amusing part: The model
first recites the GNU license character by character, samples a few includes, generates some macros and then
dives into the code:

/*
 * Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 *
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kexec.h>

#include <linux/errno.h>

= tanh(+)ht Whhht−1 Wxhxt

Andrej Karpathy blog

6/24/18, 1)36 PM
Page 1 of 1

About Hacker's guide to Neural Networks

The Unreasonable Effectiveness of Recurrent Neural
Networks
May 21, 2015

There’s something magical about Recurrent Neural Networks (RNNs). I still remember when I trained my first
recurrent network for Image Captioning. Within a few dozen minutes of training my first baby model (with rather
arbitrarily-chosen hyperparameters) started to generate very nice looking descriptions of images that were on
the edge of making sense. Sometimes the ratio of how simple your model is to the quality of the results you get
out of it blows past your expectations, and this was one of those times. What made this result so shocking at the
time was that the common wisdom was that RNNs were supposed to be difficult to train (with more experience
I’ve in fact reached the opposite conclusion). Fast forward about a year: I’m training RNNs all the time and I’ve
witnessed their power and robustness many times, and yet their magical outputs still find ways of amusing me.
This post is about sharing some of that magic with you.

By the way, together with this post I am also releasing code on Github that allows you to train character-level
language models based on multi-layer LSTMs. You give it a large chunk of text and it will learn to generate text
like it one character at a time. You can also use it to reproduce my experiments below. But we’re getting ahead
of ourselves; What are RNNs anyway?

Recurrent Neural Networks
Sequences. Depending on your background you might be wondering: What makes Recurrent Networks so
special? A glaring limitation of Vanilla Neural Networks (and also Convolutional Networks) is that their API is too
constrained: they accept a fixed-sized vector as input (e.g. an image) and produce a fixed-sized vector as
output (e.g. probabilities of different classes). Not only that: These models perform this mapping using a fixed
amount of computational steps (e.g. the number of layers in the model). The core reason that recurrent nets are
more exciting is that they allow us to operate over sequences of vectors: Sequences in the input, the output, or
in the most general case both. A few examples may make this more concrete:

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are in
blue and green vectors hold the RNN's state (more on this soon). From left to right: (1) Vanilla mode of processing without RNN,
from fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image captioning takes an
image and outputs a sentence of words). (3) Sequence input (e.g. sentiment analysis where a given sentence is classified as
expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g. Machine Translation: an RNN reads a
sentence in English and then outputs a sentence in French). (5) Synced sequence input and output (e.g. video classification
where we wish to label each frame of the video). Notice that in every case are no pre-specified constraints on the lengths
sequences because the recurrent transformation (green) is fixed and can be applied as many times as we like.

As you might expect, the sequence regime of operation is much more powerful compared to fixed networks that
are doomed from the get-go by a fixed number of computational steps, and hence also much more appealing
for those of us who aspire to build more intelligent systems. Moreover, as we’ll see in a bit, RNNs combine the
input vector with their state vector with a fixed (but learned) function to produce a new state vector. This can in
programming terms be interpreted as running a fixed program with certain inputs and some internal variables.
Viewed this way, RNNs essentially describe programs. In fact, it is known that RNNs are Turing-Complete in the
sense that they can to simulate arbitrary programs (with proper weights). But similar to universal approximation
theorems for neural nets you shouldn’t read too much into this. In fact, forget I said anything.

Sequential processing in absence of sequences. You might be thinking that having sequences as inputs or
outputs could be relatively rare, but an important point to realize is that even if your inputs/outputs are fixed
vectors, it is still possible to use this powerful formalism to process them in a sequential manner. For instance,
the figure below shows results from two very nice papers from DeepMind. On the left, an algorithm learns a
recurrent network policy that steers its attention around an image; In particular, it learns to read out house
numbers from left to right (Ba et al.). On the right, a recurrent network generates images of digits by learning to
sequentially add color to a canvas (Gregor et al.):

Left: RNN learns to read house numbers. Right: RNN learns to paint house numbers.

The takeaway is that even if your data is not in form of sequences, you can still formulate and train powerful
models that learn to process it sequentially. You’re learning stateful programs that process your fixed-sized
data.

RNN computation. So how do these things work? At the core, RNNs have a deceptively simple API: They
accept an input vector x and give you an output vector y . However, crucially this output vector’s contents
are influenced not only by the input you just fed in, but also on the entire history of inputs you’ve fed in in the
past. Written as a class, the RNN’s API consists of a single step function:

rnn = RNN()
y = rnn.step(x) # x is an input vector, y is the RNN's output vector

The RNN class has some internal state that it gets to update every time step is called. In the simplest case
this state consists of a single hidden vector h . Here is an implementation of the step function in a Vanilla RNN:

class RNN:
 # ...
 def step(self, x):
 # update the hidden state
 self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))
 # compute the output vector
 y = np.dot(self.W_hy, self.h)
 return y

The above specifies the forward pass of a vanilla RNN. This RNN’s parameters are the three matrices W_hh,
W_xh, W_hy . The hidden state self.h is initialized with the zero vector. The np.tanh function implements
a non-linearity that squashes the activations to the range [-1, 1] . Notice briefly how this works: There are
two terms inside of the tanh: one is based on the previous hidden state and one is based on the current input.
In numpy np.dot is matrix multiplication. The two intermediates interact with addition, and then get squashed
by the tanh into the new state vector. If you’re more comfortable with math notation, we can also write the
hidden state update as , where tanh is applied elementwise.

We initialize the matrices of the RNN with random numbers and the bulk of work during training goes into
finding the matrices that give rise to desirable behavior, as measured with some loss function that expresses
your preference to what kinds of outputs y you’d like to see in response to your input sequences x .

Going deep. RNNs are neural networks and everything works monotonically better (if done right) if you put on
your deep learning hat and start stacking models up like pancakes. For instance, we can form a 2-layer
recurrent network as follows:

y1 = rnn1.step(x)
y = rnn2.step(y1)

In other words we have two separate RNNs: One RNN is receiving the input vectors and the second RNN is
receiving the output of the first RNN as its input. Except neither of these RNNs know or care - it’s all just vectors
coming in and going out, and some gradients flowing through each module during backpropagation.

Getting fancy. I’d like to briefly mention that in practice most of us use a slightly different formulation than what
I presented above called a Long Short-Term Memory (LSTM) network. The LSTM is a particular type of recurrent
network that works slightly better in practice, owing to its more powerful update equation and some appealing
backpropagation dynamics. I won’t go into details, but everything I’ve said about RNNs stays exactly the same,
except the mathematical form for computing the update (the line self.h = ...) gets a little more
complicated. From here on I will use the terms “RNN/LSTM” interchangeably but all experiments in this post use
an LSTM.

Character-Level Language Models
Okay, so we have an idea about what RNNs are, why they are super exciting, and how they work. We’ll now
ground this in a fun application: We’ll train RNN character-level language models. That is, we’ll give the RNN a
huge chunk of text and ask it to model the probability distribution of the next character in the sequence given a
sequence of previous characters. This will then allow us to generate new text one character at a time.

As a working example, suppose we only had a vocabulary of four possible letters “helo”, and wanted to train an
RNN on the training sequence “hello”. This training sequence is in fact a source of 4 separate training
examples: 1. The probability of “e” should be likely given the context of “h”, 2. “l” should be likely in the context
of “he”, 3. “l” should also be likely given the context of “hel”, and finally 4. “o” should be likely given the context
of “hell”.

Concretely, we will encode each character into a vector using 1-of-k encoding (i.e. all zero except for a single
one at the index of the character in the vocabulary), and feed them into the RNN one at a time with the step
function. We will then observe a sequence of 4-dimensional output vectors (one dimension per character),
which we interpret as the confidence the RNN currently assigns to each character coming next in the
sequence. Here’s a diagram:

An example RNN with 4-dimensional input and output layers, and a hidden layer of 3 units (neurons). This diagram shows the
activations in the forward pass when the RNN is fed the characters "hell" as input. The output layer contains confidences the

RNN assigns for the next character (vocabulary is "h,e,l,o"); We want the green numbers to be high and red numbers to be low.

For example, we see that in the first time step when the RNN saw the character “h” it assigned confidence of
1.0 to the next letter being “h”, 2.2 to letter “e”, -3.0 to “l”, and 4.1 to “o”. Since in our training data (the string
“hello”) the next correct character is “e”, we would like to increase its confidence (green) and decrease the
confidence of all other letters (red). Similarly, we have a desired target character at every one of the 4 time
steps that we’d like the network to assign a greater confidence to. Since the RNN consists entirely of
differentiable operations we can run the backpropagation algorithm (this is just a recursive application of the
chain rule from calculus) to figure out in what direction we should adjust every one of its weights to increase the
scores of the correct targets (green bold numbers). We can then perform a parameter update, which nudges
every weight a tiny amount in this gradient direction. If we were to feed the same inputs to the RNN after the
parameter update we would find that the scores of the correct characters (e.g. “e” in the first time step) would
be slightly higher (e.g. 2.3 instead of 2.2), and the scores of incorrect characters would be slightly lower. We
then repeat this process over and over many times until the network converges and its predictions are
eventually consistent with the training data in that correct characters are always predicted next.

A more technical explanation is that we use the standard Softmax classifier (also commonly referred to as the
cross-entropy loss) on every output vector simultaneously. The RNN is trained with mini-batch Stochastic
Gradient Descent and I like to use RMSProp or Adam (per-parameter adaptive learning rate methods) to
stablilize the updates.

Notice also that the first time the character “l” is input, the target is “l”, but the second time the target is “o”. The
RNN therefore cannot rely on the input alone and must use its recurrent connection to keep track of the context
to achieve this task.

At test time, we feed a character into the RNN and get a distribution over what characters are likely to come
next. We sample from this distribution, and feed it right back in to get the next letter. Repeat this process and
you’re sampling text! Lets now train an RNN on different datasets and see what happens.

To further clarify, for educational purposes I also wrote a minimal character-level RNN language model in
Python/numpy. It is only about 100 lines long and hopefully it gives a concise, concrete and useful summary of
the above if you’re better at reading code than text. We’ll now dive into example results, produced with the
much more efficient Lua/Torch codebase.

Fun with RNNs
All 5 example character models below were trained with the code I’m releasing on Github. The input in each
case is a single file with some text, and we’re training an RNN to predict the next character in the sequence.

Paul Graham generator
Lets first try a small dataset of English as a sanity check. My favorite fun dataset is the concatenation of Paul
Graham’s essays. The basic idea is that there’s a lot of wisdom in these essays, but unfortunately Paul Graham
is a relatively slow generator. Wouldn’t it be great if we could sample startup wisdom on demand? That’s where
an RNN comes in.

Concatenating all pg essays over the last ~5 years we get approximately 1MB text file, or about 1 million
characters (this is considered a very small dataset by the way). Technical: Lets train a 2-layer LSTM with 512
hidden nodes (approx. 3.5 million parameters), and with dropout of 0.5 after each layer. We’ll train with batches
of 100 examples and truncated backpropagation through time of length 100 characters. With these settings one
batch on a TITAN Z GPU takes about 0.46 seconds (this can be cut in half with 50 character BPTT at negligible
cost in performance). Without further ado, lets see a sample from the RNN:

“The surprised in investors weren’t going to raise money. I’m not the company with the time there are all
interesting quickly, don’t have to get off the same programmers. There’s a super-angel round fundraising, why
do you can do. If you have a different physical investment are become in people who reduced in a startup with
the way to argument the acquirer could see them just that you’re also the founders will part of users’ affords that
and an alternation to the idea. [2] Don’t work at first member to see the way kids will seem in advance of a bad
successful startup. And if you have to act the big company too.”

