

Selective Packaging of the HIV-1 genomic RNA

Mauricio Comas-Garcia, Ph.D. Autonomous University of San Luis Potosi Research Center for Health Sciences and Biomedicine Department of Sciences Alan Rein, Ph.D. National Cancer Institute HIV Dynamics and Replication Program

mauricio.comas@uaslp.mx

https://mauriciocomas.wixsite.com/viralassembly

HIV-1 Pandemics

- HIV-1 is the etiological agent of AIDS.
- Since the beginning of this AIDS pandemics between 64 and 113 millions of people have been infected.
- Between 33.6 and 48.6 millions have died.
- In 2021, 38.4 million people KNEW they had HIV-1.
- In 2021 650,000 people dies from HIV-related complications.
- There are regions in Africa were 1 in 25 adults have HIV-1; this population represents 2/3 of the world-wide infected population.

HIV-1 Pandemics

Organization

Summary of the global HIV epidemic, 2021

		People living with HIV in 2021	People acquiring HIV in 2021	People dying from HIV- related causes in 2021
(8)	Total	38.4 million [33.9–43.8 million]	1.5 million [1.1–2.0 million]	<mark>650 000</mark> [510 000–860 000]
6	Adults	36.7 million	1.3 million	560 000
	(15+ years)	[32.3-41.9 million]	[990 000–1.8 million]	[430 000-740 000]
0	Women	19.7 million	640 000	240 000
	(15+ years)	[17.6–22.4 million]	[480 000-870 000]	[180 000-320 000]
0	Men	16.9 million	680 000	320 000
	(15+ years)	[14.6–19.7 million]	[500 000–920 000]	[250 000-430 000]
	Children	1.7 million	160 000	98 000
	(<15 years)	[1.3–2.1 million]	[110 000-230 000]	[67 000–140 000]
Source: U	NAIDS/WHO esti	mates		
Updat	ed: July 202	2		World Health

Kidney biopsy (< 15 years old kid) from our lab

https://www.who.int/data/gho/data/themes/hiv-aids

The infectious cycle

https://courses.lumenlearning.com/microbiology/chapter/the-viral-life-cycle/

Virion assembly

Nature Reviews | Microbiology

Virion assembly

iThe HIV-1 genomic RNA is in constant competition for Gag binding against a large excess of viral and cellular mRNAs!

Where is Waldo (Wally)?

Selective packaging

Packaging signal or Ψ

- Many (+)ssRNA (& retroviruses) use Ψ to selectively package their genome.
- There is no one "type" or class of Ψ .
- There is no single "selective" packaging mechanism.
- This mechanism depends on the viral species.

Comas-Garcia, M. Viruses 2019.

Selective packaging and assembly

 Ψ is a "sequence" and/or "structure" of the genomic RNA that is responsible for selective packaging of the full-length viral RNA. We thought to be a short stem-loop region at the 5´ UTR.

Lever et al. & Sodroski JVI 1989 & Aldovini and Young JVI 1990.

• However, in the absence of Ψ , Gag interacts non-specifically with cellular RNAs, thus assembles into virus-like-particles. *Nonetheless, under these conditions Gag prefers RNAs with extremely long UTRs.*

Muriaux et al. & Rein PNAS 2001, Rulli et al. & Rein JVI 2007, Comas-Garcia, M. et al. & Rein Viruses 2016.

Selective packaging and assembly

• Gag- Ψ interactions are **needed** for **specific packaging** but are **dispensable** for virion assembly.

Muriaux et al. & Rein PNAS 2001, Rulli et al. & Rein JVI 2007, Comas-Garcia, M. et al. & Rein Viruses 2016, Comas-Garcia, M. et al. & Rein. eLife 2017, Comas-Garcia, M. et al. & Rein. eLife 2018,

- One hypothesis is that selective packaging is a consequence of a high binding affinity between Gag and $\Psi.$

Webb et al. & Musier-Forsyth RNA 2013, Abd El-Wahab et al. & Marquet Nat Comm. 2014, Bernacchi et al. & Palliard RNA Biol. 2017.

 However, there is also evidence that mechanism by which selective packaging occurs is far more complicated that a high-affinity binding scenario.

Nikolaitchik et al. & Hu PLOS Path 2013, Comas-Garcia, M. et al. & Rein Viruses 2016, Dilley et al. & Hu JVI 2017, Liu et al. & Hu J. Mol. Bio. 2017, Comas-Garcia et al. & Rein eLife 2017. Comas-Garcia et al. & Rein eLife 2018.

Gag: a Swiss army knife

Ganser-Pornillos, Yeager and Sundquist. Curr. Opin. Struct. Biol. 2008

The genomic RNA

HIV-1 genome (DNA)

5' UTR: also Swiss army knife

This region controls:

- Transcription.
- Translation.
- Splicing.
- Dimerization.
- Selective packaging.
- Primer binding (retrotranscription).

Let's take a look at it

Let's take a look at it

• SL3 was the original Ψ .

PBS SL1 SL2 650 SL3

Let's take a look at it

- SL3 was the original $\Psi.$
- Then SL1 was proposed to be the real Ψ (high-affinity binding).

