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Overview of the project
2

• In silico study of structural dynamics of a whole virus particle (virion)


•Limit-testing of state-of-the-art all-atom (AA) and coarse-grained (CG) 
force fields to simulate mixed systems (proteins and nucleic acids)

Trimer dynamics (AA/MS)Capsid dynamics (AA/MS)

RNA2 dynamics (CG)

Virion dynamics (AA)
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Chlorotic Cowpea Mottle Virus
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• Small icosahedral plant virus


• Proteic capsid and (+)ssRNA genome


• Capsid has 5*105 atoms, RNA 8*104 

⇒ suitable for MD simulations


• First icosahedral virus reconstructed in 
vitro from its constituents [1] ⇒ studied a 
lot as benchmark virus


• Interesting nanotechnological applications

28nm

[1] Garmann RF (2014), PhD Thesis
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Chlorotic Cowpea Mottle Virus
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• PDB structure [2] of the capsid without tails (that 
are important to study RNA-capsid interactions)


• Multipartite virus: 4 different fragments of 
genome found inside it (RNA1, RNA2, 
RN3+RNA4)


• Sequences known [3], structures are an open 
problem ⇒ addressable via molecular dynamics 
simulations (?)

28nm

[2] Speir et al., Structure (1995), 3(1), 63-78 [3] Allison et al., Virology (Sept. 1989), 172(1):321-30
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Chlorotic Cowpea Mottle Virus
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28nm

• PDB structure [2] of the capsid without tails (that 
are important to study RNA-capsid interactions)


• Multipartite virus: 4 different fragments of 
genome found inside it (RNA1, RNA2, 
RN3+RNA4)


• Sequences known [3], structures are an open 
problem ⇒ addressable via molecular dynamics 
simulations (?)

[2] Speir et al., Structure (1995), 3(1), 63-78 [3] Allison et al., Virology (Sept. 1989), 172(1):321-30
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Three different environments
6

Free in (implicit) solution

Under spherical time-
dependent constraint

Packed into the high-resolution 
model of the capsid
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Three different environments
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oxRNA [4] coarse-grained model

All-atom CHARMM36m force 
field in explicit solvent

[4] Matek et al., J. Chem. Phys. 143, 243122 (2015)
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RNA2 packing into the capsid
8

Using oxRNA in LAMMPS

oxRNA modelAtomistic model

tacoxDNA

Capsid + RNA Atomistic/
Multiscale model

Time-variable spherical confinement

16nm
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RNA2 packing into the capsid
9

Using oxRNA in LAMMPS

Time-variable spherical confinement

oxRNA modelAtomistic modelCapsid + RNA Atomistic/
Multiscale model

tacoxDNAWork in 

progress…

16nm
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oxRNA free filament setup
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• oxDNA2 Force-Field ⇒ implicit solvent 
with Debye screening due to salt 

concentration


• Two different concentration chooses: 
0.15M and 0.5M


• Experimentally [5] CP-RNA interaction is 
strong at 0.1M and absent at 1M


• Chain relaxation at T = 333K and then 
production run at T = 310K

[5] J Mol Biol. 2014 March 06; 426(5): 1050-1060
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Internal energy and equilibrium
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• Monitoring inter-nucleotide energy to 
assess equilibrium


• Fit to a double-exponential to discard 
pre-equilibration trajectories for 

analysis


• At higher salt concentration the value 
is lower ⇒ more stability due to weaker 

screening effects

0 0.5 1 1.5 2
Time [= ] #108

-13

-12.8

-12.6

-12.4

-12.2

-12

-11.8

U
=
k

B
T

[Na+] = 0.5 M
Fitting: aebx + cedx

0 5 10 15
Time [= ] #107

-11.5

-11

-10.5

-10

-9.5

-9

-8.5

U
=
k

B
T

[Na+] = 0.15 M
Fitting: aebx + cedx



sbp.physics.unitn.it variamols.physics.unitn.eu

Radius of Gyration
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• Values stabilized in the equilibrated 
part


• Substantial difference (factor 2) 
between the 2 salt concentrations


• Far from being compatible with free 
space in capsid


• In vitro with 1M there is no CP-RNA 
interaction [5]  ⇒ no self-assembly

[5] J Mol Biol. 2014 March 06; 426(5): 1050-1060
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Duplexes in time
13

ρ[0.15M] = -0.77 ρ[0.5M] = -0.6
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Duplexes persistence
14

[Na ] = 0.5 M+

0

Nucleotides

2773

[Na ] = 0.15 M+

0

Nucleotides

2773
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Duplexes persistence
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0.25 0.50 0.75 1.00

Duplex Persistence

0.0

[Na ] = 0.15 M+
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Hydrogen Bonds Analysis
16

[6] Lorenz et al. ViennaRNA Package 2.0. Algorithms Mol Biol 6, 26 (2011)
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EXTRAS
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Perspective: spherically constrained simulations
19

• “Mean field” radial Coulomb 
potential calculated from charge 
distribution of atomistic capsid


• Fit to extract analytic function 
implemented in oxDNA


• Simulation of kinetic of spherical 
enclosure to see the effect on 
secondary/tertiary structures 
formation w.r.t. free filament

Capsid and ions radial electric potential
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Perspective: spherically constrained simulations
20

• “Mean field” radial Coulomb 
potential calculated from charge 
distribution of atomistic capsid


• Fit to extract analytic function 
implemented in oxDNA


• Simulation of kinetic of spherical 
enclosure to see the effect on 
secondary/tertiary structures 
formation w.r.t. free filament

Capsid and ions radial electric potential

To be done…
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Multidimensional Scaling Analysis
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• Fluctuations per nucleotide hard to 
track on very mobile and disordered 

molecules (e.g. via RMSF)


• Alternative provided by MDS [CIT], 
alignment based on filtered distance 

maps


• Average variability of distances 
between a nucleotides and its 

neighborhood


• At higher salt concentration more 
internal degree of flexibility


•Possible artifacts of alignment due to 
long filament

[CIT] J Mol Biol. 2014 March 06; 426(5): 1050-1060
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Duplexes persistence
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Multiscale Modeling
23

image from Chem. Rev. 2016, 116, 14, 7898–7936
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Multiscale Modeling
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image from Chem. Rev. 2016, 116, 14, 7898–7936
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Solvent behavior in AA CCMV capsid simulations
25

Solvent migration due to Coulomb repulsion
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All-Atom vs Coarse-Grained
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All-Atom Molecular Modeling Coarse-Grained Molecular Modeling

• Every atom’s nuclei in the system is taken 
into account explicitly (in bio-molecules 

mainly H,C,O,N,S)


• Born-Oppenheimer approximation + 
quantum/experimental parametrization  

of forces

• Atoms grouped into effective interaction 
sites in a statistical mechanical based or 

“experimental based” approach 

• Goal is twofold: reduce computational 
weight of simulations & simplify description 

in order to make it more human readable
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Explicit vs Implicit Solvent Models
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• Higher chemical accuracy implies higher 
predictive power of simulations


• Super high computational cost: >90% of 
comp. power spent in simulating water/ions 

motion, then discarded in the analysis 

• Limitations when effects of polarization/
entropic contribution of solvent molecules 
are important (conformational changes or 

ligand-protein binding)


• Very fast and cheap, potentially can close 
the gap between physical (μs-ms) and 

biological timescales (s)