Okay, clearly the above is unfortunately not going to replace Paul Graham anytime soon, but remember that the
RNN had to learn English completely from scratch and with a small dataset (including where you put commas,
apostrophes and spaces). I also like that it learns to support its own arguments (e.g. [2], above). Sometimes it
says something that offers a glimmer of insight, such as “a company is a meeting to think to investors”. Here’s a
link to 50K character sample if you’d like to see more.

Temperature. We can also play with the temperature of the Softmax during sampling. Decreasing the
temperature from 1 to some lower number (e.g. 0.5) makes the RNN more confident, but also more conservative
in its samples. Conversely, higher temperatures will give more diversity but at cost of more mistakes (e.g.
spelling mistakes, etc). In particular, setting temperature very near zero will give the most likely thing that Paul
Graham might say:

“is that they were all the same thing that was a startup is that they were all the same thing that was a startup is
that they were all the same thing that was a startup is that they were all the same”

looks like we’ve reached an infinite loop about startups.

Shakespeare
It looks like we can learn to spell English words. But how about if there is more structure and style in the data?
To examine this I downloaded all the works of Shakespeare and concatenated them into a single (4.4MB) file.
We can now afford to train a larger network, in this case lets try a 3-layer RNN with 512 hidden nodes on each
layer. After we train the network for a few hours we obtain samples such as:

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Remember, all the RNN knows are characters, so in particular it samples both speaker’s names and the
contents. Sometimes we also get relatively extented monologue passages, such as:

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.

KING LEAR:
O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

I can barely recognize these samples from actual Shakespeare :) If you like Shakespeare, you might appreciate
this 100,000 character sample. Of course, you can also generate an infinite amount of your own samples at
different temperatures with the provided code.

Wikipedia
We saw that the LSTM can learn to spell words and copy general syntactic structures. Lets further increase the
difficulty and train on structured markdown. In particular, lets take the Hutter Prize 100MB dataset of raw
Wikipedia and train an LSTM. Following Graves et al., I used the first 96MB for training, the rest for validation
and ran a few models overnight. We can now sample Wikipedia articles! Below are a few fun excerpts. First,
some basic markdown output:

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom
of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known
in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal
and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,
was starting to signing a major tripad of aid exile.]]

In case you were wondering, the yahoo url above doesn’t actually exist, the model just hallucinated it. Also, note
that the model learns to open and close the parenthesis correctly. There’s also quite a lot of structured
markdown that the model learns, for example sometimes it creates headings, lists, etc.:

{ { cite journal | id=Cerling Nonforest Department|format=Newlymeslated|none } }
''www.e-complete''.

'''See also''': [[List of ethical consent processing]]

== See also ==
*[[Iender dome of the ED]]
*[[Anti-autism]]

===[[Religion|Religion]]===
*[[French Writings]]
*[[Maria]]
*[[Revelation]]
*[[Mount Agamul]]

== External links==
* [http://www.biblegateway.nih.gov/entrepre/ Website of the World Festival. The labour of India-county defeats at the Ripper of California Road.]

==External links==
* [http://www.romanology.com/ Constitution of the Netherlands and Hispanic Competition for Bilabial and Commonwealth Industry (Republican Constitution of the Extent of the Netherlands)]

Sometimes the model snaps into a mode of generating random but valid XML:

<page>
 <title>Antichrist</title>
 <id>865</id>
 <revision>
 <id>15900676</id>
 <timestamp>2002-08-03T18:14:12Z</timestamp>
 <contributor>
 <username>Paris</username>
 <id>23</id>
 </contributor>
 <minor />
 <comment>Automated conversion</comment>
 <text xml:space="preserve">#REDIRECT [[Christianity]]</text>
 </revision>
</page>

The model completely makes up the timestamp, id, and so on. Also, note that it closes the correct tags
appropriately and in the correct nested order. Here are 100,000 characters of sampled wikipedia if you’re
interested to see more.

Algebraic Geometry (Latex)
The results above suggest that the model is actually quite good at learning complex syntactic structures.
Impressed by these results, my labmate (Justin Johnson) and I decided to push even further into structured
territories and got a hold of this book on algebraic stacks/geometry. We downloaded the raw Latex source file
(a 16MB file) and trained a multilayer LSTM. Amazingly, the resulting sampled Latex almost compiles. We had to
step in and fix a few issues manually but then you get plausible looking math, it’s quite astonishing:

Sampled (fake) algebraic geometry. Here's the actual pdf.

Here’s another sample:

More hallucinated algebraic geometry. Nice try on the diagram (right).

As you can see above, sometimes the model tries to generate latex diagrams, but clearly it hasn’t really figured
them out. I also like the part where it chooses to skip a proof (“Proof omitted.”, top left). Of course, keep in mind
that latex has a relatively difficult structured syntactic format that I haven’t even fully mastered myself. For
instance, here is a raw sample from the model (unedited):

\begin{proof}
We may assume that \mathcal{I} is an abelian sheaf on \mathcal{C}.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$
is an injective and let $\mathfrak q$ be an abelian sheaf on X.
Let \mathcal{F} be a fibered complex. Let \mathcal{F} be a category.
\begin{enumerate}
\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}
Let \mathcal{F} be an abelian quasi-coherent sheaf on \mathcal{C}.
Let \mathcal{F} be a coherent \mathcal{O}_X-module. Then
\mathcal{F} is an abelian catenary over \mathcal{C}.
\item The following are equivalent
\begin{enumerate}
\item \mathcal{F} is an \mathcal{O}_X-module.
\end{lemma}

This sample from a relatively decent model illustrates a few common mistakes. For example, the model opens a
\begin{proof} environment but then ends it with a \end{lemma} . This is an example of a problem we’d

have to fix manually, and is likely due to the fact that the dependency is too long-term: By the time the model is
done with the proof it has forgotten whether it was doing a proof or a lemma. Similarly, it opens an
\begin{enumerate} but then forgets to close it. We observed that these became less common with

larger/better models, but nonetheless, these are the kinds of mistakes that come up.

Linux Source Code
I wanted to push structured data to its limit, so for the final challenge I decided to use code. In particular, I took
all the source and header files found in the Linux repo on Github, concatenated all of them in a single giant file
(474MB of C code) (I was originally going to train only on the kernel but that by itself is only ~16MB). Then I
trained several as-large-as-fits-on-my-GPU 3-layer LSTMs over a period of a few days. These models have
about 10 million parameters, which is still on the lower end for RNN models. The results are superfun:

/*
 * Increment the size file of the new incorrect UI_FILTER group information
 * of the size generatively.
 */
static int indicate_policy(void)
{
 int error;
 if (fd == MARN_EPT) {
 /*
 * The kernel blank will coeld it to userspace.
 */
 if (ss->segment < mem_total)
 unblock_graph_and_set_blocked();
 else
 ret = 1;
 goto bail;
 }
 segaddr = in_SB(in.addr);
 selector = seg / 16;
 setup_works = true;
 for (i = 0; i < blocks; i++) {
 seq = buf[i++];
 bpf = bd->bd.next + i * search;
 if (fd) {
 current = blocked;
 }
 }
 rw->name = "Getjbbregs";
 bprm_self_clearl(&iv->version);
 regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12;
 return segtable;
}

The code looks really quite great overall. Of course, I don’t think it compiles but when you scroll through the
generate code it feels very much like a giant C code base. Notice that the RNN peppers its code with
comments here and there at random. It is also very good at making very few syntactic errors. For example, it
uses strings properly, pointer notation, etc. It also opens and closes brackets {[correctly and learns to indent
its code very well. A common error is that it can’t keep track of variable names: It often uses undefined
variables (e.g. rw above), declares variables it never uses (e.g. int error), or returns non-existing
variables. Lets see a few more examples. Here’s another snippet that shows a wider array of operations that the
RNN learns:

/*
 * If this error is set, we will need anything right after that BSD.
 */
static void action_new_function(struct s_stat_info *wb)
{
 unsigned long flags;
 int lel_idx_bit = e->edd, *sys & ~((unsigned long) *FIRST_COMPAT);
 buf[0] = 0xFFFFFFFF & (bit << 4);
 min(inc, slist->bytes);
 printk(KERN_WARNING "Memory allocated %02x/%02x, "
 "original MLL instead\n"),
 min(min(multi_run - s->len, max) * num_data_in),
 frame_pos, sz + first_seg);
 div_u64_w(val, inb_p);
 spin_unlock(&disk->queue_lock);
 mutex_unlock(&s->sock->mutex);
 mutex_unlock(&func->mutex);
 return disassemble(info->pending_bh);
}

static void num_serial_settings(struct tty_struct *tty)
{
 if (tty == tty)
 disable_single_st_p(dev);
 pci_disable_spool(port);
 return 0;
}

static void do_command(struct seq_file *m, void *v)
{
 int column = 32 << (cmd[2] & 0x80);
 if (state)
 cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
 else
 seq = 1;
 for (i = 0; i < 16; i++) {
 if (k & (1 << 1))
 pipe = (in_use & UMXTHREAD_UNCCA) +
 ((count & 0x00000000fffffff8) & 0x000000f) << 8;
 if (count == 0)
 sub(pid, ppc_md.kexec_handle, 0x20000000);
 pipe_set_bytes(i, 0);
 }
 /* Free our user pages pointer to place camera if all dash */
 subsystem_info = &of_changes[PAGE_SIZE];
 rek_controls(offset, idx, &soffset);
 /* Now we want to deliberately put it to device */
 control_check_polarity(&context, val, 0);
 for (i = 0; i < COUNTER; i++)
 seq_puts(s, "policy ");
}

Notice that in the second function the model compares tty == tty , which is vacuously true. On the other
hand, at least the variable tty exists in the scope this time! In the last function, notice that the code does not
return anything, which happens to be correct since the function signature is void . However, the first two
functions were also declared void and did return values. This is again a form of a common mistake due to
long-term interactions.

Sometimes the model decides that it’s time to sample a new file. This is usually a very amusing part: The model
first recites the GNU license character by character, samples a few includes, generates some macros and then
dives into the code:

/*
 * Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 *
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kexec.h>

#include <linux/errno.h>

= tanh(+)ht Whhht−1 Wxhxt

Andrej Karpathy blog

6/24/18, 1)36 PM
Page 1 of 1

Here is an example based on LaTeX
files for a mathematics textbook.

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �40

About Hacker's guide to Neural Networks

The Unreasonable Effectiveness of Recurrent Neural
Networks
May 21, 2015

There’s something magical about Recurrent Neural Networks (RNNs). I still remember when I trained my first
recurrent network for Image Captioning. Within a few dozen minutes of training my first baby model (with rather
arbitrarily-chosen hyperparameters) started to generate very nice looking descriptions of images that were on
the edge of making sense. Sometimes the ratio of how simple your model is to the quality of the results you get
out of it blows past your expectations, and this was one of those times. What made this result so shocking at the
time was that the common wisdom was that RNNs were supposed to be difficult to train (with more experience
I’ve in fact reached the opposite conclusion). Fast forward about a year: I’m training RNNs all the time and I’ve
witnessed their power and robustness many times, and yet their magical outputs still find ways of amusing me.
This post is about sharing some of that magic with you.

By the way, together with this post I am also releasing code on Github that allows you to train character-level
language models based on multi-layer LSTMs. You give it a large chunk of text and it will learn to generate text
like it one character at a time. You can also use it to reproduce my experiments below. But we’re getting ahead
of ourselves; What are RNNs anyway?

