HELMHOLTZ MUNICI)

Computational Imaging and AI in Medicine

Helmholtz Munich, Institute of Machine Learning in Biomedical Imaging Technical University of Munich, Institute for Computational Imaging and AI in Medicine

Daniel Lang lang@helmholtz-munich.de

Modalities:

- computed tomography (CT)
- magnetic resonance imaging (MRI)

Modalities:

- computed tomography (CT)
- magnetic resonance imaging (MRI)
- x-ray, ultrasound, SPECT, PET

Modalities:

- computed tomography (CT)
- magnetic resonance imaging (MRI)
- x-ray, ultrasound, SPECT, PET

Tasks:

reconstruction/motion correction

Modalities:

- computed tomography (CT)
- magnetic resonance imaging (MRI)
- x-ray, ultrasound, SPECT, PET

Tasks:

- reconstruction/motion correction
 - acquired/filtered in frequency space
 - o motion between slices

Modalities:

- computed tomography (CT)
- magnetic resonance imaging (MRI)
- x-ray, ultrasound, SPECT, PET

Tasks:

- reconstruction/motion correction
- registration

Modalities:

- computed tomography (CT)
- magnetic resonance imaging (MRI)
- x-ray, ultrasound, SPECT, PET

Tasks:

- reconstruction/motion correction
- registration
 - o images from different time-points

Modalities:

- computed tomography (CT)
- magnetic resonance imaging (MRI)
- x-ray, ultrasound, SPECT, PET

Tasks:

- reconstruction/motion correction
- registration
- image segmentation

FZ MUNICI

Modalities:

- computed tomography (CT)
- magnetic resonance imaging (MRI)
- x-ray, ultrasound, SPECT, PET

Tasks:

- reconstruction/motion correction
- registration
- image segmentation
 - identification of region of interests and organs of risk

FZ MUNICI

Modalities:

- computed tomography (CT)
- magnetic resonance imaging (MRI)
- x-ray, ultrasound, SPECT, PET

Tasks:

- reconstruction/motion correction
- registration
- image segmentation
- detection/classification

Inference

Modalities:

- computed tomography (CT)
- magnetic resonance imaging (MRI)
- x-ray, ultrasound, SPECT, PET

Tasks:

- reconstruction/motion correction
- registration
- image segmentation
- detection/classification
 - replacement of invasive testing
 - development of novel markers,
 - e.g. survival

Inference

Oropharynx Cancer

- "classically" driven by smoking and alcohol consumption
- cases driven by the human papillomavirus (HPV) on the rise
 - more radiosensitive¹

- biopsy for HPV testing
- only 2/3 tested in north America²

¹ "The molecular mechanisms of increased radiosensitivity of HPV-positive OPSCC", Liu et al., 2018

² "North-American survey on HPV-DNA and p16 testing for head and neck squamous cell carcinoma", Maniakas et al., 2014

Oropharynx Cancer

- "classically" driven by smoking and alcohol consumption
- cases driven by the human papillomavirus (HPV) on the rise
 - more radiosensitive¹

- biopsy for HPV testing
- only 2/3 tested in north America²

Can we train a algorithm to classify HPV based on CT images?

HELMHOLTZ MUNICI

² "North-American survey on HPV-DNA and p16 testing for head and neck squamous cell carcinoma", Maniakas et al., 2014

¹ "The molecular mechanisms of increased radiosensitivity of HPV-positive OPSCC", Liu et al., 2018

