RNA Abstractions for Structural Comparison and Classification

Michela Quadrini joint work with Luca Tesei and Emanuela Merelli

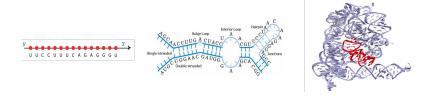
University of Camerino, Italy

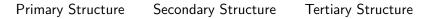
Workshop on Structure and topology of RNA in living systems 30 January 2023 to 2 February 2023

Trento, Italy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction to RNAs


Motivations


Secondary Structure Comparison

Tertiary Structure Comparison

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

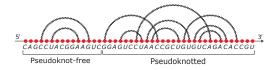
RNA Molecules: Hierarchical Structures

- Primary Structure: sequence of nucleotides (i.e., A, C, G, U)
- Secondary Structure (2D): set of hydrogen bonds (base pairs)
- Tertiary Structure (3D): spatial arrangement of atoms

Structural Comparison

Biological Hypothesis

The shape is the main predictor of the molecular functions and behaviours


The structural comparison supports

- the measurement of the evolution stability
- the identification of the functions
- the classification of the molecules
- the study and prediction of the folding process

The performance (time, space and accuracy) of the methods of comparison depends on the RNA abstractions and representations

RNA Secondary Structures

Arc-Annotated Sequences Representation

Red dot: nucleotide arc: hydrogen bond

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pseudoknot-free structures

- are motifs without any crossing among arcs
- represent local patterns

Pseudoknotted structures

- are motifs with at least a crossing among arcs
- are determined by interactions of local patterns

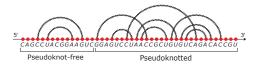
Pseudoknotted Structures Comparison and Classification

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Some approaches introduced in the literature

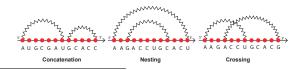
Topological-based classification

- Genus
- Shape
- Crossing number

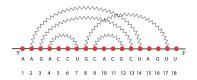

Comparison

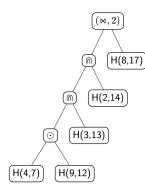
- Progressive stem matching
- Pseudoknots order
- RAG based on Dual Graph
- ASPRA distance

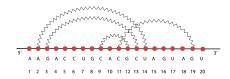
ASPRA Distance¹

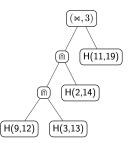

ASPRA Distance is a dissimilarity measure between RNA pairs by

- associating a real number
- neglecting the sequences of nucleotides

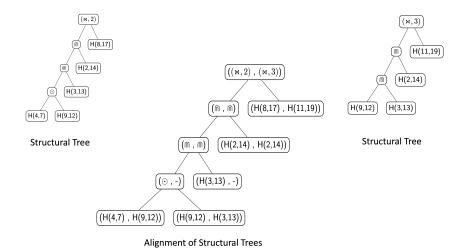

Starting points:


- The problem of pseudoknot-free structure comparison was solved as a tree comparison
- Only three relations between arcs are feasible




¹Michela Quadrini, Luca Tesei, Emanuela Merelli, An algebraic language for RNA pseudoknots comparison, BMC Bioinformatics, 2019

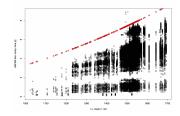
Basic idea



Alignment of Structural Trees

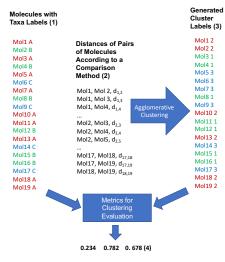
 $d_{ASPRA}(t_1, t_2) = 201$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる


ASPRAlign²

ASPRAlign is a Java tool for computing ASPRA distance that

- compares RNA 2D with arbitrary pseudoknots
- takes as input several formats
 - Extended Dot-Bracket Notation
 - Arc Annotated Sequence
 - BPSEQ
 - CT format


is available at https://github.com/bdslab/aspralign

• works in $\mathcal{O}(n^2)$ time with respect to number of nucleotides

 $^{^{2}}$ Quadrini M, Tesei L, Merelli E. ASPRAlign: a tool for the alignment of RNA secondary structures with arbitrary pseudoknots. Bioinformatics. 2020

TaxonClassifier: a Framework to classify RNAs ³

Available on GitHub at https://github.com/bdslab/TaxonClassifier

э

 $^{^3}$ Michela Quadrini, Luca Tesei and Emanuela Merelli, Automatic Generation of Pseudoknotted RNAs Taxonomy, Under Review

TaxonClassifier: Methods and Clusters

Methods to compare RNA SS

- ASPRA distance
- Pseudoknots order
- Progressive stem matching
- RAG-2D
- genus

Clusters with machine learning approaches

- algorithm: Agglomerative Clustering
- methods: Single, Complete, Average

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Reconstruction of Organism Taxonomy

TaxonClassifier has been applied to reconstruct the taxonomy

Defined benchmark

Life Domain	5S rRNA	16S rRNA	23S rRNA
Archaea	25	1486	177
Bacteria	219	1530	570
Eukaryota	351	1512	651

