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* Neural networks and deep learning (and machine
learning, more broadly) for event generators.

- Two "levels™ UBER'S SELEDRIVING TRUCE [ —
» "That sounds promising. | see where you are going %Aggosmglsm DELIVERT:
there..." |

» "Why the heck would you do that!?"
» Conclusions

Jet Substructure Classification in High-Energy Physics with Deep Neural Networks TECHNOLOGY o
Pierre Bald; ! Kevin Baver? & \WAL L STREET Artificial intelligence now powers all of
, I Department of Computer Sci F b l 9 t l t. fpli
Department of Physi d Ast nc
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(1 The new system is more accurate than the old method.

By Rob Verger  August 4, 2017

P E=20

Who needs Wall Street? New
robot-powered ETF beating the
market so far

Deep learning algorithm does as well as ~ HII'St molecules discovered by next-
Topics

HOME NEWS MULTIMEDIA MEETINGS PORTALS ABOUT

PUBLIC RELEASE: 27-JUL-2017

dermatologists in identifying skin cancer generation artificial intelligence to be
In hopes of creating better access to medical care, Stanford researchers have trained an algorithm to diag d eve | O p e d intO d r‘ U gS

cancer.

, ﬁ <] D Week's top Latest news Unread news X INSILICO MEDICINE, INC.
— Deep-learning algorithm recommends ingredients and e F1[v] [&] [&] BPRNT SE
recipes based on a photo of food
G+ July 21, 2017 by Adam Conner- Simons Thursday, July 27, 2017, Baltimore, Md.,

Insilico Medicine ("Insilico"), a Baltimore-
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The sane... and the more... speculative.

* Various ML techniques show real promise for speeding up slow calculations.
There are many cases where we have solve very complex expressions using
algorithms with terrible (even exponential) scaling but where a ML algorithm can
approximate the result to very tolerable precision in fixed time.

- Will show examples for MC Integration, and
- parametric regression for LQCD (won't have time, but see PRD 97, 094506).

* More speculatively, we may also use ML algorithms as event generators directly:

- Demonstrated success for simple detector geometries for electromagnetic showers using
Generative Adversarial Networks,

- Success with recurrent and other sequence-based models on language problems suggest we
could produce event generators based on a mixture of theory and learned models.

* Bonus topic - also won't have time, but see arXiv 1805.00905 for an interesting application of
NNs to form factor fitting (not exactly MC work, but probably interesting to this audience).
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MC integration

*  https://indico.cern.ch/event/568875/ (MC4BSM 2017), J. Bendavid
* arXiv 1707.00028, J. Bendavid

* arXiv 1603.02754 (xgboost)

* arXiv 1406.2661 (GAN foundation paper, many others)

* (plus more GAN references in the next section)

L, -
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https://indico.cern.ch/event/568875/

MC Sampling

» Simplest possible approach:

randomly sample the function with a uniform distribution,

compute a weight for each sample based on the value and the sampling size,

integral is the weighted sum of all samples.
Generation with accept-reject.

* Naive implementations are very inefficient.
- Some regions of the function are much more important than others for computing an

9

Integral - iImportance sampling:

* instead of sampling from a uniform distribution, use some generating probability,

* now weights are modified by the value of the generating distribution,

* maximally efficient case - the generating distribution is a good approximation of the

integral we'd like to perform (and is easy to sample from).

Gabriel Perdue // Fermilab // Al for MC // ECT, Trento, July 2018
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VEGAS

» Smart integration algorithm - Lepage, "A New Algorithm for Adaptive
Multidimensional Integration”, Journal of Computational Physics 27,
192-203 (1978)

* [terative - at each iteration build an adaptive-binned histogram that better
approximates the target function.

* Multidimensional functions are treated as products of one-dimensional
histograms - so, fast and simple, but the algorithm has trouble when
there are complex correlations across dimensions.

» Sometimes we can change basis or transform the function to make the
problem easier, but not always.

L, -
a¢ Fermilab
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FOAM

» S. Jadach, physics/0203033

* Truly multidimensional sampling
function.

11

Use a decision tree to divide the phase
space into optimized hyper-rectangles.