Recurrent Neural Networks
Sequences. Depending on your background you might be wondering: What makes Recurrent Networks so
special? A glaring limitation of Vanilla Neural Networks (and also Convolutional Networks) is that their API is too
constrained: they accept a fixed-sized vector as input (e.g. an image) and produce a fixed-sized vector as
output (e.g. probabilities of different classes). Not only that: These models perform this mapping using a fixed
amount of computational steps (e.g. the number of layers in the model). The core reason that recurrent nets are
more exciting is that they allow us to operate over sequences of vectors: Sequences in the input, the output, or
in the most general case both. A few examples may make this more concrete:

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are in
blue and green vectors hold the RNN's state (more on this soon). From left to right: (1) Vanilla mode of processing without RNN,
from fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image captioning takes an
image and outputs a sentence of words). (3) Sequence input (e.g. sentiment analysis where a given sentence is classified as
expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g. Machine Translation: an RNN reads a
sentence in English and then outputs a sentence in French). (5) Synced sequence input and output (e.g. video classification
where we wish to label each frame of the video). Notice that in every case are no pre-specified constraints on the lengths
sequences because the recurrent transformation (green) is fixed and can be applied as many times as we like.

As you might expect, the sequence regime of operation is much more powerful compared to fixed networks that
are doomed from the get-go by a fixed number of computational steps, and hence also much more appealing
for those of us who aspire to build more intelligent systems. Moreover, as we’ll see in a bit, RNNs combine the
input vector with their state vector with a fixed (but learned) function to produce a new state vector. This can in
programming terms be interpreted as running a fixed program with certain inputs and some internal variables.
Viewed this way, RNNs essentially describe programs. In fact, it is known that RNNs are Turing-Complete in the
sense that they can to simulate arbitrary programs (with proper weights). But similar to universal approximation
theorems for neural nets you shouldn’t read too much into this. In fact, forget I said anything.

Sequential processing in absence of sequences. You might be thinking that having sequences as inputs or
outputs could be relatively rare, but an important point to realize is that even if your inputs/outputs are fixed
vectors, it is still possible to use this powerful formalism to process them in a sequential manner. For instance,
the figure below shows results from two very nice papers from DeepMind. On the left, an algorithm learns a
recurrent network policy that steers its attention around an image; In particular, it learns to read out house
numbers from left to right (Ba et al.). On the right, a recurrent network generates images of digits by learning to
sequentially add color to a canvas (Gregor et al.):

Left: RNN learns to read house numbers. Right: RNN learns to paint house numbers.

The takeaway is that even if your data is not in form of sequences, you can still formulate and train powerful
models that learn to process it sequentially. You’re learning stateful programs that process your fixed-sized
data.

RNN computation. So how do these things work? At the core, RNNs have a deceptively simple API: They
accept an input vector x and give you an output vector y . However, crucially this output vector’s contents
are influenced not only by the input you just fed in, but also on the entire history of inputs you’ve fed in in the
past. Written as a class, the RNN’s API consists of a single step function:

rnn = RNN()
y = rnn.step(x) # x is an input vector, y is the RNN's output vector

The RNN class has some internal state that it gets to update every time step is called. In the simplest case
this state consists of a single hidden vector h . Here is an implementation of the step function in a Vanilla RNN:

class RNN:
 # ...
 def step(self, x):
 # update the hidden state
 self.h = np.tanh(np.dot(self.W_hh, self.h) + np.dot(self.W_xh, x))
 # compute the output vector
 y = np.dot(self.W_hy, self.h)
 return y

The above specifies the forward pass of a vanilla RNN. This RNN’s parameters are the three matrices W_hh,
W_xh, W_hy . The hidden state self.h is initialized with the zero vector. The np.tanh function implements
a non-linearity that squashes the activations to the range [-1, 1] . Notice briefly how this works: There are
two terms inside of the tanh: one is based on the previous hidden state and one is based on the current input.
In numpy np.dot is matrix multiplication. The two intermediates interact with addition, and then get squashed
by the tanh into the new state vector. If you’re more comfortable with math notation, we can also write the
hidden state update as , where tanh is applied elementwise.

We initialize the matrices of the RNN with random numbers and the bulk of work during training goes into
finding the matrices that give rise to desirable behavior, as measured with some loss function that expresses
your preference to what kinds of outputs y you’d like to see in response to your input sequences x .

Going deep. RNNs are neural networks and everything works monotonically better (if done right) if you put on
your deep learning hat and start stacking models up like pancakes. For instance, we can form a 2-layer
recurrent network as follows:

y1 = rnn1.step(x)
y = rnn2.step(y1)

In other words we have two separate RNNs: One RNN is receiving the input vectors and the second RNN is
receiving the output of the first RNN as its input. Except neither of these RNNs know or care - it’s all just vectors
coming in and going out, and some gradients flowing through each module during backpropagation.

Getting fancy. I’d like to briefly mention that in practice most of us use a slightly different formulation than what
I presented above called a Long Short-Term Memory (LSTM) network. The LSTM is a particular type of recurrent
network that works slightly better in practice, owing to its more powerful update equation and some appealing
backpropagation dynamics. I won’t go into details, but everything I’ve said about RNNs stays exactly the same,
except the mathematical form for computing the update (the line self.h = ...) gets a little more
complicated. From here on I will use the terms “RNN/LSTM” interchangeably but all experiments in this post use
an LSTM.

Character-Level Language Models
Okay, so we have an idea about what RNNs are, why they are super exciting, and how they work. We’ll now
ground this in a fun application: We’ll train RNN character-level language models. That is, we’ll give the RNN a
huge chunk of text and ask it to model the probability distribution of the next character in the sequence given a
sequence of previous characters. This will then allow us to generate new text one character at a time.

As a working example, suppose we only had a vocabulary of four possible letters “helo”, and wanted to train an
RNN on the training sequence “hello”. This training sequence is in fact a source of 4 separate training
examples: 1. The probability of “e” should be likely given the context of “h”, 2. “l” should be likely in the context
of “he”, 3. “l” should also be likely given the context of “hel”, and finally 4. “o” should be likely given the context
of “hell”.

Concretely, we will encode each character into a vector using 1-of-k encoding (i.e. all zero except for a single
one at the index of the character in the vocabulary), and feed them into the RNN one at a time with the step
function. We will then observe a sequence of 4-dimensional output vectors (one dimension per character),
which we interpret as the confidence the RNN currently assigns to each character coming next in the
sequence. Here’s a diagram:

An example RNN with 4-dimensional input and output layers, and a hidden layer of 3 units (neurons). This diagram shows the
activations in the forward pass when the RNN is fed the characters "hell" as input. The output layer contains confidences the

RNN assigns for the next character (vocabulary is "h,e,l,o"); We want the green numbers to be high and red numbers to be low.

For example, we see that in the first time step when the RNN saw the character “h” it assigned confidence of
1.0 to the next letter being “h”, 2.2 to letter “e”, -3.0 to “l”, and 4.1 to “o”. Since in our training data (the string
“hello”) the next correct character is “e”, we would like to increase its confidence (green) and decrease the
confidence of all other letters (red). Similarly, we have a desired target character at every one of the 4 time
steps that we’d like the network to assign a greater confidence to. Since the RNN consists entirely of
differentiable operations we can run the backpropagation algorithm (this is just a recursive application of the
chain rule from calculus) to figure out in what direction we should adjust every one of its weights to increase the
scores of the correct targets (green bold numbers). We can then perform a parameter update, which nudges
every weight a tiny amount in this gradient direction. If we were to feed the same inputs to the RNN after the
parameter update we would find that the scores of the correct characters (e.g. “e” in the first time step) would
be slightly higher (e.g. 2.3 instead of 2.2), and the scores of incorrect characters would be slightly lower. We
then repeat this process over and over many times until the network converges and its predictions are
eventually consistent with the training data in that correct characters are always predicted next.

A more technical explanation is that we use the standard Softmax classifier (also commonly referred to as the
cross-entropy loss) on every output vector simultaneously. The RNN is trained with mini-batch Stochastic
Gradient Descent and I like to use RMSProp or Adam (per-parameter adaptive learning rate methods) to
stablilize the updates.

Notice also that the first time the character “l” is input, the target is “l”, but the second time the target is “o”. The
RNN therefore cannot rely on the input alone and must use its recurrent connection to keep track of the context
to achieve this task.

At test time, we feed a character into the RNN and get a distribution over what characters are likely to come
next. We sample from this distribution, and feed it right back in to get the next letter. Repeat this process and
you’re sampling text! Lets now train an RNN on different datasets and see what happens.

To further clarify, for educational purposes I also wrote a minimal character-level RNN language model in
Python/numpy. It is only about 100 lines long and hopefully it gives a concise, concrete and useful summary of
the above if you’re better at reading code than text. We’ll now dive into example results, produced with the
much more efficient Lua/Torch codebase.

Fun with RNNs
All 5 example character models below were trained with the code I’m releasing on Github. The input in each
case is a single file with some text, and we’re training an RNN to predict the next character in the sequence.

Paul Graham generator
Lets first try a small dataset of English as a sanity check. My favorite fun dataset is the concatenation of Paul
Graham’s essays. The basic idea is that there’s a lot of wisdom in these essays, but unfortunately Paul Graham
is a relatively slow generator. Wouldn’t it be great if we could sample startup wisdom on demand? That’s where
an RNN comes in.

Concatenating all pg essays over the last ~5 years we get approximately 1MB text file, or about 1 million
characters (this is considered a very small dataset by the way). Technical: Lets train a 2-layer LSTM with 512
hidden nodes (approx. 3.5 million parameters), and with dropout of 0.5 after each layer. We’ll train with batches
of 100 examples and truncated backpropagation through time of length 100 characters. With these settings one
batch on a TITAN Z GPU takes about 0.46 seconds (this can be cut in half with 50 character BPTT at negligible
cost in performance). Without further ado, lets see a sample from the RNN:

“The surprised in investors weren’t going to raise money. I’m not the company with the time there are all
interesting quickly, don’t have to get off the same programmers. There’s a super-angel round fundraising, why
do you can do. If you have a different physical investment are become in people who reduced in a startup with
the way to argument the acquirer could see them just that you’re also the founders will part of users’ affords that
and an alternation to the idea. [2] Don’t work at first member to see the way kids will seem in advance of a bad
successful startup. And if you have to act the big company too.”

Okay, clearly the above is unfortunately not going to replace Paul Graham anytime soon, but remember that the
RNN had to learn English completely from scratch and with a small dataset (including where you put commas,
apostrophes and spaces). I also like that it learns to support its own arguments (e.g. [2], above). Sometimes it
says something that offers a glimmer of insight, such as “a company is a meeting to think to investors”. Here’s a
link to 50K character sample if you’d like to see more.

Temperature. We can also play with the temperature of the Softmax during sampling. Decreasing the
temperature from 1 to some lower number (e.g. 0.5) makes the RNN more confident, but also more conservative
in its samples. Conversely, higher temperatures will give more diversity but at cost of more mistakes (e.g.
spelling mistakes, etc). In particular, setting temperature very near zero will give the most likely thing that Paul
Graham might say:

“is that they were all the same thing that was a startup is that they were all the same thing that was a startup is
that they were all the same thing that was a startup is that they were all the same”

looks like we’ve reached an infinite loop about startups.

Shakespeare
It looks like we can learn to spell English words. But how about if there is more structure and style in the data?
To examine this I downloaded all the works of Shakespeare and concatenated them into a single (4.4MB) file.
We can now afford to train a larger network, in this case lets try a 3-layer RNN with 512 hidden nodes on each
layer. After we train the network for a few hours we obtain samples such as:

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Remember, all the RNN knows are characters, so in particular it samples both speaker’s names and the
contents. Sometimes we also get relatively extented monologue passages, such as:

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.

KING LEAR:
O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

I can barely recognize these samples from actual Shakespeare :) If you like Shakespeare, you might appreciate
this 100,000 character sample. Of course, you can also generate an infinite amount of your own samples at
different temperatures with the provided code.