Experiments consider

- the rank phylum according to the European Nucleotide Archive (ENA) taxonomy
- three metrics (Rand Index, Homogeneity, Completeness) to evaluate the clusters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Reconstruction of TaxonClassifier

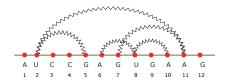
Some results of the TaxonClassifier

	Archaea (16S rRNA)							
Rand Index Homogeneity Completeness	Genus 0.565 0.134 0.198	PSMAlign 0.431 0.180 0.147	ASPRAlign 0.746 0.833 0.559	PskOrder 0.601 0.118 0.230	RAG-2D 0.547 0.128 0.100			
Bacteria (23S rRNA)								
Rand Index Homogeneity Completeness	Genus 0.458 0.242 0.500	PSMAlign 0.403 0.155 0.320	ASPRAlign 0.403 0.155 0.320	PskOrder 0.470 0.248 0.510	RAG-2D 0.584 0.216 0.230			
Eukaryota (5S rRNA)								
Rand Index Homogeneity Completeness	Genus 0.486 0.093 0.323	PSMAlign 0.569 0.269 0.725	ASPRAlign 0.486 0.093 0.323	PskOrder 0.486 0.093 0.323	RAG-2D 0.486 0.093 0.323			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Ongoing Works and Future Directions

consider other taxonomies, like SILVA and LTP

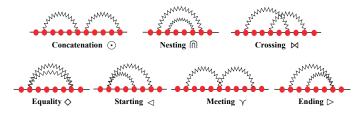

1	UNICAM Università d'Camerino	PHYLORNA			Home	Search	Documentation -	Contact us
PhyloRNA: a database of RNA secondary structures with associated phylogeny								
PhyloRNA contains known RNA secondary structures associated with their phylogenetic information according to several curated taxonomies (SILVA, ENA, LTP , NCBI, GTDB) to allow the scientific community to study the relationship between RNA structures and phylogenetic ranks. In addition, structural features and abstractions of the structures are available.								
		Provenience of PhyloRNA structures	Amino terminus	WILL DOWN	Classes of	PhyloRNA stru	ictares	
		# Source and Link			# Class			
		RCSB Protein Data Bank			58 rR		_	
		Gundi Lab CRW Site		Sav-	165 (A/A/S		

- applications of other methods to compare RNA 2D
- evaluation of the methods predicting the folding process
- classification of the molecules according to their functions (relevant for non-coding RNAs)

Comparison of Tertiary Structures⁴

RNA 2Ds may be not expressive enough to capture dissimilarities: different tertiary structure may create different interactions

We introduce an abstraction of 3D structure based on spatial proximity among bases


Red dot: nucleotide

arc: proximity (distance less than a threshold)

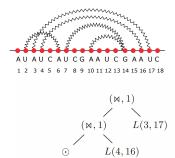
⁴Michela Quadrini, Luca Tesei and Emanuela Merelli, Proximity-based Comparison of RNA and Protein 3D Structures, Submitted

ASA Distance⁵

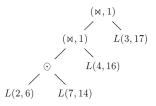
From three to seven relations between arcs in 3D structures

ASA Distance is a measure of dissimilarity between RNA pairs by

- extending ASPRA distance
- associating a real number
- considering the proximity among bases
- neglecting the sequences of nucleotides and hydrogen bonds

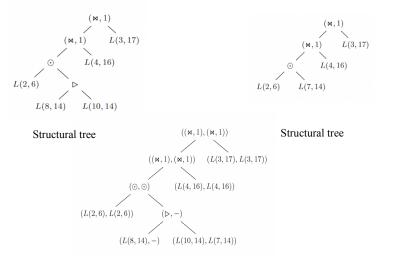

⁵Michela Quadrini, Luca Tesei and Emanuela Merelli, Proximity-based Comparison of RNA and Protein 3D Structures, Submitted

Structural Trees for 3D


L(2, 6)

L(8, 14)

L(10, 14)



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Alignment of Structural Trees

Alignment of the two Structural trees

イロト 不得 トイヨト イヨト ニヨー

STAling⁶

STAling is a Java tool for computing ASA distance that

compares tertiary structures of RNAs, proteins, and complexes

takes as input

- PDB ID
- PDB files
- Arc Annotated Sequences
- is available at https://github.com/bdslab/STAlign
- works in $\mathcal{O}(n^4)$ time with respect to number of nucleotides

Future Directions

We intend to

- compare STAlign respect to other RNA 3D comparison tools
- define a framework to evaluate folding algorithms
- define other dissimilarities on trees
- design pipelines for understanding the relation sequence secondary structure - tertiary structure - functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

"We shall need for this the creation of a new breed of mathematical professionals able to mediate between pure mathematics and applied science. The cross fertilization of ideas is crucial for the health of the science and mathematics." (Gromov, 1998, p. 847)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thank you for the attention!

michela.quadrini@unicam.it