Sample uniformly within each hyper-
rectangle to determine whether and
where to perform a binary split (until a
stopping condition is finally met within the
cell).

Weights are proportional the integrals
over hyper-rectangles.

Weighted sampling by hyper-rectangle,
then randomly within the volume.

Gabriel Perdue // Fermilab // Al for MC // ECT, Trento, July 2018

Build—up of the foam of cells

Split root cell if necessary

Choose next cell for the Split ...,

!

MC exploration of the cell

Generate series of MC events inside a cell
Choose best direction (division edge)
Find out best division ratio (division plane)

Generate MC event

Choose randomly a cell

Choose randomly a point inside a cell

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Figure 1: Two stages in the cellular algorithm of Foam.
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Regression Tree (CART)

* Decision rules for each branch.
* Leaf nodes contain scores.

» Useful in classification also.

* Function approximation.

The model is regression tree that splits on time

Equivalently

0.2
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Input: age, gender, occupation, ...

@
(-
ﬁ Q I
4 )

Does the person like computer games

)

—

prediction score in each leaf

Piecewise step function over time

my rate over love songs Tiangi Chen

University of Washington
tgchen@cs.washington.edu

=" " hmm.. Carlos Guestrin
. . P University of Washington
guestrin@cs.washington.edu
\ | timeline
When | met my girlfriend!
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Boosted trees for regression

@ Boosted Decision Trees can
also be used for multivariate
regression problem

Root
node

o~ @ Replace log likelihood ratio
e ~ with generic function f(x)
bt bt @ Minimize deviation between
Xj>c2 Xxj<c2 Xj>c3 xj<c3 = .
AN N training sample and
<ggn> <Egn> <§f§ju> regression function
E
T™aw T™aw /\ ] ] ]
. - @ Decision trees form a series
<Egen> <Egn> of piecewise continuous
E'r'aw E'I"CL’LU

approximations for the
function f(x) in the
multidimensional input space

Josh Bendavid (Caltech/LPC)
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Tree ensemble

* Ensembling (combining many ML models and voting/summing) is widely
Known to iImprove accuracy.

* Diversity of trees allows exploitation of combinatorics to express very
complex outcomes with relatively simple model components.

tree1 tree2

Tiangi Chen
University of Washington
tgchen@cs.washington.edu

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

Prediction of is sum of scores predicted by each of the tree
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Tiangi Chen

e Model: assuming we have K trees qchen@es.washington edu
~ K
Ui = D e JE(Ti), fr€F

e Objective

Obj = S Uy, 5i) + D1y Q(fr)
7 N

Training loss Complexity of the Trees

« Using Square loss 1(yi, 5;) = (yi — 4;)°
o Will results in common gradient boosted machine

= Using Logistic loss 1(yi, 7;) = v: In(1 +e7%) + (1 — y;) In(1 + %)
« Will results in LogitBoost

L, -
af Fermilab
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Tiangi Chen

® Objective: Z?:l l(yz, Q@) - Z I Q(fk), fk c F tqchue”r!%ritsy.v"vfavgﬁ?ﬁgtgéﬁ'.‘edu

e We can not use methods such as SGD, to find f (since they are
trees, instead of just numerical vectors)

e Solution: Additive Training (Boosting)

= Start from constant prediction, add a new function each time

~(0)
Y; —
~(1 ~ (0
0, = fi(e) =5 + fiz)
A ~(1
02 = ful@) + falw) = 9 + fa(wi)
gjgt) — 22:1 fk(ajz) = A§t_1> + ft (:13@)‘ — New function
/
Model at training round t Keep functions added in previous round
aF Fermilab
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e Goal Obj) =>"" 1 (yi,@,gt—l) + ft(xi)) + Q( fi) + constant

= Seems still complicated except for the case of square loss

e Take Taylor expansion of the objective
= Recall f(z+ Azx)~ f(z)+ f'(z)Az + 5 f(x)Az?
« Define i = 9ye—nl(yi, 9" ), hi =02 U(yi, " V)

Obi® ~ S (i, ) + gi fe(m5) + Sha f2(:) | + Qf:) + constant

This is why we call this method "gradient" boosting.