• diverse data set (external testing)

	training set		validation set	test set
	OPC	HNSCC	HN PET-CT	HN1
Patients	412	263	90	80
HPV: pos/neg	290/122	223/40	71/19	23/57
HPV status				
Age				
pos	58.81(52.00-64.75)	57.87 (52.00-64.00)	62.32(58.00-66.00)	57.52(52.00-62.50)
neg	64.82 (58.00-72.75)	60.02 (54.50-67.25)	59.11(49.50-69.50)	60.91 (56.00-66.00)
Sex: Female/Male				
pos	47/243	32/191	14/56	5/18
neg	34/88	15/25	4/15	12/45
T-stage: T1/T2/T3/T4				
pos	46/93/94/57	60/93/41/29	10/37/15/9	4/8/9/8
neg	9/35/43/35	6/12/12/10	3/4/8/4	9/16/9/23
N-stage: N0/N1/N2/N3				
pos	33/22/215/20	19/30/170/4	11/10/47/3	6/2/15/0
neg	36/16/62/8	5/2/31/2	2/1/13/3	14/10/31/2
Tumor size [cm ³]				
pos	29.35 (10.52-37.78)	11.78(3.94 - 14.04)	34.63(14.91-41.77)	23.00(10.83-34.29)
neg	36.99 (15.72-45.35)	23.57 (5.80-22.85)	35.09(17.32-47.82)	40.19(11.77-54.42)
transversal voxel spacing [mm]	0.97 (0.98-0.98)	$0.59(0.49 \cdot 0.51)$	$1.06(0.98 \cdot 1.17)$	$0.98(0.98 \cdot 0.98)$
longitudinal voxel spacing [mm]	$2.00(2.00 \cdot 2.00)$	1.53(1.00-2.50)	2.89(3.00-3.27)	2.99(3.00-3.00)
manufacturer				
GE Med. Sys.	272	238	45	0
Toshiba	138	3	0	0
Philips	2	12	45	0
CMS Inc.	0	0	0	43
Siemens	0	4	0	37
other	0	6	0	0

• diverse data set (external testing)

		training set		validation set	test set
		OPC	HNSCC	HN PET-CT	HN1
Patients		412	263	90	80
HPV: pos/neg		290/122	223/40	71/19	23/57
HPV s	tatus				
Age					
	pos	58.81 (52.00-64.75)	57.87 (52.00-64.00)	62.32 (58.00-66.00)	57.52 (52.00-62.50)
	neg	64.82 (58.00-72.75)	60.02 (54.50-67.25)	59.11 (49.50-69.50)	60.91 (56.00-66.00)
Sex: Female/Male					
	pos	47/243	32/191	14/56	5/18
	neg	34/88	15/25	4/15	12/45
T-stage: T1/T2/T3/T4					
	pos	46/93/94/57	60/93/41/29	10/37/15/9	4/8/9/8
	neg	9/35/43/35	6/12/12/10	3/4/8/4	9/16/9/23
N-stage: N0/N1/N2/N3					
	pos	33/22/215/20	19/30/170/4	11/10/47/3	6/2/15/0
	neg	36/16/62/8	5/2/31/2	2/1/13/3	14/10/31/2
Tumor size [cm ³]					
	pos	29.35 (10.52-37.78)	11.78 (3.94-14.04)	34.63(14.91-41.77)	23.00 (10.83-34.29)
	neg	36.99 (15.72-45.35)	23.57(5.80-22.85)	35.09(17.32-47.82)	40.19(11.77-54.42)
transversal voxel spacing [mr	n	0.97 (0.98-0.98)	0.59 (0.49-0.51)	$1.06(0.98 \cdot 1.17)$	0.98 (0.98-0.98)
longitudinal voxel spacing [mm]		2.00(2.00-2.00)	$1.53(1.00 \cdot 2.50)$	2.89(3.00-3.27)	2.99 (3.00-3.00)
manufacturer					
GE Med.	Sys.	272	238	45	0
Toshiba		138	3	0	0
Philips		2	12	45	0
CMS Inc		0	0	0	43
Siemens		0	4	0	37
other		0	6	0	0

• still very small (in terms of deep learning)

