Impact of Post-Transcriptional modifications on RNA structure and dynamics

Structure and Topology of RNA in Living Systems Trento, 2023

Student: Valerio Piomponi

Supervisor: Giovanni Bussi

1

Molecular dynamics

Powerful Computational tool to characterized molecular structural dynamics with "unlimited" resolution.

Empirical Force-fields:

RNA time-scales

Enhanced sampling techniques:

- Heat the system (e.g parallel tempering)
- Bias along a reaction coordinate (e.g Umbrella samplings; Metadynamics) More efficent, but a priori knowledge is needed

Sponer et al, Chem. Rev. (2018)

RNA modifications

- Artificial (mainly acting in the backbone to improve rigidity)
- Natural occurring (more than 100 modifications known)

Widespread (mRNA, tRNA, rRNA etc.) main roles:

- Nucleobase: m⁶A • m⁶A PT m¹A i⁶A Ψ ... NH₂ Backbone: ÓН LNA • PT 0= LNA • 2'-F • 2'-O-Me 2'-O-Me i⁶A 2'-O-MOE ÓН ÓН
- Affects RNA folding
- Affects target specificity of RNA interactions

MD to investigate impact of modification on RNA structural dynamics

Problem:

Force fields for modified nucleotides - not sufficient validations against experiments yet

Piomponi et al, arXiv, 2022

Accepted for publication in Springer book 2023 RNA Structure and Function

Overview

• Published Work:

http://pubs.acs.org/journal/acscii

Molecular Simulations Matching Denaturation Experiments for N⁶-Methyladenosine

Valerio Piomponi, Thorben Fröhlking, Mattia Bernetti, and Giovanni Bussi*

 Ongoing: reconstruct ensemble of structures for a RNA helix containing Inosines, Combining MD and NMR experiments (Maximum Entropy)

Ensemble Refinement

🔤 😳 🚺

Research Article

N6-methyladenosine (m⁶A)

- Most common internal modification in eukaryotic RNAs (on average 1-2% of transcriptome)
- Two possible conformations: syn most favored in unpaired m⁶A (10:1) anti most favored in WC paired m⁶A (1:100) [*]
- Only available **force field** compatible with AMBER for m⁶A (Aduri **[**])** is not able to reproduce *syn/anti* populations, and other experimental evidences

Fitting N6-methyladenosine (m⁶A) force field against experiments

	System	Exp ΔΔG (kJ/mol)
A1	m6A Δ Gsyn/anti	6.3
A2	UACG6CUG Augcugac	1.7 ± 0.9
A3	CGAU6GGU GCUAUCCA	7.1 ± 0.9
Α4	6CGC GCG	-2.5 ± 1.2
A5	GCG6 CGC	-1.7 ± 0.9
B1	GUC6CUG Cagugac	2.5 ± 2.1
B2	ACU6UAGU Ugau6uca	2.1 ± 1.3
B3	AGUU6ACU Uca6uuga	5.4 ± 1.3
B4	CGGUG6UCG GCU6GUGGC	8.6 ± 0.8
В5	ACUUA6GU Ug6auuca	1.7 ± 1.0

METHODS - Alchemical Free Energy Calculations (AFEC)

] Kierzek et al, Nat. Commun. (2022)

Roost et al, JACS (2015)

Hyperparameters chosen in order to avoid overfitting (**Cross validation**) and • ensure sufficient Statistical significance (**Kish Size**)

over anti

- 4 parametrization are compared:
 - Aduri (Reference)
 - Aduri+tors (tors. Potential to enforce A1)
 - Fit_A (fitting on A1-A5 with α =10 e⁻² β =0)
 - Fit_AB (fitting on the entire data set with α =50 e⁻² and β =0)

• Fitting is able to **improve agreement** with experiments with relatively "**small perturbation on the charges**"

ΔQ (e)	C6	N6	H61	N1	C100	H101
fit_A	0.019	0.077	0.099	-0.046	0.004	-0.051
fit_AB	0.009	0.049	0.067	-0.053	0.033	-0.035

	Aduri	+tors	fit_A	fit_AB
2*Vŋ (kJ/mol)	0	4.70	4.92	4.98

"Small perturbation on the charges"

RESULTS

The fitting is **transferable**: ΔG *syn/anti* in duplexes A2-A3 was not included in the fitting, but it is better reproduced by the fitted parameters

∆G syn/anti	Ad	luri	Aduri+tors	fit_A	fit_AB	Ехр
A1 (kJ/mol)	1.7	'1 ± 0.25 🎧	6.33 ± 0.25 😖	6.07 ± 0.21 😖	6.04 ± 0.26 😖	6.3
A2 (kJ/mol)	-7.	7 ± 0.5 🤕	-3.1 ± 0.4 🛛 🙀	-10.4 ± 0.5 😖	-7.8 ± 0.4 😅	~ -11
A3 (kJ/mol)	-5.	4 ± 0.5 😖	-0.8 ± 0.4 😡	-4.9 ± 0.4 🛛 😖	-5.8 ± 0.5 😅	<< 0
2*Vη (kJ/mol)	0	4.70	4.92	4.98	