Compare to, e.g. adaptive boosting - weight examples to highlight losses
from the previous round choose a split in a "decision stump" based on the

maximum information gain in a split of the newly weighted sample.
Tianqgi Ch
Univeréﬁ)rl] 21! Wasehri]ngton
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Gradient boosting for function approximation

* Build an additive series of piecewise continuous approximations.
» Can represent more complex functions than a single tree (ensemble advantages).
* Allows for more efficient MC sampling / integration?

1;_ - Data 1;_ = L - Data
o osf- _iz___ﬁfi | — Regression
- — Regression = gﬁf’rJ— — - — - Intermediate
o:— 0-__I - _ - — =
- - . ==
_0_5:— 0.5:— - —
A - T
E | | T | | E ey
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) Single Tree (b) Gradient Boosted (~ 20 trees)

Josh Bendavid (Caltech/LPC)
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Gradient boosting - 4D Camel

Algorithm # of Func. Evals | o,/ < w > o1/l
(2e6 add. evts)
VEGAS 300,000 2.820 +2.0 x 1073
Foam 3,855,289 0.319 +2.3 x 107
GBRIntegrator 300,000 0.082 +5.8 x 107>
GBRIntegrator (staged) 300,000 0.077 +5.4 x 107
200 1100; f(X) (Camel)
= 1072 —— " (Primary BDT)
10 g(X) (Secondary BDT)
(a) linear (b) log

Josh Bendavid (Caltech/LPC)
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Generative adversarial neural networks

» Generative adversarial networks (GANS) pair a generator network and a
discriminator network. The training is adversarial in that the loss functions are
coupled - the discriminator attempts to label "real" and "generated" data and
the generator attempts to fool the discriminator.

» Convergence is challenging, and the networks can be very difficult to train,
but the results are promising...
- And the horrifying source of the fake news apocalypse, e.g. arXiv 1805.11714,
- https://www.youtube.com/watch”?reload=9&v=qc5P2bvfl44

N (s
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.
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~
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. 7L T 7

(a) (b) (¢) (d) arXiv:1406.2661
2= Fermilab
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https://www.youtube.com/watch?reload=9&v=qc5P2bvfl44

* If we allow D, G, to be from space of all continuous
functions, then

* First term, probability that a fake sample is
classified as fake * There exists a unique Nash equilibrium (no
"player” incentivize to deviate off path)

» Second term, probability that a real sample is

classified as real * (- exactly recovers A the data distribution

1
 Generator wants to minimize this, discriminator D(I) = 5 VI e NU{G(2)|z ~ (i, %)}
wants to maximize this

* Standard formulation is highly unstable

LOTS of tricks! Very active area of research...

Luke de Oliveira
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Probability sampling

* (Given a generating network G and input space z and output space x (and
assuming z and x have the same dimension) we may compute the generating
probability density g from the sampling prior and the Jacobian determinant:

p(z) = g(x)

* Then, if the function to be integrated has some probability density pf = f/Int(f),
the KL divergence between f and the generating pdf is

Dk = /g(>'<) n

22 @Gabriel Perdue // Fermilab // Al for MC // ECT, Trento, July 2018

0G(Z)

0z

pr(X)

8(X) dx pr(X) = f(X)/ I

Josh Bendavid (Caltech/LPC)



Network objective

» KL divergence may be approximated from a set of samples from p
i Z(5 i
Dy = Z Inp(Z) — In aai_z) —Inf(x)| + NIs
p(Z) - ]
* ... Where p is the sampling prior, G is the generative network, and f is the
function to be integrated. Nlf is a constant we can ignore in training.

* For deep networks, G (using proper activation functions, etc.), we may use
this relationship for the loss function in stochastic gradient descent provided f
Is differentiable and a function we can evaluate at a point, etc.

- Plus a trick for getting a differentiable representation of the determinant!

* Sampling from the trained network is straightforward.