Wikipedia
We saw that the LSTM can learn to spell words and copy general syntactic structures. Lets further increase the
difficulty and train on structured markdown. In particular, lets take the Hutter Prize 100MB dataset of raw
Wikipedia and train an LSTM. Following Graves et al., I used the first 96MB for training, the rest for validation
and ran a few models overnight. We can now sample Wikipedia articles! Below are a few fun excerpts. First,
some basic markdown output:

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom
of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known
in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal
and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,
was starting to signing a major tripad of aid exile.]]

In case you were wondering, the yahoo url above doesn’t actually exist, the model just hallucinated it. Also, note
that the model learns to open and close the parenthesis correctly. There’s also quite a lot of structured
markdown that the model learns, for example sometimes it creates headings, lists, etc.:

{ { cite journal | id=Cerling Nonforest Department|format=Newlymeslated|none } }
''www.e-complete''.

'''See also''': [[List of ethical consent processing]]

== See also ==
*[[Iender dome of the ED]]
*[[Anti-autism]]

===[[Religion|Religion]]===
*[[French Writings]]
*[[Maria]]
*[[Revelation]]
*[[Mount Agamul]]

== External links==
* [http://www.biblegateway.nih.gov/entrepre/ Website of the World Festival. The labour of India-county defeats at the Ripper of California Road.]

==External links==
* [http://www.romanology.com/ Constitution of the Netherlands and Hispanic Competition for Bilabial and Commonwealth Industry (Republican Constitution of the Extent of the Netherlands)]

Sometimes the model snaps into a mode of generating random but valid XML:

<page>
 <title>Antichrist</title>
 <id>865</id>
 <revision>
 <id>15900676</id>
 <timestamp>2002-08-03T18:14:12Z</timestamp>
 <contributor>
 <username>Paris</username>
 <id>23</id>
 </contributor>
 <minor />
 <comment>Automated conversion</comment>
 <text xml:space="preserve">#REDIRECT [[Christianity]]</text>
 </revision>
</page>

The model completely makes up the timestamp, id, and so on. Also, note that it closes the correct tags
appropriately and in the correct nested order. Here are 100,000 characters of sampled wikipedia if you’re
interested to see more.

Algebraic Geometry (Latex)
The results above suggest that the model is actually quite good at learning complex syntactic structures.
Impressed by these results, my labmate (Justin Johnson) and I decided to push even further into structured
territories and got a hold of this book on algebraic stacks/geometry. We downloaded the raw Latex source file
(a 16MB file) and trained a multilayer LSTM. Amazingly, the resulting sampled Latex almost compiles. We had to
step in and fix a few issues manually but then you get plausible looking math, it’s quite astonishing:

Sampled (fake) algebraic geometry. Here's the actual pdf.

Here’s another sample:

More hallucinated algebraic geometry. Nice try on the diagram (right).

As you can see above, sometimes the model tries to generate latex diagrams, but clearly it hasn’t really figured
them out. I also like the part where it chooses to skip a proof (“Proof omitted.”, top left). Of course, keep in mind
that latex has a relatively difficult structured syntactic format that I haven’t even fully mastered myself. For
instance, here is a raw sample from the model (unedited):

\begin{proof}
We may assume that \mathcal{I} is an abelian sheaf on \mathcal{C}.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$
is an injective and let $\mathfrak q$ be an abelian sheaf on X.
Let \mathcal{F} be a fibered complex. Let \mathcal{F} be a category.
\begin{enumerate}
\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}
Let \mathcal{F} be an abelian quasi-coherent sheaf on \mathcal{C}.
Let \mathcal{F} be a coherent \mathcal{O}_X-module. Then
\mathcal{F} is an abelian catenary over \mathcal{C}.
\item The following are equivalent
\begin{enumerate}
\item \mathcal{F} is an \mathcal{O}_X-module.
\end{lemma}

This sample from a relatively decent model illustrates a few common mistakes. For example, the model opens a
\begin{proof} environment but then ends it with a \end{lemma} . This is an example of a problem we’d

have to fix manually, and is likely due to the fact that the dependency is too long-term: By the time the model is
done with the proof it has forgotten whether it was doing a proof or a lemma. Similarly, it opens an
\begin{enumerate} but then forgets to close it. We observed that these became less common with

larger/better models, but nonetheless, these are the kinds of mistakes that come up.

Linux Source Code
I wanted to push structured data to its limit, so for the final challenge I decided to use code. In particular, I took
all the source and header files found in the Linux repo on Github, concatenated all of them in a single giant file
(474MB of C code) (I was originally going to train only on the kernel but that by itself is only ~16MB). Then I
trained several as-large-as-fits-on-my-GPU 3-layer LSTMs over a period of a few days. These models have
about 10 million parameters, which is still on the lower end for RNN models. The results are superfun:

/*
 * Increment the size file of the new incorrect UI_FILTER group information
 * of the size generatively.
 */
static int indicate_policy(void)
{
 int error;
 if (fd == MARN_EPT) {
 /*
 * The kernel blank will coeld it to userspace.
 */
 if (ss->segment < mem_total)
 unblock_graph_and_set_blocked();
 else
 ret = 1;
 goto bail;
 }
 segaddr = in_SB(in.addr);
 selector = seg / 16;
 setup_works = true;
 for (i = 0; i < blocks; i++) {
 seq = buf[i++];
 bpf = bd->bd.next + i * search;
 if (fd) {
 current = blocked;
 }
 }
 rw->name = "Getjbbregs";
 bprm_self_clearl(&iv->version);
 regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12;
 return segtable;
}

The code looks really quite great overall. Of course, I don’t think it compiles but when you scroll through the
generate code it feels very much like a giant C code base. Notice that the RNN peppers its code with
comments here and there at random. It is also very good at making very few syntactic errors. For example, it
uses strings properly, pointer notation, etc. It also opens and closes brackets {[correctly and learns to indent
its code very well. A common error is that it can’t keep track of variable names: It often uses undefined
variables (e.g. rw above), declares variables it never uses (e.g. int error), or returns non-existing
variables. Lets see a few more examples. Here’s another snippet that shows a wider array of operations that the
RNN learns:

/*
 * If this error is set, we will need anything right after that BSD.
 */
static void action_new_function(struct s_stat_info *wb)
{
 unsigned long flags;
 int lel_idx_bit = e->edd, *sys & ~((unsigned long) *FIRST_COMPAT);
 buf[0] = 0xFFFFFFFF & (bit << 4);
 min(inc, slist->bytes);
 printk(KERN_WARNING "Memory allocated %02x/%02x, "
 "original MLL instead\n"),
 min(min(multi_run - s->len, max) * num_data_in),
 frame_pos, sz + first_seg);
 div_u64_w(val, inb_p);
 spin_unlock(&disk->queue_lock);
 mutex_unlock(&s->sock->mutex);
 mutex_unlock(&func->mutex);
 return disassemble(info->pending_bh);
}

static void num_serial_settings(struct tty_struct *tty)
{
 if (tty == tty)
 disable_single_st_p(dev);
 pci_disable_spool(port);
 return 0;
}

static void do_command(struct seq_file *m, void *v)
{
 int column = 32 << (cmd[2] & 0x80);
 if (state)
 cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
 else
 seq = 1;
 for (i = 0; i < 16; i++) {
 if (k & (1 << 1))
 pipe = (in_use & UMXTHREAD_UNCCA) +
 ((count & 0x00000000fffffff8) & 0x000000f) << 8;
 if (count == 0)
 sub(pid, ppc_md.kexec_handle, 0x20000000);
 pipe_set_bytes(i, 0);
 }
 /* Free our user pages pointer to place camera if all dash */
 subsystem_info = &of_changes[PAGE_SIZE];
 rek_controls(offset, idx, &soffset);
 /* Now we want to deliberately put it to device */
 control_check_polarity(&context, val, 0);
 for (i = 0; i < COUNTER; i++)
 seq_puts(s, "policy ");
}

Notice that in the second function the model compares tty == tty , which is vacuously true. On the other
hand, at least the variable tty exists in the scope this time! In the last function, notice that the code does not
return anything, which happens to be correct since the function signature is void . However, the first two
functions were also declared void and did return values. This is again a form of a common mistake due to
long-term interactions.

Sometimes the model decides that it’s time to sample a new file. This is usually a very amusing part: The model
first recites the GNU license character by character, samples a few includes, generates some macros and then
dives into the code:

/*
 * Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 *
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kexec.h>

#include <linux/errno.h>

= tanh(+)ht Whhht−1 Wxhxt

Andrej Karpathy blog

6/24/18, 1)36 PM
Page 1 of 1

Here is an example
based on the source
code for the Linux
kernel.

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Particle sequences are like words in a language model?

• The analogy is admittedly a bit
strained... but it seems to work in
classifiers.
• QCD inspired recursive network

definition based on a sequence
of particles encoded as a binary
tree.

�41

QCD-Aware Recursive Neural Networks for Jet Physics

Gilles Louppe,1 Kyunghyun Cho,1 Cyril Becot,1 and Kyle Cranmer1

1New York University

Recent progress in applying machine learning for jet physics has been built upon an analogy
between calorimeters and images. In this work, we present a novel class of recursive neural networks
built instead upon an analogy between QCD and natural languages. In the analogy, four-momenta
are like words and the clustering history of sequential recombination jet algorithms is like the
parsing of a sentence. Our approach works directly with the four-momenta of a variable-length set
of particles, and the jet-based tree structure varies on an event-by-event basis. Our experiments
highlight the flexibility of our method for building task-specific jet embeddings and show that
recursive architectures are significantly more accurate and data e�cient than previous image-based
networks. We extend the analogy from individual jets (sentences) to full events (paragraphs), and
show for the first time an event-level classifier operating on all the stable particles produced in an
LHC event.

I. INTRODUCTION

By far the most common structures seen in collisions at
the Large Hadron Collider (LHC) are collimated sprays
of energetic hadrons referred to as ‘jets’. These jets are
produced from the fragmentation and hadronization of
quarks and gluons as described by quantum chromody-
namics (QCD). Several goals for the LHC are centered
around the treatment of jets, and there has been an enor-
mous amount of e↵ort from both the theoretical and ex-
perimental communities to develop techniques that are
able to cope with the experimental realities while main-
taining precise theoretical properties. In particular, the
communities have converged on sequential recombination
jet algorithms, methods to study jet substructure, and
grooming techniques to provide robustness to pileup.

One compelling physics challenge is to search for highly
boosted standard model particles decaying hadronically.
For instance, if a hadronically decayingW boson is highly
boosted, then its decay products will merge into a single
fat jet with a characteristic substructure. Unfortunately,
there is a large background from jets produced by more
mundane QCD processes. For this reason, several jet
‘taggers’ and variables sensitive to jet substructure have
been proposed. Initially, this work was dominated by
techniques inspired by our intuition and knowledge of
QCD; however, more recently there has been a wave of
approaches that eschew this expert knowledge in favor of
machine learning techniques. In this paper, we present a
hybrid approach that leverages the structure of sequential
recombination jet algorithms and deep neural networks.