1st part - CONCLUSIONS

- **First** attempt to tune partial charges of a biomolecular force field based on experiments performed on macromolecular complexes.
- Methodological Contribution: Fitting Strategy that allows AFEC to be use as a reference

- The fitting allows *syn/anti* balance and optical melting experiments to be reproduced with a very small perturbation on the charges.
- The fitting is transferable and opens the way to the use of MD to quantitatively investigate the effects of N6 methylations on RNA structural dynamics and recognition (ongoing)

Piomponi et al, ACS, 2022

Combining MD and experiments to investigate the structures of a inosine-rich 20-bp RNA helix

- A-to-I editing regulation affects immune response
- I-U bp introduce **flexibility** on dsRNA

Eisenberg et al, Nat. Rev. Gen. 2018

NMR J-couplings data (Sattler group in Munich) indicate high C2'-endo populations in the center part of the helix

Common configuration in RNA A-helix

AIM: Use MD to construct an ensemble of structures compatible with NMR data

METHODS - enhanced sampling

Independent well-tempered MetaDynamics along Z.x variable for 24 nucleotides

- Concurrent metadynamics integrated in HREX.
- Different replicas have different strengths of the bias potential

Rep 5

Rep 4

METHODS - Maximum Entropy

Find Prob distr. As close as possible to the prior. among those compatible with **experimental averages**:

Lagrangian Multipliers λ found $\mbox{minimizing }\Gamma$ function

A r**egularization term** is added to avoid overfitting

Forward model: Karplus Equations

$$J_{H1H2} = A\cos^2(\theta) + B\cos(\theta)$$

Condon: A=9.67 Hz ; B= -2.03 Hz

Davies: A=10.2 Hx ; B= -0.8 Hz *Condon et al,* **JCTC**, 2015 *Davies et al,* **Prog. NMR Spec.** 1977

15

Preliminary Results

- MD predicts very low populations of the C2'-endo conformation (~ 1/2 % for central nucleotides)
- Max Ent is able to perfectly enforce
 Experimental J couplings by increasing the weights of the C2'-endo structures

Clusters for Reg. Max. Ent. using Condon parameters

Validation on other solution experiments

- No Max Ent 60% agreement
- Reg Max Ent 69 % agreement

- SAXS

(related to Radius of Gyration)

	Adenosine helix	Inosine helix	Ino. helix Reg Max Ent	Ino. helix Max Ent
<rg> (Å)</rg>	1.81	1.79	1.84	1.87
Std (Å)	0.06	0.08	0.11	0.13

Acknowledgments

Christoph Müller-Hermes

Prof. Dr. Michael Sattler

HELMHOLTZ MUNICI)

Thanks for your Attention!

Validation on other solution experiments

(related to Radius of Gyration)

	Adenosine helix	Inosine helix	Ino. helix Reg Max Ent	Ino. helix Max Ent
<rg> (Å)</rg>	1.81	1.79	1.84	1.87
Std (Å)	0.06	0.08	0.11	0.13

RNA structure and function

- Polymeric molecule essential for coding (mRNA)
- Many other fundamental roles in the cell (non-coding RNA: tRNA, rRNA, etc.)
- structural dynamics is important for function

Voigts-Hoffman et al, JACS (2007)

Thanks for your Attention!

Clustering based on C2endo pop using Davies parameters

RNA structure and function

- Polymeric molecule essential for coding (mRNA)
- Many other fundamental roles in the cell (tRNA, rRNA, ncRNA) - 2D and 3D structural dynamics is important for function

1D '3-CCAGUGACAUUUCUCCACAACCAAGAG..-5'

Preliminary Results

		No Max Ent		Reg Max Ent (Davies)		Max Ent (Davies)	
	Exp JC	MD JC	C2endo pop.	MD JC	C2endo pop.	MD JC	C2endo pop.
19	0.84 Hz	0.40 Hz	0.025 %	0.90 Hz	5.2 %	0.84 Hz	4.4 %
110	4.6 Hz	0.55 Hz	0.13 %	3.2 Hz	25 %	4.6 Hz	40 %
U11	5.5 Hz	1.0 Hz	0.80 %	4.1 Hz	29 %	5.5 Hz	42 %
l12	2.7 Hz	0.72 Hz	2.6 %	1.8 Hz	13 %	2.7 Hz	21%
U29	1.6 Hz	0.76 Hz	0.74 %	2.0 Hz	13 %	1.6 Hz	8.9 %
130	5.8 Hz	0.54 Hz	0.92 %	4.5 Hz	38 %	5.8 Hz	51 %
U31	5.1 Hz	1.0 Hz	0.71 %	3.9 Hz	23 %	5.1 Hz	34 %
U32	5.1 Hz	1.3 Hz	2.0 %	4.1 Hz	27 %	5.1 Hz	37 %

Molecular dynamics

Powerful Computational tool to characterized molecular structural dynamics with "unlimited" resolution.

Future Project: Investigating the impact of m6A methylation on Free Energy of Bindings

2 months Exchange at Sponer Lab in Brno (Czech Republic).

- Use the developed AFEC methods and the refined force field to investigate the **impact of m6A on structure** and on **binding affinity** with m6A readers
- Combine the Alchemical Transformation with MetaD which enhances water exchange inside/outside the binding pocket

Krepl, Jou. Chem. Phy. B, 2021