Josh Bendavid (Caltech/LPC)
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Function comparisons

Algorithm # of Func. Evals | o,/ <w > o/l

(2e6 add. evts)
VEGAS 300,000 2.820 +2.0 x 1073
Foam 3,855,289 0.319 +2.3 x 107
GBRIntegrator 300,000 0.082 +5.8 x 107
GBRIntegrator (staged) 300,000 0.077 +5.4 x 107
Generative DNN 204 912 0.083 +5.9 x 107>
Generative DNN (staged) 204,912 0.030 +2.1 x 107

@ Interesting limitation: Probability density for generative DNN
model can not be evaluated for an arbitrary phase space point
X, since one needs to know the corresponding point in the
prior space Z, and the model is not trivially invertible

@ Not a problem for integration or unweighting where all the
phase space points are anyways generated by sampling from
the prior

Josh Bendavid (Caltech/LPC)
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BDT vs NNs

@ Both approaches are able to encode and efficiently sample from
multi-dimensional distributions with non-trivial correlations between
dimensions

@ Underlying sampling method is entirely different in the two cases
(FOAM-based vs inverse-CDF-like)

@ For the purpose of integration and unweighting, the generative BDT has
quite strict limitations on positive-definite weights/linear mapping to
output and a lack of flexibility for the loss function which makes
minimization difficult and enforces very slow convergence for good
performance

@ Generative DNN models are more flexible in this respect and are therefore
expected to have better scaling with the number of parameters and
dimensionality (already observed for test cases) as well as more room for
Improvement

@ Software infrastructure for training large DNN's is also more widely
supported by data scientists and computing industry

@ Plan to pursue the DNN-based algorithm and stop work on the BDT's

Josh Bendavid (Caltech/LPC)
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Learned generators

* http://colah.qgithub.io/posts/2015-08-Understanding-LS TMs/
*  http://karpathy.github.io/2015/05/21/rnn-effectiveness/

*  https://arxiv.org/abs/1705.02355

*  https://arxiv.org/abs/1702.00748

*  https://arxiv.org/abs/1505.07818

L, -
ae Fermilab
26 (Gabriel Perdue // Fermilab // Al for MC // ECT, Trento, July 2018


http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://arxiv.org/abs/1705.02355
https://arxiv.org/abs/1702.00748
https://arxiv.org/abs/1505.07818

25000

Generative models for simulation

B. Holzman, SC17

20000

* Future simulation needs (e.g., HL-

15000

LHC) appear likely to outstrip even

You are here

10000

optimistic resource projections.

5000

- Requires creative, "outside the box"
thinking.

Total Data Volume in Petabytes

29

|

158

0

LHC Run 1

LHC Run 2

270

LHC Run 3

HL LHC

» Shower libraries face problems rooted

o Generation Method | Hardware | Batch Size | milliseconds/shower
INn Incompleteness and heavy data GEANTA CPU | N/A m
access, S
* Generative models offer a potentially U (024 2.03
iIncredible speed-up along with better oy 68
flexibility by modeling very complex 12 i
distributions.
Michela Paganini*, Luke de Oliveira, Ben Nachman DS@HEP 2017
af Fermilab
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Rgalworld ——{ Sample
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Fake

Generator Sample

tries to tell fake/real

Latent random variable
OO

Luke de Oliveira

tries to produce real looking samples
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Physics (e*, e",y,1m..)
Kinematics...

Sofia Vallecorsa*
for the GeantV project

ACAT 2017
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Language models == particle models?

* Recent success in machine learning is dominated by two kinds of data:

- visual data - images, video, etc. - we now have algorithms for parsing and analyzing this
sort of very high-dimensional data, and

- sequence data - speech recognition, language processing, game playing, etc. - all revolve
around sequences of data and the patterns buried in these data.

» Can we map problems in physics into these domains?

- Yes!

- Image data is obvious and easy - see, for example, convolutional neural nets for event
reconstruction and classification (e.g., J. Nowak's presentation yesterday on event
classification in LArTPCs).

- Sequence data is trickier... but several inspired applications at the LHC suggest we may
be able to treat particle sequences in an event like words in a sentence. The semantics of
ordering are different, but there are successful examples of leveraging this paradigm for
event classification.

L, :
af Fermilab
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Recurrent networks for sequence analysis
(}D h b C?D
LA 1 A

o0
b LRI

* Recurrent neural networks can operate over sequences of vectors (in principle, of
arbitrary length).