• diverse data set (external testing)

	training set		validation set	test set
	OPC	HNSCC	HN PET-CT	HN1
Patients	412	263	90	80
HPV: pos/neg	290/122	223/40	71/19	23/57
HPV status				
Age				
poe	58.81 (52.00-64.75)	57.87 (52.00-64.00)	62.32(58.00-66.00)	57.52(52.00-62.50)
neg	64.82 (58.00-72.75)	60.02(54.50-67.25)	59.11 (49.50-69.50)	60.91 (56.00-66.00)
Sex: Female/Male				
poe	47/243	32/191	14/56	5/18
neg	34/88	15/25	4/15	12/45
T-stage: T1/T2/T3/T4				
pos	46/93/94/57	60/93/41/29	10/37/15/9	4/8/9/8
neg	9/35/43/35	6/12/12/10	3/4/8/4	9/16/9/23
N-stage: N0/N1/N2/N3				
poe	33/22/215/20	19/30/170/4	11/10/47/3	6/2/15/0
neg	36/16/62/8	5/2/31/2	2/1/13/3	14/10/31/2
Tumor size [cm ³]				
poe	29.35 (10.52-37.78)	11.78(3.94-14.04)	34.63(14.91-41.77)	23.00(10.83-34.29)
neg	36.99 (15.72-45.35)	$23.57 (5.80 \cdot 22.85)$	35.09(17.32-47.82)	40.19(11.77-54.42)
transversal voxel spacing [mm]	0.97 (0.98-0.98)	$0.59(0.49 \cdot 0.51)$	1.06 (0.98 - 1.17)	0.98 (0.98-0.98)
longitudinal voxel spacing [mm]	2.00 (2.00-2.00)	1.53(1.00-2.50)	2.89(3.00-3.27)	2.99(3.00-3.00)
manufacturer				
GE Med. Sys	272	238	45	0
Toshiba	138	3	0	0
Philips	2	12	45	0
CMS Inc.	0	0	0	43
Siemens	0	4	0	37
other	0	6	0	0

• still very small (in terms of deep learning)

 \rightarrow transfer learning

knowledge gained from initial task P_1 to improve downstream task P_2

• diverse data set (external testing)

	training set		validation set	test set
	OPC	HNSCC	HN PET-CT	HN1
Patients	412	263	90	80
HPV: pos/neg	290/122	223/40	71/19	23/57
HPV status				
Age				
pos	58.81(52.00-64.75)	57.87 (52.00-64.00)	62.32(58.00-66.00)	57.52 (52.00-62.50)
neg	64.82 (58.00-72.75)	60.02 (54.50-67.25)	59.11 (49.50-69.50)	60.91 (56.00-66.00)
Sex: Female/Male				
pos	47/243	32/191	14/56	5/18
neg	34/88	15/25	4/15	12/45
T-stage: T1/T2/T3/T4				
pos	46/93/94/57	60/93/41/29	10/37/15/9	4/8/9/8
neg	9/35/43/35	6/12/12/10	3/4/8/4	9/16/9/23
N-stage: N0/N1/N2/N3				
pos	33/22/215/20	19/30/170/4	11/10/47/3	6/2/15/0
neg	36/16/62/8	5/2/31/2	2/1/13/3	14/10/31/2
Tumor size [cm ³]				
pos	29.35 (10.52-37.78)	11.78(3.94-14.04)	34.63(14.91-41.77)	23.00(10.83-34.29)
neg	36.99 (15.72-45.35)	23.57 (5.80-22.85)	35.09(17.32-47.82)	40.19(11.77-54.42)
transversal voxel spacing [mm]	0.97 (0.98-0.98)	$0.59(0.49 \cdot 0.51)$	$1.06(0.98 \cdot 1.17)$	0.98 (0.98-0.98)
longitudinal voxel spacing [mm]	2.00 (2.00-2.00)	1.53(1.00-2.50)	2.89(3.00-3.27)	2.99 (3.00-3.00)
manufacturer				
GE Med. Sys.	272	238	45	0
Toshiba	138	3	0	0
Philips	2	12	45	0
CMS Inc.	0	0	0	43
Siemens	0	4	0	37
other	0	6	0	0

• still very small (in terms of deep learning)

 \rightarrow transfer learning

knowledge gained from initial task P_1 to improve downstream task P_2

but: CT data is 3D (models usually pretrained on ImageNet)

