Dissecting RNA dynamics combining molecular simulations and solution experiments

Giovanni Bussi Molecular and Statistical Biophysics SISSA, Trieste, Italy

bussi@sissa.it http://people.sissa.it/~bussi twitter.com/bussilab

RNA structural dynamics

Conformational selection or induced fit Crucial when interacting with proteins, ligands, ions, etc.

Bernetti and Bussi, COSB (2023)

Dynamics from experiments

Bernetti, and Bussi, COSB (2023)

Molecular dynamics

$$E_{\text{total}} = \sum_{\text{bonds}} k_{\text{b}} \left(\ell - \ell_0 \right)^2 + \sum_{\text{angles}} k_a \left(\theta - \theta_0 \right)^2$$
$$+ \sum_{\text{torsions}} \frac{1}{2} V_n [1 + \cos(n\omega - \gamma)]^2$$
$$+ \sum_{j=1}^{N-1} \sum_{i=j+1}^N \left\{ \varepsilon_{i,j} \left[\left(\frac{r_{0ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{r_{0ij}}{r_{ij}} \right)^6 \right] + \frac{q_i q_j}{4\pi \varepsilon_0 r_{ij}} \right\}$$

Empirical force field*:

- Chemically motivated interactions
- Atomistic details
- Explicit water and ions
- No polarization
- No chemical reactivity

```
Approx ~50-500 ns/day
```

```
*AMBER (ff99+parmbsc0+ChiOL3+TIP3P or OPC)
```


Accuracy and precision

Enhanced sampling*

*Vast array of methods, Henin et al Living J. Comp. Mol. Sci. 2022 See also <u>plumed.org</u>/masterclass

Combining simulations and experiment

Agenda

GAC-RNA ensembles from MD and SAXS data[#]

Cooperative effects in chemical probing experiments*

FES (kcal/mol) 15 20 25 10 formed 12 Tertiary contacts * ¹⁰ 10 JU broken 8 1.0 1.5 2.0 2.5 Ratio (peak / shoulder)

#Bernetti, Hall, and Bussi, NAR (2021) + Bernetti and Bussi EPJB (2021)
*Calonaci et al arXiv 2022

GTPase center (GAC)

Domain folding is regulated by ions SAXS data shows compaction $K^+ \rightarrow Sr^{2+} \rightarrow Ca^{2+} \rightarrow Mg^{2+}$

> Data from Welty et al RNA (2018) See also Welty et al JMB (2020) - RNA-only crystal structure

Small-angle X-ray Scattering

"Gross" information about shape

Require good molecular modeling

Da Vela and Svergun, COSB (2020)

Implicit vs explicit solvent SAXS

*Bonomi & Camilloni, Bioinf (2017)
 *Svergun et al, JAC (1995) Buffer subtraction: I_s - I_B
 *Knight & Hub, NAR (2015) (closer to experiments)
 #Köfinger & Hummer, PRE (2013)

Γ_B

GAC: little dependence on ions

AMBER14 FF + OPC + Joung-Cheatam and Allner et al ions, RNA restrained to native

Bernetti and Bussi, EPJB (2021)

"Long" time scales: nothing happens

I μs-long free MD with K⁺ vs Mg²⁺ Virtually i MD + enhanced sampling

Metadynamics + replica exchange

Metadynamics: "Ratio" peak/shoulder % non-2D contacts

"Solute tempering" heating non-2D structure 32 replicas

SAXS intensities computed on-the-fly using a Martini-bead representation* No exp. data used at this stage. *Paissoni et al, JAC (2019)

No Mg²⁺!

Bussi and Laio, Nat Rev Phys (2020) Bussi Mol Phys (2014)

Extracting structures in different regions

Implicit (PLUMED/MARTINI) SAXS useful to enhance sampling, but reports spectra different from explicit solvent at $q \sim 0.2 A^{-1}$

Bernetti, Hall, and Bussi, NAR (2021)

Reweighting (implicit vs explicit)

Reweighting to match experiments with implicit solvent SAXS does not work (no way to reproduce experimental spectra)

SAXS spectra from reweighting

Exp. spectrum with Mg²⁺ ~I% extended

Exp. spectrum with K+ ~42% extended (Few extended structures in MD, high statistical error)

Reminder: simulation had no Mg²⁺!