* The network structure explicitly contains input from its own output - it contains loops.
These loops could theoretically extend back into infinity for all the examples the
network Is asked to operate on, but in practice, we truncate the series.

* This means we can effectively "unroll” the network, which makes the loop structure
less mysterious.

http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/
3F Fermilab
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one to one one to many many to one many to many many to many

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are in
blue and green vectors hold the RNN's state (more on this soon). From left to right: (1) Vanilla mode of processing without RNN,
from fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image captioning takes an
image and outputs a sentence of words). (3) Sequence input (e.g. sentiment analysis where a given sentence is classified as
expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g. Machine Translation: an RNN reads a
sentence in English and then outputs a sentence in French). (5) Synced sequence input and output (e.g. video classification
where we wish to label each frame of the video). Notice that in every case are no pre-specified constraints on the lengths
seguences because the recurrent transformation (green) is fixed and can be applied as many times as we like.

3 Fermilab
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* In general, recurrent neural networks have trouble "remembering" details from more than a few steps back.

* This matters for us (eventually) because we would like to generate a sequence of particles (of arbitrary
length). We need the network to remember what we've already generated.

* There are many solutions to this problem built around structures like the one above (LSTM - long short-term
memory) - "'memory" cells that bring extra copies of the information from previous steps in the sequence.
LSTMs are important in language processing where order and context matter - this particular structure is not

necessarily right for an event generator producing lists of particles, but we'll look at it as an example
anyway...

L, :
a¢ Fermilab
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C Ct

t—1 C C '

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

* The cell state (usually initialized to zero) runs through the entire chain,
possibly with some linear interactions.

* Information can flow along unchanged - but the LSTM has the ability to add or
subtract information passing along through the cell state.

* This Is regulated by structures called gates.

L, -
2 Fermilab
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ftT ft =0 (Wg-lhi—1,2¢] + by)

* (Gates are composed of sigmoid activation functions (value from 0 to 1 controls how much
of the component should come through - from nothing to everything) and point-wise
multiplication.

* The first of these gates is the "forget gate layer", and consumes the output from the
pervious recurrent cell call.

* In a language model this controls when the LSTM can forget about earlier words for
context.

* In a particle context, the semantics are less obvious, but some information must be learned
to always be retained (four momentum sums, for example!).

L, -
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it —0l (Wfi'[ht_l,CEt] —+ bz)
i ét :tanh(WC'[ht_l,ﬂit] -+ bc)

* Next an LSTM needs to decide what "new" information it wants to keep in the cell

state.
* First, a sigmoid layer decides how much information to propagate into the state
vector. Then, a tanh layer creates new candidate values based on the immediately

preceding output that could be included In the state.

* Very often in a language model these gates control information replacement when old
information is forgotten. In a particle context, they represent a change in focus as we
process the sequence.

af Fermilab
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ftT it 5 Cy = fi % Cro1 + iy x C;

* Once we have decided what to drop and what to add to the running cell state, we
must apply the changes to the state vector.

* We multiply the cell state by the output of a sigmoid to modulate older information,
then we add new information (which was multiplied by sigmoid and tanh layers to
modulate new information and allow additive and subtractive changes).

L, -
2 Fermilab
36 (Gabriel Perdue // Fermilab // Al for MC // ECT, Trento, July 2018



Ot — U(Wo [ht—lamt] T bo)
hy = o; * tanh (C})

* Then, we regulate output by using a sigmoid layer to decide which values
make it to the output, and combine it with the cell state, after passing those
values through a tanh layer.

* This output is split and passed out as a classifier value or a generated value
and also passed back into the LSTM.

L, :
aF Fermilab
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RNNs can be easily trained to predict certain types of sequences based on an
input seed / sequence. Here, for example is an RNN trained by consuming text

from Wikipedia:

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]

(PJS) [http://www.humah.yahoo.com/guardian.

cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]
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See also' [[List of ethical consent processing]]
== See also ==
*[ [ Iender dome of the ED]]

*[ [Anti-autism]]

===[ [Religion|Religion] ]===
*[ [French Writings]]

*[ [Maria]]

*[ [Revelation]]

*[ [Mount Agamul]]

== External links==

* [http://www.biblegateway.nih.gov/entrepre/ Website of the World Festival. The labour ¢

==External links==

* [http://www.romanology.com/ Constitution of the Netherlands and Hispanic Competition :
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This since F € F and z € G the diagram

o, —— O

£0r

!/
= ( ——ie

= a —— X
Spec(Ky) Morgets  d(Oxy,,.9)

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and

e the composition of G is a regular sequence,

e Oy is a sheaf of rings.