Recent progress in applying machine learning tech-
niques for jet physics has been built upon an analogy
between calorimeters and images [1–8]. These methods
take a variable-length set of 4-momenta and project them
into a fixed grid of ⌘�� towers or ‘pixels’ to produce a ‘jet
image’. The original jet classification problem, hence, re-
duces to an image classification problem, lending itself to
deep convolutional networks and other machine learning
algorithms. Despite their promising results, these models
su↵er from the fact that they have many free parameters

and that they require large amounts of data for train-
ing. More importantly, the projection of jets into images
also loses information, which impacts classification per-
formance. The most obvious way to address this issue is
to use a recurrent neural network to process a sequence
of 4-momenta as they are. However, it is not clear how
to order this sequence. While pT ordering is common in
many contexts [5], it does not capture important angular
information critical for understanding the subtle struc-
ture of jets.
In this work, we propose instead a solution for jet clas-

sification based on an analogy between QCD and natu-
ral languages, as inspired by several works from natural
language processing [9–14]. Much like a sentence is com-
posed of words following a syntactic structure organized
as a parse tree, a jet is also composed of 4-momenta fol-
lowing a structure dictated by QCD and organized via
the clustering history of a sequential recombination jet
algorithm. More specifically, our approach uses ‘recur-
sive’ networks where the topology of the network is given
by the clustering history of a sequential recombination
jet algorithm, which varies on an event-by-event basis.
This event-by-event adaptive structure can be contrasted
with the ‘recurrent’ networks that operate purely on se-
quences (see e.g., [15]). The network is therefore given
the 4-momenta without any loss of information, in a way
that also captures substructures, as motivated by physi-
cal theory.
It is convenient to think of the recursive neural net-

work as providing a ‘jet embedding’, which maps a set
of 4-momenta into Rq. This embedding has fixed length
and can be fed into a subsequent network used for clas-
sification or regression. Thus the procedure can be used
for jet tagging or estimating parameters that character-
ize the jet, such as the masses of resonances buried inside
the jet. Importantly, the embedding and the subsequent
network can be trained jointly so that the embedding is
optimized for the task at hand.
Extending the natural language analogy paragraphs of

text are sequence of sentences, just as event are sequence
of jets. In particular, we propose to embed the full par-
ticle content of an event by feeding a sequence of jet-

ar
X

iv
:1

70
2.

00
74

8v
1

 [h
ep

-p
h]

 2
 F

eb
 2

01
7

Q
C
D
-
A
w
a
r
e
R
e
c
u
r
s
i
v
e
N
e
u
r
a
l
N
e
t
w
o
r
k
s
f
o
r
J
e
t
P
h
y
s
i
c
s

G
ille

s
L
o
u
p
p
e
, 1

K
y
u
n
g
h
y
u
n

C
h
o
, 1

C
y
ril

B
e
co

t, 1
an

d
K
y
le

C
ra

n
m
e
r
1

1N
ew

Y
o
rk

U
n
iversity

R
ecen

t
p
rogress

in
ap

p
ly
in
g
m
ach

in
e
learn

in
g
for

jet
p
h
y
sics

h
as

b
een

b
u
ilt

u
p
on

an
an

alogy
b
etw

een
calorim

eters
an

d
im

ages.
In

th
is
w
ork

,
w
e
p
resen

t
a
n
ovel

class
of

recu
rsive

n
eu

ral
n
etw

ork
s

b
u
ilt

in
stead

u
p
on

an
an

alogy
b
etw

een
Q
C
D

an
d
n
atu

ral
lan

gu
ages.

In
th
e
an

alogy,
fou

r-m
om

en
ta

are
like

w
ord

s
an

d
th
e
clu

sterin
g

h
istory

of
seq

u
en
tial

recom
b
in
ation

jet
algorith

m
s
is

like
th
e

p
arsin

g
of

a
sen

ten
ce.

O
u
r
ap

p
roach

w
ork

s
d
irectly

w
ith

th
e
fou

r-m
om

en
ta

of
a
variab

le-len
gth

set
of

p
articles,

an
d
th
e
jet-b

ased
tree

stru
ctu

re
varies

on
an

even
t-b

y
-even

t
b
asis.

O
u
r
ex
p
erim

en
ts

h
igh

ligh
t
th
e
fl
ex
ib
ility

of
ou

r
m
eth

o
d

for
b
u
ild

in
g

task
-sp

ecifi
c
jet

em
b
ed

d
in
gs

an
d

sh
ow

th
at

recu
rsive

arch
itectu

res
are

sign
ifi
can

tly
m
ore

accu
rate

an
d
d
ata

e�
cien

t
th
an

p
rev

iou
s
im

age-b
ased

n
etw

ork
s.

W
e
ex
ten

d
th
e
an

alogy
from

in
d
iv
id
u
al

jets
(sen

ten
ces)

to
fu
ll
even

ts
(p
aragrap

h
s),

an
d

sh
ow

for
th
e
fi
rst

tim
e
an

even
t-level

classifi
er

op
eratin

g
on

all
th
e
stab

le
p
articles

p
ro
d
u
ced

in
an

L
H
C

even
t.

I.
IN

T
R
O
D
U
C
T
IO

N

B
y
far

th
e
m
ost

com
m
on

stru
ctu

res
seen

in
collision

s
at

th
e
L
arge

H
ad

ron
C
ollid

er
(L

H
C
)
are

collim
ated

sp
rays

of
en
ergetic

h
ad

ron
s
referred

to
as

‘jets’.
T
h
ese

jets
are

p
rod

u
ced

from
th
e
fragm

entation
an

d
h
ad

ron
ization

of
qu

arks
an

d
glu

on
s
as

d
escrib

ed
by

qu
antu

m
ch
rom

od
y-

n
am

ics
(Q

C
D
).

S
everal

goals
for

th
e
L
H
C

are
centered

arou
n
d
th
e
treatm

ent
of

jets,
an

d
th
ere

h
as

b
een

an
en
or-

m
ou

s
am

ou
nt

of
e↵

ort
from

b
oth

th
e
th
eoretical

an
d
ex-

p
erim

ental
com

m
u
n
ities

to
d
evelop

tech
n
iqu

es
th
at

are
ab

le
to

cop
e
w
ith

th
e
exp

erim
ental

realities
w
h
ile

m
ain

-
tain

in
g
p
recise

th
eoretical

p
rop

erties.
In

p
articu

lar,
th
e

com
m
u
n
ities

h
ave

converged
on

sequ
entialrecom

b
in
ation

jet
algorith

m
s,

m
eth

od
s
to

stu
d
y
jet

su
b
stru

ctu
re,

an
d

groom
in
g
tech

n
iqu

es
to

p
rovid

e
rob

u
stn

ess
to

p
ileu

p
.

O
n
e
com

p
ellin

g
p
hysics

ch
allen

ge
is
to

search
for

h
igh

ly
b
oosted

stan
d
ard

m
od

el
p
articles

d
ecayin

g
h
ad

ron
ically.

F
or

in
stan

ce,if
a
h
ad

ron
ically

d
ecayin

g
W

b
oson

is
h
igh

ly
b
oosted

,
th
en

its
d
ecay

p
rod

u
cts

w
ill

m
erge

into
a
sin

gle
fat

jet
w
ith

a
ch
aracteristic

su
b
stru

ctu
re.

U
n
fortu

n
ately,

th
ere

is
a
large

b
ackgrou

n
d
from

jets
p
rod

u
ced

by
m
ore

m
u
n
d
an

e
Q
C
D

p
rocesses.

F
or

th
is

reason
,
several

jet
‘taggers’

an
d
variab

les
sen

sitive
to

jet
su
b
stru

ctu
re

h
ave

b
een

p
rop

osed
.

In
itially,

th
is

w
ork

w
as

d
om

in
ated

by
tech

n
iqu

es
in
sp
ired

by
ou

r
intu

ition
an

d
kn

ow
led

ge
of

Q
C
D
;
h
ow

ever,
m
ore

recently
th
ere

h
as

b
een

a
w
ave

of
ap

p
roach

es
th
at

esch
ew

th
is
exp

ert
kn

ow
led

ge
in

favor
of

m
ach

in
e
learn

in
g
tech

n
iqu

es.
In

th
is
p
ap

er,
w
e
p
resent

a
hyb

rid
ap

p
roach

th
at

leverages
th
e
stru

ctu
re

ofsequ
ential

recom
b
in
ation

jet
algorith

m
s
an

d
d
eep

n
eu
ral

n
etw

orks.

R
ecent

p
rogress

in
ap

p
lyin

g
m
ach

in
e
learn

in
g

tech
-

n
iqu

es
for

jet
p
hysics

h
as

b
een

b
u
ilt

u
p
on

an
an

alogy
b
etw

een
calorim

eters
an

d
im

ages
[1–8].

T
h
ese

m
eth

od
s

take
a
variab

le-len
gth

set
of

4-m
om

enta
an

d
p
ro
ject

th
em

into
a
fi
xed

grid
of

⌘�
�
tow

ers
or

‘p
ixels’to

p
rod

u
ce

a
‘jet

im
age’.

T
h
e
origin

al
jet

classifi
cation

p
rob

lem
,
h
en
ce,

re-
d
u
ces

to
an

im
age

classifi
cation

p
rob

lem
,
len

d
in
g
itself

to
d
eep

convolu
tion

al
n
etw

orks
an

d
oth

er
m
ach

in
e
learn

in
g

algorith
m
s.

D
esp

ite
th
eir

p
rom

isin
g
resu

lts,
th
ese

m
od

els
su
↵
er

from
th
e
fact

th
at

th
ey

h
ave

m
any

free
p
aram

eters

an
d
th
at

th
ey

requ
ire

large
am

ou
nts

of
d
ata

for
train

-
in
g.

M
ore

im
p
ortantly,

th
e
p
ro
jection

of
jets

into
im

ages
also

loses
in
form

ation
,
w
h
ich

im
p
acts

classifi
cation

p
er-

form
an

ce.
T
h
e
m
ost

obviou
s
w
ay

to
ad

d
ress

th
is
issu

e
is

to
u
se

a
recu

rrent
n
eu
ral

n
etw

ork
to

p
rocess

a
sequ

en
ce

of
4-m

om
enta

as
th
ey

are.
H
ow

ever,
it

is
n
ot

clear
h
ow

to
ord

er
th
is

sequ
en
ce.

W
h
ile

p
T
ord

erin
g
is

com
m
on

in
m
any

contexts
[5],

it
d
oes

n
ot

cap
tu
re

im
p
ortant

an
gu

lar
in
form

ation
critical

for
u
n
d
erstan

d
in
g
th
e
su
b
tle

stru
c-

tu
re

of
jets.

In
th
is
w
ork,

w
e
p
rop

ose
in
stead

a
solu

tion
for

jet
clas-

sifi
cation

b
ased

on
an

an
alogy

b
etw

een
Q
C
D

an
d
n
atu

-
ral

lan
gu

ages,
as

in
sp
ired

by
several

w
orks

from
n
atu

ral
lan

gu
age

p
rocessin

g
[9–14].

M
u
ch

like
a
senten

ce
is
com

-
p
osed

of
w
ord

s
follow

in
g
a
syntactic

stru
ctu

re
organ

ized
as

a
p
arse

tree,
a
jet

is
also

com
p
osed

of
4-m

om
enta

fol-
low

in
g
a
stru

ctu
re

d
ictated

by
Q
C
D

an
d
organ

ized
via

th
e
clu

sterin
g
h
istory

of
a
sequ

ential
recom

b
in
ation

jet
algorith

m
.
M
ore

sp
ecifi

cally,
ou

r
ap

p
roach

u
ses

‘recu
r-

sive’
n
etw

orks
w
h
ere

th
e
top

ology
of

th
e
n
etw

ork
is
given

by
th
e
clu

sterin
g
h
istory

of
a
sequ

ential
recom

b
in
ation

jet
algorith

m
,
w
h
ich

varies
on

an
event-by-event

b
asis.

T
h
is
event-by-event

ad
ap

tive
stru

ctu
re

can
b
e
contrasted

w
ith

th
e
‘recu

rrent’
n
etw

orks
th
at

op
erate

p
u
rely

on
se-

qu
en
ces

(see
e.g.,

[15]).
T
h
e
n
etw

ork
is

th
erefore

given
th
e
4-m

om
enta

w
ith

ou
t
any

loss
of

in
form

ation
,
in

a
w
ay

th
at

also
cap

tu
res

su
b
stru

ctu
res,

as
m
otivated

by
p
hysi-

cal
th
eory.