Learning Spatiotemporal Features with 3D Convolutional Networks

Du Tran^{1,2}, Lubomir Bourdev¹, Rob Fergus¹, Lorenzo Torresani², Manohar Paluri¹ ¹Facebook AI Research, ²Dartmouth College

{dutran,lorenzo}@cs.dartmouth.edu {lubomir,robfergus,mano}@fb.com

[&]quot;Learning spatiotemporal features with 3d convolutional networks", Tran et al., 2015

Learning Spatiotemporal Features with 3D Convolutional Networks

Du Tran^{1,2}, Lubomir Bourdev¹, Rob Fergus¹, Lorenzo Torresani², Manohar Paluri¹ ¹Facebook AI Research, ²Dartmouth College

{dutran,lorenzo}@cs.dartmouth.edu {lubomir,robfergus,mano}@fb.com

[&]quot;Learning spatiotemporal features with 3d convolutional networks", Tran et al., 2015

"Learning spatiotemporal features with 3d convolutional networks", Tran et al., 2015

• AUC: probability that a randomly chosen case with a positive ground truth label is ranked with greater suspicion than a randomly chosen ground truth negative case

"Deep learning based HPV status prediction for oropharyngeal cancer patients", Lang et al., 2021

Is there no better solution?

Is there no better solution? \rightarrow Self-supervised Learning

Kaiming He^{*,†} Xinlei Chen^{*} Saining Xie Yanghao Li Piotr Dollár Ross Girshick 'equal technical contribution [†]project lead Facebook AI Research (FAIR)

Kaiming He^{*,1} Xinlei Chen^{*} Saiming Xie Yanghao Li Piotr Dollár Ross Girshick 'equal technical contribution ¹project lead Facebook AI Research (FAIR)

masking for self-supervised pretraining

 no need for labeled data

Kaiming He^{*,1} Xinlei Chen^{*} Saiming Xie Yanghao Li Piotr Dollár Ross Girshick 'equal technical contribution ¹project lead Facebook AI Research (FAIR)

- masking for self-supervised pretraining

 no need for labeled data
- transformer based autoencoder

Kaiming He^{*,†} Xinlei Chen^{*} Saining Xie Yanghao Li Piotr Dollár Ross Girshick 'equal technical contribution [†]project lead Facebook AI Research (FAIR)

- masking for self-supervised pretraining

 no need for labeled data
- transformer based autoencoder

Kaiming He^{*,1} Xinlei Chen^{*} Saiming Xie Yanghao Li Piotr Dollár Ross Girshick 'equal technical contribution ¹project lead Facebook AI Research (FAIR)

- masking for self-supervised pretraining

 no need for labeled data
- transformer based autoencoder

- mask the input for self-supervised pretraining
 - cases without HPV status

- mask the input for self-supervised pretraining
 - cases without HPV status
- remodel the vision transformer to be able to handle 3D data

- mask the input for self-supervised pretraining
 cases without HPV status
- remodel the vision transformer to be able to handle 3D data

- mask the input for self-supervised pretraining
 - cases without HPV status
- remodel the vision transformer to be able to handle 3D data
- HPV classification as a downstream task

• extend the public H&N dataset

- include cases without HPV status info
- no external testing

• extend the public H&N dataset

- include cases without HPV status info
- no external testing
- test set results
 - MAEMI: AUC = 0.723
 - C3D: AUC = 0.710

- extend the public H&N dataset
 - include cases without HPV status info
 - no external testing
- test set results
 - MAEMI: AUC = 0.723
 - C3D: AUC = 0.710
- MAEMI not significantly better
 - small dataset
 - ♦ MAEMI: 1k cases
 - ♦ C3D: 1M cases
 - optimization limited by computing resources

$^{^1\}ensuremath{^{\prime\prime}}\xspace$ HPV, hypoxia and radiation response in head and neck cancer", Göttgens et al., 2018

• determined *in vitro* via cell survival curves¹

¹ "HPV, hypoxia and radiation response in head and neck cancer", Göttgens et al., 2018

- determined in vitro via cell survival curves¹
- on a patient level this is only empirically known