Bernetti, Hall, and Bussi, NAR (2021)

Partial summary

Enhanced sampling (heterogeneity) + MaxEnt (match experiments)

(Fast) implicit solvent SAXS, rough estimates and enhanced sampling (Slow) explicit solvent SAXS, match experiments

Little impact of ions on SAXS \rightarrow run with K⁺, match K⁺ and Mg²⁺

 $Mg^{2+} \rightarrow K^+$ results in shift in extended population (1% vs 42%)

Bernetti and Bussi, EPJB (2021) Bernetti, Hall, and Bussi, NAR (2021)

Crucial ingredients

A method to generate heterogeneous ensembles (MD with enhanced sampling, etc.)

A good "forward model" to back-calculate experiments from ensembles

Other "forward models" we are using

Force field optimization for m6A using <u>melting experiments</u> (V. Piomponi)

General RNA force field optimization using <u>NMR</u> and <u>thermodynamic data</u> (T. Froehlking, I. Gilardoni,

collaboration with J. S

Inosine duplex enser (V. Piomponi, in collat Sattler, Munich)

What about chemical probing data?

Ribozymes dynamics with <u>cryo-EM</u> (E. Posani, in collaboration with A. Magistrato, CNR; M. Bonomi, Pasteur; N. Toor, UCSD)

Chemical probing

Different probes (<u>SHAPE</u>/DMS/CMCT/etc)

Concentration of cDNA (# reads) ~ proportional to probability to form an adduct at that position

No clear quantitative forward model from 2D/3D structure (Roee's and Redmond's talks)

Weeks COSB (2010); McGinnis et al JACS (2012)

Relating SHAPE and structure/fluctuations

Pinamonti et al, NAR (2015); Hurst et al JPCB (2018); Frezza et al Methods (2019) Mlynsky and Bussi, JPCL (2018); Hurst and Chen, JPCB (2021)

(Anti-)cooperative effects?

Are (anti-)cooperative effects relevant at the typical concentrations?

Physical vs Chemical binding

Non-equilibrium process:

- Rate-limiting irreversible chemical step
- SHAPE reagents hydrolyse water as well

Typical reagent concentrations: 10-100 mM

Usually, single-hit kinetics for short (≤100nt) RNAs:

• I adduction event (A) per molecule.

• How many "physical" binding events (B)?

A: (chemical) adduct B: (physical) bound U: unbound

$K_{d,phys} \sim 0.2-6.4 \text{ M}^* \implies 0.1\%-50\% \text{ of "physical" sites (B) occupied}$

*estimated from MD simulations with NMIA, Mlynsky and Bussi, JPCL (2018)

Prototype system: GAAA tetraloop

Amber FF + GROMACS, plain MD (no enhanced sampling) Multiple (1,2...,19) copies of the reagent per simulation box 19 x 1 μ s long simulations - multiple binding/unbinding events

Calonaci et al, arXiv (2022)

Grand-canonical reweighting

Probability to observe particles in A/B depending on $N=N_A+N_B$

 $P_{A/B}^N(N_{A/B}) \propto \Omega_{A/B}(N_{A/B})\Omega_{B/A}(N - N_{B/A})$

Likelihood for the actual histograms t_{Nk}

 $P(t_{Nk}) \propto \prod_{N} \prod_{k} \left(c_N \Omega_A(k) \Omega_B(N-k) \right)^{t_{Nk}}$

Maximizing P leads to (similar to WHAM*):

$$\Omega_A(k) = \frac{A_k}{\sum_N L_N c_N \Omega_B(N-k)}$$
$$\Omega_B(k) = \frac{B_k}{\sum_N L_N c_N \Omega_A(N-k)}$$

Grand-canonical averages:

$$P_{A/B}^{GC}(N_{A/B}) \propto \Omega_{A/B}(N_{A/B})e^{-\mu N_{A/B}/RT}$$

A = Binding region B = Buffer region

Simulation with N = 4 reagents Frame with $N_A = 1$ and $N_B = 3$

Simulation with N = 7 regaents Frame with $N_A = 1$ and $N_B = 6$

Simulation with N = 15 reagents Frame with $N_A = 3$ and $N_B = 12$

Chemical potential μ estimated from concentration in buffer B.

Result: smooth concentrationdependent averages!

