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Nuclear Astrophysics
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Astrophysical Motivation
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•The 17O(p,γ)18F reaction takes part in the 
CNO cycle 

•The CNO cycle is the predominant energy 
production mechanism for heavy stars        
(M > 1.3 M⊙) 

•The reaction rates of the CNO cycles 
determines the abundances of elements 
inside the stellar core

CNO Cycle

Measuring Reaction  
Cross Sections

Describing Stellar Evolution 
and Nucleosynthesis



      

     

                     

17O(p,γ)18F Reaction

4J. Skowronski Neural Networks for Nuclear Astrophysics - ALPACA 2023

Reaction Rate

The reaction rate in the range of interest is dominated by the 
resonance at 65 keV!



      

     

                     
65 keV Resonance
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No direct measurements available

Estimated strength of the resonance: ωγ = (1.6 ± 0.3) x 10-11 eV (ωγ ~ Cross Section)

Only 1 count per day (considering a proton current of 100 μA)

What we need:

• High detection efficiency (~ 50%)


• Environment with exceptional background reduction (< 1 event / day)


• Optimal signal / noise ratio



      

     

                     

Laboratory for Underground Nuclear Astrophysics
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• Located at LNGS facility under the Gran Sasso 
mountain in Abruzzo, Italy

• The cosmic ray flux reduced by six orders of 
magnitude



      

     

                     

Experimental Setup - BGO Detector
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• Almost 4π geometry 
• Segmented in 6 different 
crystals
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LUNA 400kV Accelerator BGO Detector

• p beam up to 400 μA 
• Ep = 50 - 400 keV



      

     

                     
Total Absorption Spectroscopy
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Idea
1. Detect all the γ-rays in 

coincidence

2. Construct the sum γ-peak 

by summing all the crystals

3. Count the events inside the 

sum γ-peak

4. Calculate the cross section



      

     

                     
Deuteron Background
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Problem: Ta backing (where 17O is evaporated) contains deuterons…

Classic: gating the spectrum on the two γ-rays (thus reducing statistics)
New: use Neural Networks to distinguish between 17O + p and p + d events



      

     

                     
Training and Observed Data
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Geant4 simulations used as training data (event by event):

• Validated with calibration sources (J. Phys. G: Nucl. Part. Phys. 50 045201)

• Added random gain shifts to reproduce the BGO drifts
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Simple Neural Network Architecture
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Classification
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Accuracy = P( True Positives ) + P( True Negatives ) 

Selection Efficiency = [ 1 - P( False Positives ) ] x P( True Positives )

In order to extract the cross section it is important to estimate the selection 

efficiency, i.e. how many events we classify as signals respect the total signals:

Reaction Yield = Number of Signals / Selection Efficiency

The accuracy of the classifier is defined as:



      

     

                     
Performance (1)

13J. Skowronski Neural Networks for Nuclear Astrophysics - ALPACA 2023

• The network immediately learns the features

• The probability of True Positives and False Positives 

depends on the probability cut

• For a cut at 0.5 we obtain an accuracy of 84% and 

an selection efficiency of 70% 



      

     

                     
Performance (2)
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True Positive Observed - All Crystals True Positive Simulated - One Crystal



      

     

                     
Results
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Target Counts (Classic) Counts (NN) Reaction Yield 
(Classic)

Reaction Yield 
(NN)

T24 41 69 102 98

T28 15 30 39 42

T44 25 50 62 71

Total 81 ± 9 149 ± 12 202 ± 22 212 ± 17

Classic Selection Efficiency = 40 %

Neural Network Selection Efficiency = 70 %

Neural Network approach 
permits to increase the 

statistics and reduce the 
final error!



      

     

                     
Conclusions
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• Nuclear Astrophysics usually deals with extremely 
low counting statistics 

• A simple Neural Networks can allow to obtain more 
efficient cuts on the data


• The 17O(p,γ)18F is the perfect example for this

• Future Prospective: train the NN directly on the 

observed γ-spectra

Thank you for attention!



      

     

                     
LUNA Collaboration
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