It
is

conven
ient

to
th
in
k
of

th
e
recu

rsive
n
eu
ral

n
et-

w
ork

as
p
rovid

in
g
a
‘jet

em
b
ed
d
in
g’,

w
h
ich

m
ap

s
a
set

of
4-m

om
enta

into
R
q.

T
h
is

em
b
ed
d
in
g
h
as

fi
xed

len
gth

an
d
can

b
e
fed

into
a
su
b
sequ

ent
n
etw

ork
u
sed

for
clas-

sifi
cation

or
regression

.
T
hu

s
th
e
p
roced

u
re

can
b
e
u
sed

for
jet

taggin
g
or

estim
atin

g
p
aram

eters
th
at

ch
aracter-

ize
th
e
jet,

su
ch

as
th
e
m
asses

of
reson

an
ces

b
u
ried

in
sid

e
th
e
jet.

Im
p
ortantly,

th
e
em

b
ed
d
in
g
an

d
th
e
su
b
sequ

ent
n
etw

ork
can

b
e
train

ed
jointly

so
th
at

th
e
em

b
ed
d
in
g
is

op
tim

ized
for

th
e
task

at
h
an

d
.

E
xten

d
in
g
th
e
n
atu

ral
lan

gu
age

an
alogy

p
aragrap

h
s
of

text
are

sequ
en
ce

of
senten

ces,
ju
st

as
event

are
sequ

en
ce

of
jets.

In
p
articu

lar,
w
e
p
rop

ose
to

em
b
ed

th
e
fu
ll
p
ar-

ticle
content

of
an

event
by

feed
in
g
a
sequ

en
ce

of
jet-

arXiv:1702.00748v1 [hep-ph] 2 Feb 2017

3

v1 v2 ... vNj

hjet
1 (tj)

hjet
k

hjet
kL

hjet
kR

...

f jet(tj)

C
la
ss
ifi

e
r

J
e
t
e
m
be
d
d
in

g

FIG. 1. QCD-motivated recursive jet embedding for classifi-
cation. For each individual jet, the embedding hjet

1 (tj) is com-
puted recursively from the root node down to the outer nodes
of the binary tree tj . The resulting embedding is chained to
a subsequent classifier, as illustrated in the top part of the
figure. The topology of the network in the bottom part is
distinct for each jet and is determined by a sequential recom-
bination jet algorithm (e.g., kt clustering).

B. Full events

We now embed entire events e of variable size by feed-
ing the embeddings of their individual jets to an event-
level sequence-based recurrent neural network.

As an illustrative example, we consider here a gated re-
current unit [21] (GRU) operating on the pT ordered se-
quence of pairs (v(tj),h

jet
1 (tj)), for j = 1, . . . ,M , where

v(tj) is the unprocessed 4-momentum of the jet tj and

h

jet
1 (tj) is its embedding. The final output hevent

M (e) (see
Appendix B for details) of the GRU is chained to a subse-
quent classifier to solve an event-level classification task.
Again, all parameters (i.e., of the inner jet embedding
function, of the GRU, and of the classifier) are learned
jointly using backpropagation through structure [9] to
minimize the loss Levent. Figure 2 provides a schematic
of the full classification model. In summary, combining
two levels of recurrence provides a QCD-motivated event-
level embedding that e↵ectively operates at the hadron-
level for all the particles in the event.

In addition and for the purpose of comparison, we
also consider the simpler baselines where i) only the 4-
momenta v(tj) of the jets are given as input to the GRU,
without augmentation with their embeddings, and ii) the
4-momenta vi of the constituents of the event are all di-
rectly given as input to the GRU, without grouping them
into jets or providing the jet embeddings.

IV. DATA, PREPROCESSING AND
EXPERIMENTAL SETUP

In order to focus attention on the impact of the
network architectures and the projection of input 4-
momenta into images, we consider the same boosted W
tagging example as used in Refs. [1, 2, 4, 6]. The signal
(y = 1) corresponds to a hadronically decaying W boson
with 200 < pT < 500 GeV, while the background (y = 0)
corresponds to a QCD jet with the same range of pT .
We are grateful to the authors of Ref. [6] for shar-

ing the data used in their studies. We obtained both
the full-event records from their PYTHIA benchmark sam-
ples, including both the particle-level data and the tow-
ers from the DELPHES detector simulation. In addition,
we obtained the fully processed jet images of 25⇥25 pix-
els, which include the initial R = 1 anti-kt jet clustering
and subsequent trimming, translation, pixelisation, rota-
tion, reflection, cropping, and normalization preprocess-
ing stages detailed in Ref. [2, 6].

Our training data was collected by sampling from the
original data a total of 100,000 signal and background jets
with equal prior. The testing data was assembled sim-
ilarly by sampling 100,000 signal and background jets,
without overlap with the training data. For direct com-
parison with Ref. [6], performance is evaluated at test
time within the restricted window of 250 < pT < 300
and 50  m  110, where the signal and background jets
are re-weighted to produce flat pT distributions. Results
are reported in terms of the area under the ROC curve
(ROC AUC) and of background rejection (i.e., 1/FPR) at
50% signal e�ciency (R✏=50%). Average scores reported
include uncertainty estimates that come from training 30
models with distinct initial random seeds. About 2% of
the models had technical problems during training (e.g.,
due to numerical errors), so we applied a simple algo-
rithm to ensure robustness: we discarded models whose
R✏=50% was outside of 3 standard deviations of the mean,
where the mean and standard deviation were estimated
excluding the five best and worst performing models.

For our jet-level experiments we consider as input to
the classifiers the 4-momenta vi from both the particle-
level data and the DELPHES towers. We also compare the
performance with and without the projection of those
4-momenta into images. While the image data already
included the full pre-processing steps, when considering
particle-level and tower inputs we performed the initial
R = 1 anti-kt jet clustering to identify the constituents of
the highest pT jet t1 of each event, and then performed

2

embeddings into a recurrent network. As before, this
event-level embedding can be fed into a subsequent net-
work used for classification or regression. To our knowl-
edge, this represents the first machine learning model
operating on all the detectable particles in an event.

The remainder of the paper is structured as follows.
In Sec. II, we formalize the classification tasks at the jet-
level and event-level. We describe the proposed recursive
network architectures in Sec. III and detail the data sam-
ples and preprocessing used in our experiments in Sec. IV.
Our results are summarized and discussed first in Sec. V
for experiments on a jet-level classification problem, and
then in Sec. VI for experiments on an event-level clas-
sification problem. In Sec. VII, we relate our work to
close contributions from deep learning, natural language
processing, and jet physics. Finally, we gather our con-
clusions and directions for further works in Sec. VIII.

II. PROBLEM STATEMENT

We describe a collision event e 2 E as being composed
of a varying number of particles, indexed by i, and where
each particle is represented by its 4-momentum vector
vi 2 R4, such that e = {vi|i = 1, . . . , N}.

The 4-momenta in each event can be clustered into
jets with a sequential recombination jet algorithm that
recursively combines (by simply adding their 4-momenta)
the pair i, i0 that minimize

d↵ii0 = min(p2↵ti , p
2↵
ti0)

�R2
ii0

R2
(1)

while d↵ii0 is less than min(p2↵ti , p
2↵
ti0) [16, 17]. These

sequential recombination algorithms have three hyper-
parameters: R, pt,min, ↵, and jets with pt < pt,min are
discarded. At that point, the jet algorithm has clustered
e into M jets, each of which can be represented by a bi-
nary tree tj 2 T indexed by j = 1, . . . ,M with Nj leaves
(corresponding to a subset of the vi). In the following, we
will consider the specific cases where ↵ = 1, 0,�1, which
respectively correspond to the kt, Cambridge-Aachen and
anti-kt algorithms.

In addition to jet algorithms, we consider a ‘random’
baseline that corresponds to recombining particles at ran-
dom to form random binary trees tj , along with ‘asc-pT ’
and ‘desc-pT ’ baselines, which correspond to degenerate
binary trees formed from the sequences of particles sorted
respectively in ascending and descending order of pT .

For jet-level classification or regression, each jet tj 2
T in the training data comes with labels or regression
values yj 2 Y jet. In this framework, our goal is to build
a predictive model f jet : T 7! Y jet minimizing some loss
function Ljet. Similarly, for event-level classification or
regression, we assume that each collision event el 2 E in
the training data comes with labels or regression values
yl 2 Yevent, and our goal is to build a predictive model
f event : E 7! Yevent minimizing some loss function Levent.

III. RECURSIVE EMBEDDING

A. Individual jets

Let us first consider the case of an individual jet whose
particles are topologically structured as a binary tree tj ,
e.g., based on a sequential recombination jet clustering
algorithm or a simple sequential sorting in pT . Let k =
1, . . . , 2Nj�1 indexes the node of the binary tree tj , and
let the left and right children of node k be denoted by kL
and kR respectively. Let also kL always be the hardest
child of k. By construction, we suppose that leaves k
map to particles i(k) while internal nodes correspond to
recombinations. Using these notations, we recursively
define the embedding h

jet
k 2 Rq of node k in tj as

h

jet
k =

8
>>><

>>>:

uk if k is a leaf

�

0

B@Wh

2

64
h

jet
kL

h

jet
kR

uk

3

75+ bh

1

CA otherwise
(2)

uk = � (Wug(ok) + bu) (3)

ok =

(
vi(k) if k is a leaf

okL + okR otherwise
(4)

where Wh 2 Rq⇥3q, bh 2 Rq, Wu 2 Rq⇥4 and bu 2 Rq

form together the shared parameters to be learned, q
is the size of the embedding, � is the ReLU activation
function [18], and g is a function extracting the kinematic
features p, ⌘, ✓, �, E, and pT from the 4-momentum ok.
When applying Eqn. 2 recursively from the root node

k = 1 down to the outer nodes of the binary tree tj , the

resulting embedding, denoted h

jet
1 (tj), e↵ectively sum-

marizes the information contained in the particles form-
ing the jet into a single vector. In particular, this re-
cursive neural network (RNN) embeds a binary tree of
varying shape and size into a vector of fixed size. As a
result, the embedding h

jet
1 (tj) can now be chained to a

subsequent classifier or regressor to solve our target su-
pervised learning problem, as illustrated in Figure 1. All
parameters (i.e., of the recursive jet embedding and of
the classifier) are learned jointly using backpropagation
through structure [9] to minimize the loss Ljet, hence tai-
loring the embedding to the specific requirements of the
task. Further implementation details, including an e�-
cient batched computation over distinct binary trees, can
be found in Appendix C.
In addition to the recursive activation of Eqn. 2, we

also consider and study its extended version equipped
with reset and update gates (see details in Appendix A).
This gated architecture allows the network to preferen-
tially pass information along the left-child, right-child, or
their combination.
While we have not performed experiments, we point

out that there is an analogous style of architectures based
on jet algorithms with 2 ! 3 recombinations [17, 19, 20].

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Sequences of sequences

�42

4

hjet
1 (t1)

v(t1)

hjet
1 (t2)

v(t2)

...

