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Neutrino-nucleus Interactions

- Coherent elastic scattering

- Quasielastic scattering

- SN neutrino interactons



Neutrino-nucleus elastic

• Beautiful COHERENT experiment using 𝞶 from 𝛑 decay 
at rest at Spallation Neutrino Source in Oak Ridge.

• Important future 𝞶 technology: very large, conceptually 
clean, cross section. 

• Can measure neutron density in a nucleus because weak 
charge of proton 1-4sin2ΘW ~ 0.05 is small, while weak 
charge of neutron -1 is large. 

• Neutron density can also be determined with parity 
violating elastic electron scattering.
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208Pb

• PREX measures how much neutrons stick out past protons (neutron skin). 

PREX 
Spokespersons    

K. Kumar
R. Michaels
K. Paschke
P. Souder

G. Urciuoli
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Radii of 208Pb and Neutron Stars
• Pressure of neutron 

matter pushes 
neutrons out against 
surface tension ==> 
Rn-Rp of 208Pb 
correlated with P of 
neutron matter.

• Radius of a neutron 
star also depends on 
P of neutron matter. 

• Measurement of Rn 
(208Pb) in laboratory 
has important 
implications for the 
structure of neutron 
stars.
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Neutron star is 18 orders of magnitude larger than 
Pb nucleus but has same neutrons, strong 
interactions, and equation of state.

LIGO
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PREX in Hall A Jefferson Lab

R. Michaels 

•PREX: ran in 2010. 1.05 GeV electrons 
elastically scattering at ~5 deg. from 208Pb

APV = 0.657 ± 0.060(stat) ± 0.014(sym) 
ppm

•From Apv I inferred neutron skin:           
Rn - Rp= 0.33+0.16-0.18 fm.  [Determined Rn 
to 3%.]

•Next runs scheduled for 2019

•PREX-II: 208Pb with more statistics.  
Goal: Rn to ±0.06 fm (1%).   

•CREX: Measure Rn of 48Ca to ±0.02 fm 
(0.6%).  Microscopic calculations feasible 
for light n rich 48Ca to relate Rn to three 
neutron forces.



Quasielastic electron scattering
• Fermi gas parabola peaks at 

q2/2M+ϵ (binding energy 
shift) and has width related to 
Fermi momentum.

• Origin of ϵ may appear 
different in finite nucleus vs 
local density approximation

• Finite nucleus: initial state 
nucleon is bound with energy 
Ei = -ϵ and momentum pi<kF.

• Final nucleon has momentum 
pf = pi + q and energy 
Ef=pf2/2M.  

• Electron E loss: ω=Ef-Ei. 
• Fermi gas parabola described by width 

kF and binding energy shift ϵ.

q2/2M q2/2M+ϵ

Benhar et al



Local Density Approximation
• If ω is large, lepton only interacts with nucleon for very 

short time.  Nucleon does not have time to leave nucleus 
before probe stops interacting.

• Model system as ~uniform nuclear matter with nucleons 
moving in mean fields or self-energy Σ.

• Relativistic Σ is a 4x4 Dirac matrix with large attractive 
scalar S and repulsive vector V components:  Σ(k)=S(k)
+Ɣ0V(k).

• Energy of plane wave with momentum k is 
E(k)=[k2+M*(k)2]1/2 + V(k) 

• Here the effective mass is M*(k)=M+S(k).

• ω=E(pi+q)-E(pi) ~ q2/2M* if S, V independent of k.

• Binding E shift: ϵ ~ q2/2(1/M* -1/M) from M* < M.



Momentum dependent Self-E

• Relativistic Brueckner calculations, that include short 
range correlations, find S(k) and V(k) each decrease with k 
for large k so that M*(k) —> M.  This keeps ϵ from being 
overestimated as q increases.

• Current conservation:  divergence of current related to 
time derivative of charge density.

• One body current operator with momentum dependent 
Σ(k) will not in general conserve current.

• Need contributions from two-body or meson exchange 
currents (MEC) to conserve current.

• Chiral EFT, where it converges, provides framework for 
calculating consistent MEC.



Linear Response and RPA
• Weak probe of strongly interacting system.  Work to all orders in 

strong interactions, but only lowest order in weak int.

• Example: the linear response of a mean field ground state is given by 
the Random Phase Approximation (RPA).  This is a coherent sum of 
all 1-particle 1-hole (1p-h) excitations.

• Relativistic mean field self-energy Σ from σ and ω meson exchange:    
Σ = S+𝜸0V =  

• Dyson’s eq. for interacting nucleon propagator (heavy line) 

• Solve by iteration (sums all tadpoles):

σ,ω

= +

= + + +

+ …



Linear response:  attach 𝞶 once

• |Mfi|2 ~           =  Im 𝚷(q,ω) 

• RPA sums ring diagrams: d2σ/dΩdE ~ Im 𝚷/[1-D𝚷].     
Here D~g2/(q2-m2) is a meson propagator (            ).

• RPA at low q,ω can describe collective excitations such as 
giant resonances.  At high q, RPA corrections small.
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2 particle 2 hole excitations
• First correction to RPA involves 2p-2h excitations.  Arrow to left (<) 

is a hole (below Fermi surface) while arrow to right is a particle (>).
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Final state 
interaction (FSI)

Initial state interaction 
(ISI) [in Spectral Function]

Meson exchange 
current (MEC)

All 3 diagrams involve 
neutrino interacting 
with correlated 
nucleons.