> *Kumar et al JCC (1992) Calonaci et al, arXiv (2022)

Concentration-dependent binding

Non-linear behaviour!

Physical occupation of an adduction site as a function of concentration

Calonaci et al, arXiv (2022)

Cooperative binding

Does binding at *i* influence binding at *j*?

$$\Delta \Delta G_{ij} = -RT \log \frac{p_{ij}(1,1)p_{ij}(0,0)}{p_{ij}(1,0)p_{ij}(0,1)}$$

False-discovery rate (Benjamini–Hochberg test) to check for multiple hypothesis

Bootstrap can tell us which pairs are nonzero "by chance"

Annotated 2D structures

- Dynamical secondary structure* conditioned to double reagent binding
- Stacking between copies of reagent
- Loop reconformation

1. Cis Watson-Crick/Watson-Crick
 2. Trans Watson-Crick/Watson-Crick
 3. Cis Watson-Crick/Hoogsteen
 4. Trans Watson-Crick/Hoogsteen
 5. Cis Watson-Crick/Sugar Edge
 6. Trans Watson-Crick/Sugar Edge
 12. Trans Sugar Edge/Sugar Edge
 12. Trans Sugar Edge/Sugar Edge

Calonaci et al, arXiv (2022) Westhof-Leontis annotations made with BaRNAba, Bottaro et al RNA (2019)

Experimental validation (qualitative)

Reads are taken at 3 concentrations (32mM, 64mM, 125mM).

Normalisation is independent of concentration by construction to avoid biases (e.g. different number of cycles or other technical differences)

Partial summary

New method for grand-canonical averaging combining simulations at fixed number of particles

Smooth concentration-dependent curves and rigorous error analysis

At relevant reagent concentration, we predict non-linear effect. Non-linearity due to cooperative binding.

Perspective: combine experiments at different concentration to search for typical patterns

Calonaci et al, arXiv (2022)

Agenda

GAC-RNA ensembles from MD and SAXS data[#]

Cooperative effects in chemical probing experiments*

FES (kcal/mol) 15 20 25 10 formed 12 Tertiary contacts * ¹⁰ 10 JU broken 8 1.0 1.5 2.0 2.5 Ratio (peak / shoulder)

#Bernetti, Hall, and Bussi, NAR (2021) + Bernetti and Bussi EPJB (2021)
*Calonaci et al arXiv 2022

Acknowledgements

Tomas Silva Olivier Languin-Cattoen Valerio Piomponi Ivan Gilardoni Elisa Posani

Pavlina Pokorna Zhengyue Zhang (Brno, Czech Republic)

<u>Mattia Bernetti</u> (IIT, Bologna, Italy)

<u>Nicola Calonaci</u> (UniTS, Italy)

Kathleen Hall (St Louis, USA)

Alisha Jones & Michael Sattler (Munich, Germany)

Cecam workshops

Туре		
Flagship	Workshop	

Multinodal event CECAM-FR-MOSER CECAM-IT-SISSA-SNS June 26, 2023 - June 28, 2023

RNA DYNAMICS FROM EXPERIMENTAL AND COMPUTATIONAL APPROACHES

Location CECAM-FR-MOSER

Organizers

Massimiliano Bonomi (Institut Pasteur - CNRS), Giovanni Bussi (Scuola Internazionale Superiore di Studi Avanzati), Paraskevi Gkeka (Sanofi), Michael Sattler (Technical University of Munich)

July 3, 2023 - July 6, 2023

ENHANCED SAMPLING METHODS WITH PLUMED

Type Flagship School

Location CECAM-HQ-EPFL, Lausanne, Switzerland Organizers

Massimiliano Bonomi (Institut Pasteur - CNRS), Giovanni Bussi (Scuola Internazionale Superiore di Studi Avanzati),

Carlo Camilloni (University of Milano),

Gareth Tribello (Queen's University Belfast)

Openings

One 30-months developer position for PLUMED (Python/C++) GitHub/plumed/opening-2023 Deadline Feb 23

MOLECULAR AND STATISTICAL BIOPHYSICS

4 fully funded PhD positions Physics and Chemistry of Biological Systems @SISSA Deadline Mar 20

Faculty position at the tenure track / associate professor level, expression of interest **Deadline Mar 31**

nature careers