

RNA as a randomly branched polymer

Anže Božič

Department of Theoretical Physics, IJS, Ljubljana

anze.bozic@ijs.si

Structural and topological properties of RNA in living systems, Trento, 30. 01.—02. 02. 2023

Branched polymers

Branched core star

Dendronised

- polymers, ceramic aggregates, polymeric networks, gels, biopolymers
- favourable properties: high surface functionality, globular conformation, high solubilities, ...
- two broad classes: regular and randomly branched/branching

AB Cook & S Perrier, Adv Func Mat 2020

Branched-linear block

Branched polymers

- polymers, ceramic aggregates, polymeric networks, gels, biopolymers
- favourable properties: high surface functionality, globular conformation, high solubilities, ...
- two broad classes: regular and randomly branched/branching

R Everaers et al, Soft Matter 2017

AB Cook & S Perrier, Adv Func Mat 2020

J Wiedemann et al, Bioinf 2022

"Braveheart" IncRNA (~ 600 nt)

J Wiedemann et al, Bioinf 2022

DN Kim et al, Nat Comm 2020

"Braveheart" IncRNA (~ 600 nt)

J Wiedemann et al, Bioinf 2022

DN Kim et al, Nat Comm 2020

Dengue virus gRNA (~ 10700 nt)

KN Weeks, Acc Chem Res 2021

Dengue virus gRNA (~ 10700 nt)

Dengue virus gRNA (~ 10700 nt)

KN Weeks, Acc Chem Res 2021

G Erdemci-Tardogan et al, Phys Rev E 2014

G Erdemci-Tardogan et al, Phys Rev E 2014

Vaupotič et al, arXiv:2212.00829

G Erdemci-Tardogan et al, Phys Rev E 2014

Vaupotič et al, arXiv:2212.00829

RNA as a branched polymer

RNA-as-graph: paired (double-stranded) regions as weighted edges and single-stranded regions as nodes (N)

analysis of topological and physical properties (node degree distribution, path distribution, ...)

RNA as a branched polymer

RNA-as-graph: paired (double-stranded) regions as weighted edges and single-stranded regions as nodes (N)

Scaling of branched polymers

- description at the level of statistical mechanics (thermal ensembles of RNA structures)
- physical (linear) size not enough for branched polymers \rightarrow topology of branching
- two topological measures: average length of linear paths on the tree (exponent ρ) and average branch weight (exponent ε)
- Flory theory: topological measures as a proxy of polymer size

$\langle R_{ m g}^2 angle$	\sim	$N^{2\nu}$	(polymer size)
$\langle MLD \rangle$	\sim	$N^{ ho}$	(polymer extension)
$\langle N_{ m br} angle$	\sim	N^{ε}	(branch size)

Polymer model (3D)	ν	ρ	ε	ν_{Flory}	$ ho_{ ext{Flory}}$
Ideal linear	1/2	1	1	1/2	1
Self-avoiding linear	0.5877	1	1	3/5	1
Ideal branching	1/4	1/2	1/2	1/4	1/2
Self-avoiding branching	1/2	0.654	0.651	7/13	9/13

(the only known exponent for RNA is $\rho = 0.67$)

RNA as a branched polymer: pipeline

Scaling properties of RNA

- sequence length dependence vs. individual distributions
- distribution of branch sizes → exponent ε
- distribution of path lengths → exponent ρ

Scaling properties of RNA: sequence length dependence

 $\langle \mathrm{ALD} \rangle \sim N_{\mathrm{nt}}^{\rho}$

 $\langle N_{\rm br} \rangle \sim N_{\rm nt}^{\varepsilon}$

- sequence length dependence vs. individual distributions
- distribution of branch sizes → exponent ε
- distribution of path lengths → exponent ρ

Scaling properties of RNA: nucleotide composition

- scaling exponents ρ and ϵ independent of RNA nucleotide composition
- prefactor depends on the amount of base pairs formed

Scaling properties of RNA: multiloop energy parameters

 $E_{\text{multiloop}} = E_0 + E_{\text{br}} \times [\text{branches}] + E_{\text{un}} \times [\text{unpaired nucleotides}]$

• multiloop energy parameters lead to different node degree distributions and different branching structures of the same RNA sequence

Scaling properties of RNA: multiloop energy parameters

 $E_{\text{multiloop}} = E_0 + E_{\text{br}} \times [\text{branches}] + E_{\text{un}} \times [\text{unpaired nucleotides}]$

• multiloop energy parameters lead to different node degree distributions and different branching structures of the same RNA sequence

Scaling properties of RNA: multiloop energy parameters

 significantly different (multiloop) energy parameters do not lead to differences in scaling

Scaling properties of RNA: node degree distribution

• Prüfer shuffle drastically changes (lowers) the scaling exponents ρ and ε

Scaling properties of RNA

- sequence length dependence vs. individual distributions
- distribution of branch sizes → exponent ε
- distribution of path lengths → exponent ρ

Scaling properties of RNA: individual distributions

- sequence length dependence vs. individual distributions
- distribution of branch sizes → exponent ε
- distribution of path lengths → exponent ρ

Scaling properties of RNA: individual distributions

distribution of branch sizes → exponent
 ε for RNA of fixed length

$$p(N_{\rm br}) \sim \left(\frac{N}{N_{\rm br}(N-N_{\rm br}-1)}\right)^{2-\epsilon}$$

- (thermal+sequence averages improve the data)
- applicable even to biological RNAs whose length variation is negligible

Scaling properties of RNA: individual distributions

- distribution of path lengths \rightarrow exponent ρ for RNA of fixed length
- two-parametric distribution (Redner-des-Cloizeaux) → two different ways of obtaining ρ!

$$p(\ell) = \frac{1}{\langle ALD \rangle} q\left(\frac{\ell}{\langle ALD \rangle}\right)$$

with

$$q(x) = C x^{\theta} \exp\left(-(Kx)^t\right)$$

RNA as a randomly branched polymer

- exponents obtained from scaling match each other more closely
- discrepancy between exponents ρ obtained from branch weight distribution

- RNA as a randomly branched polymer: scaling exponents ε and ρ close to those of branched SAW polymers
- distributions of path lengths and branch weights → applicable to RNAs of fixed length
- what makes the branching properties of (some) RNA viruses different?

- RNA as a randomly branched polymer: scaling exponents ε and ρ close to those of branched SAW polymers
- distributions of path lengths and branch weights → applicable to RNAs of fixed length
- what makes the branching properties of (some) RNA viruses different?

L Tubiana et al, Biophys J 108 2015

Acknowledgments

Domen Vaupotič (IJS)

Luca Tubiana (Uni. Trento)

Thank you for your attention!

Angelo Rosa (SISSA)