Longitudinal/Transverse Responses in 
Electron Scattering

• Can separate cross section into longitudinal (from 
charges) and transverse (from currents) responses.

• Longitudinal should satisfy Coulomb sum rule (area ~ 
number of protons) and is reasonably well described by 
1p-1h alone.

• Transverse response somewhat underestimated by just 
1p-1h and appears to have noticeable contributions from 
2p-2h including MEC.



• Total cross section for 𝞶μ - 12C quasielastic scattering.  

• Can explain Mini-BooNE data with (1) only 1p-1h but 
“big” MA=1.35 GeV or (2) 1p-1h plus 2p-2h with 
“correct” MA=1.03 GeV.

• Nucleon axial form factor: GA(q)=(1+q2/MA2)-2.

A. V. Butkevich, 
S. V. Luchuk



Delta and pion production

• As ω increases can convert nucleon into a Δ 
(Δ-hole state).

• What is self-energy (mean field) for a Δ in the 
medium?

• Imaginary part of Σ gives total width for Δ to 
decay to π + 1p-1h and to 2p-2h.  

𝞶

𝞶’
Z0

Δ 𝛑
Delta then 
decays => +

1p-1h+𝛑 2p-2h final state



Renormalization group and 
effective interactions

• Nuclear wave functions, at different momentum resolutions, 
can have differing amounts of short range correlations.

• At low momentum resolutions, can incorporate short range 
correlations into effective interactions.

• Density functional theories (DFT) describe low momentum 
observables such as binding E or ground state charge density 
with effective one body degrees of freedom determined from 
a density functional.  Functional is very hard to calculate 
(because it includes complex effects from higher momentum 
scales).  Often simply fit to data.

• May need higher resolution models of nuclear ground state 
to describe neutrino scattering at higher momentum 
transfers (q~1 GeV/c or more).



When does the 𝞶 scatter from 
quarks or from hadrons?

• At what kinematics q, ω does the 𝛎 scatter from an 
“individual” quark or from a “whole” hadron?

• Clearly low E neutrino scattering best described with 
hadrons while deep inelastic scattering (DIS) at large q2 
described with quarks. 

• “Quark hadron duality”: in-between there may be an 
overlap region that can be described either as a sum of 
hadron resonances or with quark degrees of freedom.

• Continuum with increasing resolution: nucleons + mean 
field, nucleons + short range correlations, nucleons+ 
excited baryons + mesons, quarks and gluons. 



Quantum Computer

• Can one calculate neutrino-nucleus scattering on a 
quantum computer?  Yes and no.  QC can determine 
real time correlation (response) functions that are 
difficult on a CC.  But QC does not solve sign 
problem to determine ground state.

• Can one “observe” neutrino-nucleus scattering with a 
quantum simulator? Yes. 

• Tune interactions between laboratory cold atoms to 
simulate nucleon-nucleon interactions.  Measure 
dynamical response functions of the cold atoms, with 
light scattering, that are necessary to predict neutrino-
nucleus cross sections.



Interacting neutron gas model
• Consider neutral current neutrino scattering from a 

strongly interacting neutron gas.     Cross section          
d2σ/dΩdE ~ (1+cosΘ)SV(q,ω) + ga2(3-cosΘ)SA(q,ω)                        
+/- gaSI(q,ω)

• Vector response: SV(q,ω)=∫eiωt dt <0|ρ*(q,t)ρ(q,0)|0>. 
Density is ρ(q,t)=Σi exp[iq.xi(t)].  Can measure SV with 
electron-nucleus scattering.

• Axial response: SA(q,ω)=∫eiωt dt <0|S*(q,t).S(q,0)|0>.  
Axial current —> spin current in non rel. limit.  Spin 
density: S(q,t)=Σi σi exp[iq.xi(t)].  Can measure SA with 
cold atom simulations.

• Interference response: SI(q,ω) is + for neutrinos and - for 
antineutrinos.  It is O(E/M) and small for low neutrino 
energy E.



Dynamic Spin Response of a Strongly Interacting 
Fermi Gas [S. Hoinka, PRL 109, 050403] 

Dynamical response versus excitation energy ω.  Free response 
is dotted.  Spin or axial response SA(k,ω) is solid line + squares, 
while dashed line is vector or density response SV(k,ω).

T=0.1TF, 
k=5kF

6Li atoms

=k2/2m

Correlations



The future is extremely bright!

• The next generation of really good young scientists, working in nuclear 
physics, astrophysics, astronomy, and related areas, participated in a 
neutron star merger summer school, May 16-18, 2018 at FRIB. 



Neutrino-nucleus 
interactions

• PREX/ CREX: K. Kumar, P. Souder, R. 
Michaels, K. Paschke…  

• Neutrino interactions in supernovae: 
Liliana Caballero, Achim Schwenk, Evan 
O’Connor…

• Graduate students: Zidu Lin (2018), Hao 
Lu (Astronomy), Jianchun Yin, Zack 
Vacanti.  Also Matt Caplan (2017) 
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