O

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. O

Proof. This is clear that G is a finite presentation, see Lemmas 77.
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxz —Fz -1(Ox,,)— O‘-\::O.\-,\(Oi‘")
is an isomorphism of covering of Oy,. If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition 7?7 and we can filtered set of
presentations of a scheme O yx-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. O

If F is a finite direct sum Oy, is a closed immersion, see Lemma 77, This is a
sequence of F is a similar morphism.
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Here is an example based on LaTeX
files for a mathematics textbook.

\begin{proof}

We may assume that $\mathcal{I}$ is an abelian sheaf on $\mathcal{C}S.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$

is an injective and let S$\mathfrak g$ be an abelian sheaf on $XS.

Let $\mathcal{F}$ be a fibered complex. Let $\mathcal{F}$ be a category.
\begin{enumerate}

\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}

Let $\mathcal{F}$ be an abelian quasi-coherent sheaf on $\mathcal{C}S.
Let $\mathcal{F}$ be a coherent $\mathcal{O} X$-module. Then
S\mathcal{F}$ is an abelian catenary over $\mathcal{C}S.

\item The following are equivalent

\begin{enumerate}

\item $\mathcal{F}$ is an $\mathcal{O} XS$-module.

\end{lemma}
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/ *

* Increment the size file of the new incorrect UI FILTER group information

* of the size generatively.
*/
static int indicate policy(void)
{
int error;
if (fd == MARN EPT) {
J*
* The kernel blank will coeld it to userspace.
*/
if (ss->segment < mem total)

unblock graph and set blocked(); Here |S an exam ple

else

e o based on the source

goto bail;
} .
segaddr = in SB(in.addr); COde for the LanX

selector = seqg / 16;

setup works = true; P(Earr1€3|.

for (i = 0; 1 < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;
if (f£fd) {
current = blocked;

}
}
rw->name = "Getjbbregs";
bprm self clearl(&iv->version);
regs->new = blocks[ (BPF STATS << info->historidac)] | PFMR CLOBATHINC SECONDS << 12;

return segtable;
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Particle sequences are like words in a language model?

41

Let us first consider the case of an individual jet whose
particles are topologically structured as a binary tree t;,
e.g., based on a sequential recombination jet clustering
algorithm or a simple sequential sorting in pr. Let k£ =
1,...,2N; —1 indexes the node of the binary tree t;, and
let the left and right children of node £ be denoted by k.
and kg respectively. Let also kj always be the hardest
child of k. By construction, we suppose that leaves k
map to particles i(k) while internal nodes correspond to
recombinations. Using these notations, we recursively
define the embedding h‘}ft € R? of node £ in t; as

(ug if k£ is a leaf

) _hjet—

h)™* = for 2

& o | Wy h‘}:’; + by, otherwise 2)
\ | Uk _

ug = o (Wug(or) + by) (3)

: if k& is a leaf

or — {Vz(k) if k is a.u ea (4)

Oy, + Ok, oOtherwise

where W;, € R1%34 b, € R?, W, € R?** and b, € R
form together the shared parameters to be learned, ¢
is the size of the embedding, o is the ReLU activation
function [18], and g is a function extracting the kinematic
features p, n, 0, ¢, E, and pp from the 4-momentum o;.

Gabriel Perdue // Fermilab // Al for MC // ECT, Trento, July 2018

Classifier

Jet embedding

P (t5)

|

PEANN

* The analogy Iis admittedly a bit
strained... but it seems to work In
classifiers.

* QCD inspired recursive network
definition based on a sequence
of particles encoded as a binary
tree.