...

hjet
1 (tM)

v(tM)

hevent
M (e)

Event embedding

... fevent(e)

Classifier

FIG. 2. QCD-motivated event embedding for classification. The embedding of an event is computed by feeding the sequence
of pairs (v(tj),h

jet
1 (tj)) over the jets it is made of, where v(tj) is the unprocessed 4-momentum of the jet tj and hjet

1 (tj) is its
embedding. The resulting event-level embedding hevent

M (e) is chained to a subsequent classifier, as illustrated in the right part
of the figure.

the subsequent translation, rotation, and reflection pre-
processing steps (omitting cropping and normalization).
When processing the image data, we inverted the nor-
malization that enforced the sum of the squares of the
pixel intensities be equal to one.1

For our event-level experiments we were not able to use
the data from Ref. [6] because the signal sample corre-
sponded to pp ! W (! J)Z(! ⌫⌫̄) and the background
to pp ! jj. Thus the signal was characterized by one
high-pT jet and large missing energy from Z(! ⌫⌫̄) which
is trivially separated from the dijet background. For this
reason, we generated our own PYTHIA and DELPHES sam-
ples of pp ! W 0 ! W (! J)Z(! J) and QCD back-
ground such that both the signal and background have
two high-pT jets. We use mW 0 = 700 GeV and restrict
p̂t of the 2 ! 2 scattering process to 300 < p̂t < 350
GeV. Our focus is to demonstrate the scalability of our
method to all the particles or towers in an event, and not
to provide a precise statement about physics reach for
this signal process. In this case each event e was clus-
tered by the same anti-kt algorithm with R = 1, and then
the constituents of each jet were treated as in Sec. IIIA
(i.e., reclustered using kt or a sequential ordering in pT
to provide the network topology for a non-gated embed-
ding). Additionally, the constituents of each jet were

1
In Ref. [2], the jet images did not include the DELPHES detector

simulation, they were comparable to our particle scenario with

the additional discretization into pixels.

pre-processed with translation, rotation, and reflection
as in the individual jet case. Training was carried out on
a dataset of 100,000 signal and background events with
equal prior. Performance was evaluated on an indepen-
dent test set of 100,000 other events, as measured by the
ROC AUC and R✏=80% of the model predictions. Again,
average scores are given with uncertainty estimates that
come from training 30 models with distinct initial ran-
dom seeds.
In both jet-level and event-level experiments, the di-

mension of the embeddings q was set to 40. Training was
conducted using Adam [22] as an optimizer for 25 epochs,
with a batch size of 64 and a learning rate of 0.0005 de-
cayed by a factor of 0.9 after every epoch. These param-
eters were found to perform best on average, as deter-
mined through an optimization of the hyper-parameters.
Performance was monitored during training on a valida-
tion set of 5000 samples to allow for early stopping and
prevent from overfitting.

V. EXPERIMENTS WITH JET-LEVEL
CLASSIFICATION

A. Performance studies

We carried out performance studies where we varied
the following factors: the projection of the 4-momenta
into an image, the source of those 4-momenta, the topol-

Also: https://indico.cern.ch/event/722319/ (K. Cranmer)

4

hjet
1 (t1)

v(t1)

hjet
1 (t2)

v(t2)

...

...

hjet
1 (tM)

v(tM)

hevent
M (e)

Event embedding

... fevent(e)

Classifier

FIG. 2. QCD-motivated event embedding for classification. The embedding of an event is computed by feeding the sequence
of pairs (v(tj),h

jet
1 (tj)) over the jets it is made of, where v(tj) is the unprocessed 4-momentum of the jet tj and hjet

1 (tj) is its
embedding. The resulting event-level embedding hevent

M (e) is chained to a subsequent classifier, as illustrated in the right part
of the figure.

the subsequent translation, rotation, and reflection pre-
processing steps (omitting cropping and normalization).
When processing the image data, we inverted the nor-
malization that enforced the sum of the squares of the
pixel intensities be equal to one.1

For our event-level experiments we were not able to use
the data from Ref. [6] because the signal sample corre-
sponded to pp ! W (! J)Z(! ⌫⌫̄) and the background
to pp ! jj. Thus the signal was characterized by one
high-pT jet and large missing energy from Z(! ⌫⌫̄) which
is trivially separated from the dijet background. For this
reason, we generated our own PYTHIA and DELPHES sam-
ples of pp ! W 0 ! W (! J)Z(! J) and QCD back-
ground such that both the signal and background have
two high-pT jets. We use mW 0 = 700 GeV and restrict
p̂t of the 2 ! 2 scattering process to 300 < p̂t < 350
GeV. Our focus is to demonstrate the scalability of our
method to all the particles or towers in an event, and not
to provide a precise statement about physics reach for
this signal process. In this case each event e was clus-
tered by the same anti-kt algorithm with R = 1, and then
the constituents of each jet were treated as in Sec. IIIA
(i.e., reclustered using kt or a sequential ordering in pT
to provide the network topology for a non-gated embed-
ding). Additionally, the constituents of each jet were

1
In Ref. [2], the jet images did not include the DELPHES detector

simulation, they were comparable to our particle scenario with

the additional discretization into pixels.

pre-processed with translation, rotation, and reflection
as in the individual jet case. Training was carried out on
a dataset of 100,000 signal and background events with
equal prior. Performance was evaluated on an indepen-
dent test set of 100,000 other events, as measured by the
ROC AUC and R✏=80% of the model predictions. Again,
average scores are given with uncertainty estimates that
come from training 30 models with distinct initial ran-
dom seeds.
In both jet-level and event-level experiments, the di-

mension of the embeddings q was set to 40. Training was
conducted using Adam [22] as an optimizer for 25 epochs,
with a batch size of 64 and a learning rate of 0.0005 de-
cayed by a factor of 0.9 after every epoch. These param-
eters were found to perform best on average, as deter-
mined through an optimization of the hyper-parameters.
Performance was monitored during training on a valida-
tion set of 5000 samples to allow for early stopping and
prevent from overfitting.

V. EXPERIMENTS WITH JET-LEVEL
CLASSIFICATION

A. Performance studies

We carried out performance studies where we varied
the following factors: the projection of the 4-momenta
into an image, the source of those 4-momenta, the topol-

6

FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with

https://indico.cern.ch/event/722319/

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Can we learn from data?
• If we can build a classifier, we can build a generator.
• But generate based on... what?
• Training on the output of a MC does not really make sense - except in the

cases where we are worried about simulation speed and are willing to trade off
some accuracy and some information about the underlying event for speed.
- Plausible scenario for detector simulation, e.g., EM showers in a calorimeter, but not really

needed in an event generator except, perhaps, in an upstream calculation where we need
to speed up some MC integration technique as per the first part of this talk.

• But, if we could train on data somehow, this approach becomes much more
exciting:
- "Capture" real distributions of particles and correlations.
- Limited insight into the underlying dynamics, but if we can peg to total energy, maybe this is

okay.

�43

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Domain adaption
• Consider a network innovation called a Domain Adversarial Neural Network (DANN) to
minimize bias coming from a MC.
- Journal of Machine Learning Research 17 (2016) 1-35
- https://arxiv.org/abs/1505.07818
- Jointly maximize domain classifier loss and minimize feature classifier loss.
- Are the simulation and detector data domains too similar for this too work? Too different?

�44

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

Figure 1: The proposed architecture includes a deep feature extractor (green) and a deep
label predictor (blue), which together form a standard feed-forward architecture.
Unsupervised domain adaptation is achieved by adding a domain classifier (red)
connected to the feature extractor via a gradient reversal layer that multiplies
the gradient by a certain negative constant during the backpropagation-based
training. Otherwise, the training proceeds standardly and minimizes the label
prediction loss (for source examples) and the domain classification loss (for all
samples). Gradient reversal ensures that the feature distributions over the two
domains are made similar (as indistinguishable as possible for the domain classi-
fier), thus resulting in the domain-invariant features.

predictor and into the domain classifier (with loss weighted by �). The only di↵erence is
that in (13), the gradients from the class and domain predictors are subtracted, instead of
being summed (the di↵erence is important, as otherwise SGD would try to make features
dissimilar across domains in order to minimize the domain classification loss). Since SGD—
and its many variants, such as ADAGRAD (Duchi et al., 2010) or ADADELTA (Zeiler,
2012)—is the main learning algorithm implemented in most libraries for deep learning, it
would be convenient to frame an implementation of our stochastic saddle point procedure
as SGD.

Fortunately, such a reduction can be accomplished by introducing a special gradient
reversal layer (GRL), defined as follows. The gradient reversal layer has no parameters
associated with it. During the forward propagation, the GRL acts as an identity trans-
formation. During the backpropagation however, the GRL takes the gradient from the
subsequent level and changes its sign, i.e., multiplies it by �1, before passing it to the
preceding layer. Implementing such a layer using existing object-oriented packages for deep
learning is simple, requiring only to define procedures for the forward propagation (identity
transformation), and backpropagation (multiplying by �1). The layer requires no parame-
ter update.

The GRL as defined above is inserted between the feature extractor G
f

and the domain
classifier G

d

, resulting in the architecture depicted in Figure 1. As the backpropagation
process passes through the GRL, the partial derivatives of the loss that is downstream

12

In
pu

t b
at

ch

U
nl

ab
el

ed
 -

ta
rg

et
 d

om
ai

n

La
be

le
d

- s
ou

rc
e

do
m

ai
n

D
om

ai
n

lo
ss

 o
nl

y

D
om

ai
n

lo
ss

 a
nd

 c
la

ss
ifi

er
 lo

ss

https://arxiv.org/abs/1505.07818

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Sketch of a generative RNN as event generator...
• Fix the total cross section with a well-grounded theoretical calculation.
• Train on a mixture of data and simulation - use the simulation to teach the network

how to produce particle signatures of a given energy in the detector, and use data to
learn the distribution of produced particles (along with all correlations). Regulate data /
MC exposure into the loss function for training using a domain adversarial network.

• Condition the generative model for the output sequence on neutrino energy (one to
many mapping) - could also use target nucleus.

• Not at all obvious that this would work...
- Guaranteed to generate some stream of particles... but would they be "gibberish"?
- Even if the output stream were not gibberish, would using a domain adversarial component to

condition the loss actually produce a particle stream that mimicked the distributions found in data?
• Every reason to be skeptical... but it might be fun to try! The result would be a data-driven final state

particle generator you could use to build neutrino energy reconstruction algorithms.

�45

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018

Conclusions
• ML methods show significant promise for speeding up certain calculations.
• Generally, this sort of method is probably not important for generators like the ones

considered in this workshop - but these techniques could matter for upstream calculations
that form inputs to "event-level" MC generators.

• There is potential for using generative models directly as "event-level" MC generators, but
a great deal of work remains to be done:
- Consider semantics of a particle sequence. ML research focuses on language problems, and we have

different dynamics, symmetries, concerns, etc.
- Research popping up that encodes symmetries in the network structure - maybe we could exploit that here.
- Need to connect particle description to a detector description. The pieces are all there, but this hasn't

actually been done yet (that I know of, but maybe in some corner of LHC-land).
- Need to explore techniques for conditioning distributions on data so we may connect true, underlying

information to an set of observables we don't know how to otherwise correctly simulate. Challenging to do
correctly, but we have some unlikely allies interested in this problem - they're working on something just as
crazy, namely ... self-driving cars!

�46

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �47

Back up!

Thanks!

now...

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �48

Refine the definition of tree
• We define tree by a vector of scores in leafs, and a leaf index

mapping function that maps an instance to a leaf

age < 15

is male?

Y N

Y N

Leaf 1 Leaf 2 Leaf 3

q() = 1

q() = 3

w1=+2 w2=0.1 w3=-1

The structure of the tree

The leaf weight of the tree

Define Complexity of a Tree (cont’)
• Define complexity as (this is not the only possible definition)

Number of leaves L2 norm of leaf scores

age < 15

is male?

Y N

Y N

Leaf 1 Leaf 2 Leaf 3

w1=+2 w2=0.1 w3=-1

XGBoost: A Scalable Tree Boosting System

Tianqi Chen
University of Washington

tqchen@cs.washington.edu

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

ABSTRACT
Tree boosting is a highly e↵ective and widely used machine
learning method. In this paper, we describe a scalable end-
to-end tree boosting system called XGBoost, which is used
widely by data scientists to achieve state-of-the-art results
on many machine learning challenges. We propose a novel
sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions
of examples using far fewer resources than existing systems.