Let's take a look at it

- SL3 was the original $\Psi.$
- Then SL1 was proposed to be the real Ψ (high-affinity binding).
- There was the observation that the unpaired guanosines within these regions strongly interact with the Gag.

Let's take a look at it

- SL3 was the original $\Psi.$
- Then SL1 was proposed to be the real Ψ (high-affinity binding).
- There was the observation that the unpaired guanosines within these regions strongly interact with the Gag.
- Mutation of some of these guanosines to adenosines decreases *in vitro* binding to NC and impacts packaging in cell lines.

What is going on?

Making mutants

Comas-Garcia et al. & Rein eLife 2017. Comas-Garcia et al. & Rein eLife 2018.

Comas-Garcia et al. & Rein eLife 2017. Comas-Garcia et al. & Rein eLife 2018; Kitamura, A. IJMS 2018

	NaCl	
RNA	K _D (nM)	n _H
HIV Ψ ₂ 150	31	1.6
HIV Ψ ₂ 200	32	1.5
HIV $Ψ_1$ ΔSL1	47	2.5
HIV $\Psi_2 \Delta SL3$	35	1.6
HIV Ψ_2 MBSM 1 st Gen	48	1.8
HIV Ψ_2 MBSM 2 nd Gen	77	3.1
Rev Comp	58	2.5

200 mM

Under solution condition similar to those of the cytoplasm there is no real difference in binding affinities.

Comas-Garcia et al. & Rein eLife 2018

50:1 ARNt:ARN w/w

	NaCl	
RNA	K _D (nM)	K _D (nM)
HIV Ψ_2 150	31	59
HIV Ψ ₂ 200	32	63
HIV $Ψ_1$ ΔSL1	47	87
HIV $Ψ_2$ ΔSL3	35	78
HIV Ψ ₂ MBSM 1 st Gen	48 —	→ 195
HIV Ψ_2 MBSM 2 nd Gen	77 —	→ 222
Rev Comp	58 —	→ 333

Addition of a competitor RNA for the MA domain reveals specific binding

Comas-Garcia et al. & Rein eLife 2018

200 mM

Non-specific binding is mostly electrostatic

Comas-Garcia et al. & Rein eLife 2018.

Non-specific binding is mostly electrostatic

Comas-Garcia et al. & Rein eLife 2017

Webb et al. & Musier-Forsyth RNA 2013

What we were expecting

What is going on?

NATIONAL

NIH

Specific binding is complicated

- WM Gag Weak Gag-Gag interactions
- 8N Gag No MA-RNA interactions
- WM/8N Gag Weak Gag-Gag interaction & No MA-RNA interaction
- 310 Gag Weak NC-RNA non-specific electrostatic interactions
- SSHC Weak NC-RNA specific non-electrostatic interactions

Comas-Garcia et al. & Rein eLife 2017

Ψ specific binding can be revealed

• Mutations that neutralize this basic domains results in selective binding to Ψ .

• Mutations that decrease the strength of Gag-Gag interactions results in binding only to Ψ .

- Mutations that decrease the non-specific electrostatic RNA-Gag interactions results in binding only to $\Psi.$
- Mutations that decrease the specific non-electrostatic interactions results in the inhibition of binding to any RNA and severely decreases binding to Ψ .

How is this achieved inside the cell?

In vitro assembly

61 nM HIV-1 Ψ ARN 2 μM ΔMAΔp6 Gag

Comas-Garcia et al. & Rein eLife 2018.

In vitro assembly

Comas-Garcia et al. & Rein eLife 2018.

ULTRACENTRIFUGATION

Comas-Garcia et al. & Rein eLife 2018.

ULTRACENTRIFUGATION

Comas-Garcia et al. & Rein eLife 2018.

Comas-Garcia et al. & Rein eLife 2018. A. Zlotnick et al. 1999 and Katen and Zlotnick 2009 B. Comas-Garcia et al. & Gelbart JPCB 2014

Conclusions

- Gag binds to almost any nucleic acid with nM affinity.
- It is only in the presence of "stringent" conditions that specific binding can be revealed (*i.e.*, high-salt, competitor RNAs, inhibiting Gag-Gag interactions).
- Specific binding under "stringent" conditions depends on a series of unpaired guanosines distributed in 6 clusters and not of a particular SL.
- There could be other guanosines outside this cluster that plays a role in assembly and binding.
- The *in vitro* assembly experiments indicate that Ψ lowers the activation energy for assembly.
- Lowering the activation energy requires at least 3 clusters of unpaired guanosines.

HIV Dynamics and Replication Program (NIH-NCI) Retroviral Assembly Section (Rein Lab) Alan Rein (The boss) Siddhartha Datta (The underboss) Laura Baker Tomáš Kroupa **Demetria Harvin** Rajat Varma (XENCOR Inc) Prabhakar Gudla (Leidos Biomedical Inc-NIH) Stephen Lockett (Leidos Biomedical Inc-NIH)

Intramural AIDS Targeted Antiviral Program

mauricio.comas@uaslp.mx

https://mauriciocomas.wixsite.com/viralassembly