QCD-Aware Recursive Neural Networks for Jet Physics

Gilles Louppe,’ Kyunghyun Cho,' Cyril Becot,' and Kyle Cranmer’

' New York University

arX1v:1702.00748v1 [hep-ph] 2 Feb 2017
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Sequences of sequences

V(tl)

FEvent embedding

V(tz)

V(tM)

b3y (e)

Classifier

h)®* (t1)

h)®* (t2)

7N

A
|
|
|
|

RN
AN

h)® (tar)

\
/

s fevent (e)

FIG. 2. QCD-motivated event embedding for classification. The embedding of an event is computed by feeding the sequence
of pairs (v(t;), " (t;)) over the jets it is made of, where v(t;) is the unprocessed 4-momentum of the jet t; and h'™(t;) is its
embedding. The resulting event-level embedding h$;°™*(e) is chained to a subsequent classifier, as illustrated in the right part

of the figure.

42 Gabriel Perdue // Fermilab // Al for MC // ECT, Trento, July 2018
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FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using k: topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.
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https://indico.cern.ch/event/722319/

Can we learn from data?

* |If we can build a classifier, we can build a generator.
* But generate based on... what?

* Training on the output of a MC does not really make sense - except in the
cases where we are worried about simulation speed and are willing to trade off
some accuracy and some information about the underlying event for speed.

- Plausible scenario for detector simulation, e.g., EM showers in a calorimeter, but not really
needed In an event generator except, perhaps, in an upstream calculation where we need
to speed up some MC integration technique as per the first part of this talk.

* But, if we could train on data somehow, this approach becomes much more
exciting:

- "Capture" real distributions of particles and correlations.

- Limited insight into the underlying dynamics, but if we can peg to total energy, maybe this is
okay.

L, -
a¢ Fermilab
43 Gabriel Perdue // Fermilab // Al for MC // ECT, Trento, July 2018



Domain adaption

* Consider a network innovation called a Domain Adversarial Neural Network (DANN) to
minimize bias coming from a MC.

- Journal of Machine Learning Research 17 (2016) 1-35

- https://arxiv.org/abs/1505.07818

- Jointly maximize domain classifier loss and minimize feature classifier loss.

- Are the simulation and detector data domains too similar for this too work? Too different?

oL
oss L

00 f 89y J %
> .
c 0o f‘> f‘> f‘> class label y O
® | .S = =
e | c fl> > f;> f;> = 7
o g B\ v 4 ©
- | 8 7 =~ label predictor G, (+;0,) > g
> | 8 \/[ dJ\ g domain classifier G4(-; 04) 5§ | &
c | 3 %6, “%: 4 k S | 8
O © Y L‘@ @0 — —
= | o | feature extractor G¢(-;0¢) %, % & - | ¢
ACEE G0 G ) | e
o8 o ; N & |f‘> ) domain label d © ©
4+ S ((b) & &
3| |8 |$ oL, @) @)
25 | 5 90 ¢ )\8 L, loss @ 0 |AQ

- _ forwardprop  backprop (and produced derivatives) 89d
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https://arxiv.org/abs/1505.07818

Sketch of a generative RNN as event generator...

* Fix the total cross section with a well-grounded theoretical calculation.

* Train on a mixture of data and simulation - use the simulation to teach the network
how to produce particle signatures of a given energy in the detector, and use data to
learn the distribution of produced particles (along with all correlations). Regulate data /
MC exposure into the loss function for training using a domain adversarial network.

» Condition the generative model for the output sequence on neutrino energy (one to
many mapping) - could also use target nucleus.

 Not at all obvious that this would work...

- Guaranteed to generate some stream of particles... but would they be "gibberish"?

- Even if the output stream were not gibberish, would using a domain adversarial component to
condition the loss actually produce a particle stream that mimicked the distributions found in data?

* Every reason to be skeptical... but it might be fun to try! The result would be a data-driven final state
particle generator you could use to build neutrino energy reconstruction algorithms.
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Conclusions

* ML methods show significant promise for speeding up certain calculations.

* Generally, this sort of method is probably not important for generators like the ones
considered in this workshop - but these techniques could matter for upstream calculations

that form inputs to "event-level" MC generators.