Keywords
Large-scale Machine Learning

1. INTRODUCTION
Machine learning and data-driven approaches are becom-

ing very important in many areas. Smart spam classifiers
protect our email by learning from massive amounts of spam
data and user feedback; advertising systems learn to match
the right ads with the right context; fraud detection systems
protect banks from malicious attackers; anomaly event de-
tection systems help experimental physicists to find events
that lead to new physics. There are two important factors
that drive these successful applications: usage of e↵ective
(statistical) models that capture the complex data depen-
dencies and scalable learning systems that learn the model
of interest from large datasets.

Among the machine learning methods used in practice,
gradient tree boosting [10]1 is one technique that shines
in many applications. Tree boosting has been shown to
give state-of-the-art results on many standard classification
benchmarks [16]. LambdaMART [5], a variant of tree boost-
ing for ranking, achieves state-of-the-art result for ranking

1Gradient tree boosting is also known as gradient boosting
machine (GBM) or gradient boosted regression tree (GBRT)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD ’16, August 13-17, 2016, San Francisco, CA, USA

c� 2016 Copyright held by the owner/author(s).

ACM ISBN .

DOI:

problems. Besides being used as a stand-alone predictor, it
is also incorporated into real-world production pipelines for
ad click through rate prediction [15]. Finally, it is the de-
facto choice of ensemble method and is used in challenges
such as the Netflix prize [3].
In this paper, we describe XGBoost, a scalable machine

learning system for tree boosting. The system is available as
an open source package2. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions 3 published at Kaggle’s
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
sembles. For comparison, the second most popular method,
deep neural nets, was used in 11 solutions. The success
of the system was also witnessed in KDDCup 2015, where
XGBoost was used by every winning team in the top-10.
Moreover, the winning teams reported that ensemble meth-
ods outperform a well-configured XGBoost by only a small
amount [1].
These results demonstrate that our system gives state-of-

the-art results on a wide range of problems. Examples of
the problems in these winning solutions include: store sales
prediction; high energy physics event classification; web text
classification; customer behavior prediction; motion detec-
tion; ad click through rate prediction; malware classification;
product categorization; hazard risk prediction; massive on-
line course dropout rate prediction. While domain depen-
dent data analysis and feature engineering play an important
role in these solutions, the fact that XGBoost is the consen-
sus choice of learner shows the impact and importance of
our system and tree boosting.
The most important factor behind the success of XGBoost

is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.
These innovations include: a novel tree learning algorithm
is for handling sparse data; a theoretically justified weighted
quantile sketch procedure enables handling instance weights
in approximate tree learning. Parallel and distributed com-
puting makes learning faster which enables quicker model ex-
ploration. More importantly, XGBoost exploits out-of-core

2https://github.com/dmlc/xgboost
3Solutions come from of top-3 teams of each competitions.

ar
X

iv
:1

60
3.

02
75

4v
3

 [c
s.L

G
]

10
 Ju

n
20

16

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �49

Revisit the Objectives
• Define the instance set in leaf j as

• Regroup the objective by each leaf

• This is sum of T independent quadratic functions

The Structure Score
• Two facts about single variable quadratic function

• Let us define

• Assume the structure of tree (q(x)) is fixed, the optimal
weight in each leaf, and the resulting objective value are

This measures how good a tree structure is!

Searching Algorithm for Single Tree

• Enumerate the possible tree structures q

• Calculate the structure score for the q, using the scoring eq.

• Find the best tree structure, and use the optimal leaf weight

• But… there can be infinite possible tree structures..

Greedy Learning of the Tree
• In practice, we grow the tree greedily

� Start from tree with depth 0
� For each leaf node of the tree, try to add a split. The change of

objective after adding the split is

� Remaining question: how do we find the best split?

the score of left child
the score of right child

the score of if we do not split

The complexity cost by
 introducing additional leaf

XGBoost: A Scalable Tree Boosting System

Tianqi Chen
University of Washington

tqchen@cs.washington.edu

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

ABSTRACT
Tree boosting is a highly e↵ective and widely used machine
learning method. In this paper, we describe a scalable end-
to-end tree boosting system called XGBoost, which is used
widely by data scientists to achieve state-of-the-art results
on many machine learning challenges. We propose a novel
sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions
of examples using far fewer resources than existing systems.

Keywords
Large-scale Machine Learning

1. INTRODUCTION
Machine learning and data-driven approaches are becom-

ing very important in many areas. Smart spam classifiers
protect our email by learning from massive amounts of spam
data and user feedback; advertising systems learn to match
the right ads with the right context; fraud detection systems
protect banks from malicious attackers; anomaly event de-
tection systems help experimental physicists to find events
that lead to new physics. There are two important factors
that drive these successful applications: usage of e↵ective
(statistical) models that capture the complex data depen-
dencies and scalable learning systems that learn the model
of interest from large datasets.

Among the machine learning methods used in practice,
gradient tree boosting [10]1 is one technique that shines
in many applications. Tree boosting has been shown to
give state-of-the-art results on many standard classification
benchmarks [16]. LambdaMART [5], a variant of tree boost-
ing for ranking, achieves state-of-the-art result for ranking

1Gradient tree boosting is also known as gradient boosting
machine (GBM) or gradient boosted regression tree (GBRT)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD ’16, August 13-17, 2016, San Francisco, CA, USA

c� 2016 Copyright held by the owner/author(s).

ACM ISBN .

DOI:

problems. Besides being used as a stand-alone predictor, it
is also incorporated into real-world production pipelines for
ad click through rate prediction [15]. Finally, it is the de-
facto choice of ensemble method and is used in challenges
such as the Netflix prize [3].
In this paper, we describe XGBoost, a scalable machine

learning system for tree boosting. The system is available as
an open source package2. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions 3 published at Kaggle’s
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
sembles. For comparison, the second most popular method,
deep neural nets, was used in 11 solutions. The success
of the system was also witnessed in KDDCup 2015, where
XGBoost was used by every winning team in the top-10.
Moreover, the winning teams reported that ensemble meth-
ods outperform a well-configured XGBoost by only a small
amount [1].
These results demonstrate that our system gives state-of-

the-art results on a wide range of problems. Examples of
the problems in these winning solutions include: store sales
prediction; high energy physics event classification; web text
classification; customer behavior prediction; motion detec-
tion; ad click through rate prediction; malware classification;
product categorization; hazard risk prediction; massive on-
line course dropout rate prediction. While domain depen-
dent data analysis and feature engineering play an important
role in these solutions, the fact that XGBoost is the consen-
sus choice of learner shows the impact and importance of
our system and tree boosting.
The most important factor behind the success of XGBoost

is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.
These innovations include: a novel tree learning algorithm
is for handling sparse data; a theoretically justified weighted
quantile sketch procedure enables handling instance weights
in approximate tree learning. Parallel and distributed com-
puting makes learning faster which enables quicker model ex-
ploration. More importantly, XGBoost exploits out-of-core

2https://github.com/dmlc/xgboost
3Solutions come from of top-3 teams of each competitions.

ar
X

iv
:1

60
3.

02
75

4v
3

 [c
s.L

G
]

10
 Ju

n
20

16

Gabriel Perdue // Fermilab // AI for MC // ECT, Trento, July 2018 �50

Efficient Finding of the Best Split
• What is the gain of a split rule ? Say is age

• All we need is sum of g and h in each side, and calculate

• Left to right linear scan over sorted instance is enough to
decide the best split along the feature

g1, h1 g4, h4 g2, h2 g5, h5 g3, h3

a

An Algorithm for Split Finding
• For each node, enumerate over all features

� For each feature, sorted the instances by feature value
� Use a linear scan to decide the best split along that feature
� Take the best split solution along all the features

• Time Complexity growing a tree of depth K
� It is O(n d K log n): or each level, need O(n log n) time to sort

There are d features, and we need to do it for K level
� This can be further optimized (e.g. use approximation or caching

the sorted features)
� Can scale to very large dataset

XGBoost: A Scalable Tree Boosting System

Tianqi Chen
University of Washington

tqchen@cs.washington.edu

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

ABSTRACT
Tree boosting is a highly e↵ective and widely used machine
learning method. In this paper, we describe a scalable end-
to-end tree boosting system called XGBoost, which is used
widely by data scientists to achieve state-of-the-art results
on many machine learning challenges. We propose a novel
sparsity-aware algorithm for sparse data and weighted quan-
tile sketch for approximate tree learning. More importantly,
we provide insights on cache access patterns, data compres-
sion and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions
of examples using far fewer resources than existing systems.

Keywords
Large-scale Machine Learning

1. INTRODUCTION
Machine learning and data-driven approaches are becom-

ing very important in many areas. Smart spam classifiers
protect our email by learning from massive amounts of spam
data and user feedback; advertising systems learn to match
the right ads with the right context; fraud detection systems
protect banks from malicious attackers; anomaly event de-
tection systems help experimental physicists to find events
that lead to new physics. There are two important factors
that drive these successful applications: usage of e↵ective
(statistical) models that capture the complex data depen-
dencies and scalable learning systems that learn the model
of interest from large datasets.

Among the machine learning methods used in practice,
gradient tree boosting [10]1 is one technique that shines
in many applications. Tree boosting has been shown to
give state-of-the-art results on many standard classification
benchmarks [16]. LambdaMART [5], a variant of tree boost-
ing for ranking, achieves state-of-the-art result for ranking

1Gradient tree boosting is also known as gradient boosting
machine (GBM) or gradient boosted regression tree (GBRT)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD ’16, August 13-17, 2016, San Francisco, CA, USA

c� 2016 Copyright held by the owner/author(s).

ACM ISBN .

DOI:

problems. Besides being used as a stand-alone predictor, it
is also incorporated into real-world production pipelines for
ad click through rate prediction [15]. Finally, it is the de-
facto choice of ensemble method and is used in challenges
such as the Netflix prize [3].
In this paper, we describe XGBoost, a scalable machine

learning system for tree boosting. The system is available as
an open source package2. The impact of the system has been
widely recognized in a number of machine learning and data
mining challenges. Take the challenges hosted by the ma-
chine learning competition site Kaggle for example. Among
the 29 challenge winning solutions 3 published at Kaggle’s
blog during 2015, 17 solutions used XGBoost. Among these
solutions, eight solely used XGBoost to train the model,
while most others combined XGBoost with neural nets in en-
sembles. For comparison, the second most popular method,
deep neural nets, was used in 11 solutions. The success
of the system was also witnessed in KDDCup 2015, where
XGBoost was used by every winning team in the top-10.
Moreover, the winning teams reported that ensemble meth-
ods outperform a well-configured XGBoost by only a small
amount [1].
These results demonstrate that our system gives state-of-

the-art results on a wide range of problems. Examples of
the problems in these winning solutions include: store sales
prediction; high energy physics event classification; web text
classification; customer behavior prediction; motion detec-
tion; ad click through rate prediction; malware classification;
product categorization; hazard risk prediction; massive on-
line course dropout rate prediction. While domain depen-
dent data analysis and feature engineering play an important
role in these solutions, the fact that XGBoost is the consen-
sus choice of learner shows the impact and importance of
our system and tree boosting.
The most important factor behind the success of XGBoost

is its scalability in all scenarios. The system runs more than
ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or
memory-limited settings. The scalability of XGBoost is due
to several important systems and algorithmic optimizations.
These innovations include: a novel tree learning algorithm
is for handling sparse data; a theoretically justified weighted
quantile sketch procedure enables handling instance weights
in approximate tree learning. Parallel and distributed com-
puting makes learning faster which enables quicker model ex-
ploration. More importantly, XGBoost exploits out-of-core

2https://github.com/dmlc/xgboost
3Solutions come from of top-3 teams of each competitions.

ar
X

iv
:1

60
3.

02
75

4v
3

 [c
s.L

G
]

10
 Ju

n
20

16