 $^{^1 \}ensuremath{``\mathsf{HPV}}$, hypoxia and radiation response in head and neck cancer", Göttgens et al., 2018

- determined in vitro via cell survival curves¹
- on a patient level this is only empirically known

\rightarrow Survival Analysis

 $^{^{1}}$ "HPV, hypoxia and radiation response in head and neck cancer", Göttgens et al., 2018

Survival Analysis

- $\bullet\ {\rm censoring} \to {\rm no}\ {\rm simple}\ {\rm regression}\ {\rm task}$
- classical machine learning \rightarrow Cox model

Survival Analysis

Two most common quantities to model survival are

survival function

$$S(t) = \Pr(T > t), \tag{1}$$

probability to survive beyond time t, event at T

hazard function

$$h(t) = \lim_{\Delta t \to 0} \frac{\Pr(t \le T < t + \Delta t | T \ge t)}{\Delta t}, \quad (2)$$

momentary rate of occurrence at time t

Hazard function for an individual j with covariates \mathbf{x}_j :

$$h_j(t|\mathbf{x}_j) = \lambda_0(t) \exp\{\mathbf{x}_j\beta\},\tag{3}$$

- $\lambda_0(t)$ the baseline hazard function
- $\exp\{\mathbf{x}_{j}\beta\}$ relative risk associated with \mathbf{x}_{j}

 $^1\,{}^{\prime\prime}\text{Regression}$ models and life-tables", Cox, 1972

Hazard function for an individual j with covariates \mathbf{x}_j :

$$h_j(t|\mathbf{x}_j) = \lambda_0(t) \exp\{\mathbf{x}_j\beta\},\tag{3}$$

- $\lambda_0(t)$ the baseline hazard function
- $\exp{\{\mathbf{x}_j\beta\}}$ relative risk associated with \mathbf{x}_j

 Cox^1 partial likelihood for coefficients β :

$$L(\beta) = \prod_{T_i \text{ uncensored}} \frac{\exp\{\mathbf{x}_i\beta\}}{\sum_{T_j \ge T_i} \exp\{\mathbf{x}_j\beta\}},\tag{4}$$

¹ "Regression models and life-tables", Cox, 1972

Hazard function for an individual j with covariates \mathbf{x}_j :

$$h_j(t|\mathbf{x}_j) = \lambda_0(t) \exp\{\mathbf{x}_j\beta\},\tag{3}$$

- $\lambda_0(t)$ the baseline hazard function
- $\exp{\{\mathbf{x}_j\beta\}}$ relative risk associated with \mathbf{x}_j

 Cox^1 partial likelihood for coefficients β :

$$L(\beta) = \prod_{T_i \text{ uncensored}} \frac{\exp\{\mathbf{x}_i\beta\}}{\sum_{T_j \ge T_i} \exp\{\mathbf{x}_j\beta\}},\tag{4}$$

• Cox could be implemented as a loss in deep learning

 $^{^1\,{\}rm ``Regression models}$ and life-tables", Cox, 1972

Hazard function for an individual j with covariates \mathbf{x}_j :

$$h_j(t|\mathbf{x}_j) = \lambda_0(t) \exp\{\mathbf{x}_j\beta\},\tag{3}$$

- $\lambda_0(t)$ the baseline hazard function
- $\exp{\{\mathbf{x}_j\beta\}}$ relative risk associated with \mathbf{x}_j

 Cox^1 partial likelihood for coefficients β :

$$L(\beta) = \prod_{T_i \text{ uncensored}} \frac{\exp\{\mathbf{x}_i\beta\}}{\sum_{T_j \ge T_i} \exp\{\mathbf{x}_j\beta\}},\tag{4}$$

- Cox could be implemented as a loss in deep learning
- but batch wise processing/optimization of weights

 $^{^1\,{\}rm ``Regression models}$ and life-tables", Cox, 1972

Discrete Survival Model

A scalable discrete-time survival model for neural networks

Michael F. Gensheimer1 and Balasubramanian Narasimhan2

¹ Department of Radiation Oncology, Stanford University, Stanford, CA, United States of America ² Department of Statistics, Stanford University, Stanford, CA, United States of America