* There is potential for using generative models directly as "event-level" MC generators, but

a great deal of work remains to be done:

- Consider semantics of a particle sequence. ML research focuses on language problems, and we have
different dynamics, symmetries, concerns, etc.

- Research popping up that encodes symmetries in the network structure - maybe we could exploit that here.

- Need to connect particle description to a detector description. The pieces are all there, but this hasn't
actually been done yet (that | know of, but maybe in some corner of LHC-land).

- Need to explore technigues for conditioning distributions on data so we may connect true, underlying
information to an set of observables we don't know how to otherwise correctly simulate. Challenging to do
correctly, but we have some unlikely allies interested in this problem - they're working on something just as

crazy, namely ... self-driving cars!
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Thanks!

NOW...

Back up!
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e \We define tree by a vector of scores in leafs, and a leaf index e Define complexity as (this is not the only possible definition)
mapping function that maps an instance to a leaf T
PP ; Of) =T + AT w3
fi(x) = wyz), weE RY ¢:R%— {1,2,---,T}

\ Number of leaves L2 norm of leaf scores
\ The structure of the tree

N leaf Weight of the tree N

(/ \)
’a‘ ’ﬁ‘
Q [

‘ - (=734 3A(4+0.01+1)

Leaf 2 Leaf 3 Leaf 3

Leaf 1 Leaf 2

w1=+2 w2=0.1 w3=-1 WA =42 W2=0.1 W3=-1

Tiangi Chen
University of Washington
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e Define the instance set in leaf j as I; = {i|q(z:) = j}

e Regroup the objective by each leaf

Obj ")~ 37 [gife(ws) + Shaf2 ()] + Q)
n T
— Zz’zl Lgiwq(:cz-) + %hiwg(xi) + 1+ )‘% ijl wJQ

B Zle _(Z’iEIj gi)w; + %(Zielj hi + A)wﬂ + 1

e This is sum of T independent quadratic functions

e Two facts about single variable quadratic function

G2

argmin, Gr + %HZEQ =—%, H>0 min, Gz + %Hﬁ — _%ﬁ

 Letusdefine Gj=>c; 9i Hj=>,c; hi

Obj\") = Zle _(Zqzelj gi)wj + %(Zielj hi + )\)wﬂ + 7
= Z};l Gjw; + 5(Hj + Nw?| +~T

e Assume the structure of tree ( g(x) ) is fixed, the optimal
weight in each leaf, and the resulting objective value are

* __ Gj 1 T G? |
wj - Hj—l—)\ Ob] o 2 71=1 H;+A | fyT

;

This measures how good a tree structure is!
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e Enumerate the possible tree structures g

e Calculate the structure score for the q, using the scoring eq.

. 1 T G?
Obj = =352 jo1mx +7
e Find the best tree structure, and use the optimal leaf weight

 _ G
w] o H;+A

e But... there can be infinite possible tree structures..

* In practice, we grow the tree greedily
= Start from tree with depth 0

= For each leaf node of the tree, try to add a split. The change of
objective after adding the split is

The complexity cost by
introducing additional leaf

: G7 G2 GrL+GRr)?
2LHp+A Hgr+A Hp+Hgr+A
the score of left child / the score of if we do not split

the score of right child

= Remaining question: how do we find the best split?

Tiangi Chen
University of Washington
tgchen@cs.washington.edu



 What is the gain of a splitrule z; <a ? Sayz; is age e For each node, enumerate over all features

= For each feature, sorted the instances by feature value

@ % = Use alinear scan to decide the best split along that feature
)59 = Take the best split solution along all the features

V

gl,h1 g4 ha g2, h2 g5,h5 g3, h3

Gr =91+ 94 Gr=92+9s+9s . . .

e Time Complexity growing a tree of depth K
e All we need is sum of g and h in each side, and calculate » |tis O(n d Klog n): or each level, need O(n log n) time to sort
o G2 a2, (GL+GR)> There are d features, and we need to do it for K level
aim = |
Ho+x ' Hp+x  Hp+Hptx ! = This can be further optimized (e.g. use approximation or caching
e Left to right linear scan over sorted instance is enough to the sorted features)
decide the best Spllt aIOng the feature = Can scale to very large dataset

Tiangi Chen

University of Washington
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