

Integrative modeling strategies and RNA polymorphism

Samuela Pasquali

Laboratoire Biologie Fonctionnelle et Adaptative et Laboratoire CiTCoM

Polymorphism and energy landscapes

A given sequence can adopt multiple structures of comparable energies

(opposite to the fast folding paradigm for proteins)

Observed structures depend on: Temperature, Buffer, Ions (Mg⁺⁺), pH, Ligands, dynamics, ...

Modelling strategies

A)

Why multiple methods ?

H-REX

- **Full Solvation** Only solute is affected by the energy rescaling Use standard force fields
- Need multiple copies of the system (~30) Can deal only with small systems (~few dozens nt)

rMD

\mathbf{V}	

Full Solvation Use standard force fields Good statistics on folding trajectories

Knowledge of native state Cannot study alternative foldings in a single MD

DPS

Sample widely the conformational space Allows to define "families" of structures (basins) Allow to obtain kinetic data

Implicit solvent Can deal only with small systems (~few dozens nt)

CG models

Allow to study larger systems for longer time scales Allow to highlight essential elements of the system description

Loss of atomistic details No generally recognized model

Including experimental data and environment

- What does the experiment actually measure/what is the physical influence of the environment?
- Is it possible to compute the outcome from hypothetical structures?
- Can we bias simulations based on this account?

Use the CG model as a platform to integrate environment and experimental data to prototype possible approaches

Coarse-grained RNA modeling: HiRE-RNA

Cragnolini, Derreumaux, Pasquali, JCTC 2015

Canonical and non-canonical pairings

Coarse-grained folding (non-canonical)

Low-resolution data modeling: SAXS

Analytical calculations of scattering curve (Debye)

$$I_{CG}'(q) = \left\langle |A_v(\vec{q}) - \rho_s A_s(\vec{q})|^2 \right\rangle_{\Omega} = \sum_{I,J}^N f_I(q) f_J(q) \, \frac{\sin(qR_{IJ})}{qR_{IJ}},$$

$$I_{CG}'(q) = \left\langle |A_v(\vec{q}) - \rho_s A_s(\vec{q})|^2 \right\rangle_{\Omega} = \sum_{I,J}^N F_I'(q) F_J'(q) \frac{\sin(qR_{IJ})}{qR_{IJ}},$$

coarse-grained form factors

Low-resolution data modeling: SAXS

Given a conformation for the RNA we can compute the "theoretical" scattering curve and compare it to the experimental

- Uniform background of constant dielectric properties
- Coarse-grained water molecules on hydration layer
- CG description of molecule

Measure the discrepancy between curves

$$\chi = \frac{\sum_{q} q^2 \left[\frac{I_0(0)}{I(0)} - I_0(q) \right]^2}{N_q I_0(0)^2}$$

SAXS "energy" and "force"

$$E_{SAXS} = \kappa_{SAXS} \ \chi$$

$$\vec{F}_{SAXS} = \sum_{q} \frac{dE_{SAXS}}{dI(q)} \frac{dI(q)}{d\vec{r}}$$

$$F_{tot} = F_{ff} + F_{SAXS}$$

HCV IRES Domain II (PDB ID: 1P50)

RMSD values comparison according to the native structure

Starting structure		Control structure	Final structure	
	16Å	11.4 Å	5.6Å	

Ratio of base pairs matching in the native structure

Starting structure	Control structure	Final structure	
18/31	25/31	29/31	

Portion of tRNA (PDB ID: 1A60)

RMSD values comparison according to the native structure

Starting structure	Control structure Final structure	
15.4Å	7.0Å	6.3Å

Ratio of base pairs matching in the native structure

Starting structure	Control structure Final structu	
8/16	8/16	11/16

Information from chemical probing data?

SHAPE

Interpreting SHAPE data at the mechanical level

Look for correlations between reactivity and dynamical behavior (atomistic MD)

Sugar flexibility → high reactivity (but not always) Canonical base pairing → low reactivity (but not always) Stacking → low reactivity (but not always)

Interpreting SHAPE data at the mechanical level

The best correlations occur when all 3 conditions are met Qualitative information

C2'-endo (S)

HCV Internal Ribosomal Entry Site (IRES)

MD clusters from atomistic simulation

Cluster	Structure	<i>RMSD</i> of middle
	number	structure (Å)
1	27	0.324
2	28	0.356
3	64	0.388
4	47	0.360
5	48	0.374
6	82	0.472
7	118	0.500
8	151	0.585
9	64	0.457
10	239	0.635
11	124	0.551
12	131	0.438
13	180	0.557

CG minimization guided by SAXS data

MD

Model HCV IRES

Generate multiple conformers satisfying SAXS constraint (CG modeling)

Select structure(s) most compatible with experimental data to attempt the conformational transformation from unbound to bound state (to the ribosome)

Accounting for pH

RNA being strongly charged, charge regulation mechanisms are important for the structure adopted and for recognition mechanisms!

Fast MC titration scheme

Texeira, Lund, Barroso da Silva, JCTC, 2010

Barroso da Silva, MacKernan, JCTC 2017

Fast MC titration scheme on fixed structures

Titration-HiRE-RNA pK_a

Observe different structures at different pH values

Pasquali, Frezza, Barroso da Silva, Interface Focus (2019)

FPTS-HiRE-RNA structures

For the future

Study RNA landscapes in conjunction with drug design

- Optimize the coarse-grained model with Machine Learning
 - \rightarrow collaboration ENS Paris
 - Looking for student for Master thesis and Ph.D. (funding already available)
- Develop multi scale path sampling (larger systems: few dozen to few hundreds nt) Study EL modification upon binding
 - \rightarrow collaboration University of Cambridge and King's College London
 - Looking for postdoc (3 years, funding already available)
- Test EL modifications and binding with chemical probing (Bruno Sargueil)

Acknowledgments

Chemistry Department University of Cambridge

David Wales Tristan Cragnolini Konstantin Roeder

Institute of Biophysics Czech Republic's Academy of Sciences

Jiri Sponer Petr Stadlbauer Università di Trento Pietro Faccioli SISSA Cristian Micheletti

RIBEIRÃO PRETO Fernando Barroso da Silva

Laboratoire CiTCoM Université Paris Cité

Elisa Frezza Lina Alferhk Liuba Mazzanti Bruno Sargueil

Laboratoire de Biochimie Théorique Université de Paris

Philippe Derreumaux Marc Baaden