Discrete Survival Model

A scalable discrete-time survival model for neural networks

Michael F. Gensheimer1 and Balasubramanian Narasimhan2

¹ Department of Radiation Oncology, Stanford University, Stanford, CA, United States of America ² Department of Statistics, Stanford University, Stanford, CA, United States of America

Discrete Survival Model

A scalable discrete-time survival model for neural networks

Michael F. Gensheimer¹ and Balasubramanian Narasimhan²

¹ Department of Radiation Oncology, Stanford University, Stanford, CA, United States of America ² Department of Statistics, Stanford University, Stanford, CA, United States of America

Loss for time interval j:

$$\sum_{i=1}^{d_j} \ln(h_j^i) + \sum_{i=d_j+1}^{r_j} \ln(1-h_j^i),$$

with

 h^i hazard probability for individual i during j

 r_{j} individuals not experienced failure or censoring before j

 d_j suffering failure during j

Progression free survival

Task:

• prediction of progression free survival in head and neck cancer

Data:

- PET/CT images for 224 training cases
- 101 test cases
- other clinical patient data

Segmentation

• modified U-Net to fit large 3D volumes

 $^{^1}$ "nnU-Net: Self-adapting framework for U-Net-based medical image segmentation", Isensee et al., 2018

Segmentation

- modified U-Net to fit large 3D volumes
- segmentation with DICE of 0.71

$$DSC = \frac{2|A \cap B|}{|A| + |B|}$$

 $^{^1}$ "nnU-Net: Self-adapting framework for U-Net-based medical image segmentation", Isensee et al., 2018

Segmentation

- modified U-Net to fit large 3D volumes
- segmentation with DICE of 0.71

$$DSC = \frac{2|A \cap B|}{|A| + |B|}$$

• use the nn-Unet¹

 $^{^1}$ "nnU-Net: Self-adapting framework for U-Net-based medical image segmentation", Isensee et al., 2018

Survival Model

Survival Model

• compute expected time-to-event

$$E(T) = \sum_{k=1}^{n} h^{k} \prod_{l=0}^{k-1} (1-h^{l}) t^{k}, \quad (5)$$

to rank cases (concordance index)

Survival Model

• compute expected time-to-event

$$E(T) = \sum_{k=1}^{n} h^{k} \prod_{l=0}^{k-1} (1-h^{l}) t^{k}, \quad (5)$$

to rank cases (concordance index)

• patient stratification into subgroups

• high and low risk cases

	training	validation
c-index	0.899	0.833

	training	validation
c-index	0.899	0.833

	training	validation	test
c-index	0.899	0.833	0.668

c-index = ______pairs of correctly ordered subjects

subjects that can actually be ordered

- considerable drop between train/validation and test set
 - $\circ~$ small dataset $\rightarrow~$ overfitting
 - partial external testing
 - \rightarrow larger dataset needed
- a perfect model would be suspicious

c-index

• considerable drop between train/validation and test set

- $\circ~$ small dataset $\rightarrow~$ overfitting
- partial external testing
- \rightarrow larger dataset needed
- a perfect model would be suspicious
 - no treatment information included

Anomaly detection

train model to detect any kind of divergence from normal/healthy examples

train model to detect any kind of divergence from normal/healthy examples

Training

train model to detect any kind of divergence from normal/healthy examples

Training

train model to detect any kind of divergence from normal/healthy examples

Inference

train model to detect any kind of divergence from normal/healthy examples

- mammography depicts the standard breast cancer screening technique
- but features
 - susceptibility to overdiagnosis
 - o low sensitivity in dense tissue

- mammography depicts the standard breast cancer screening technique
- but features
 - susceptibility to overdiagnosis
 - o low sensitivity in dense tissue
- dynamic contrast enhanced (DCE)-MRI features higher sensitivity

- mammography depicts the standard breast cancer screening technique
- but features
 - susceptibility to overdiagnosis
 - o low sensitivity in dense tissue
- dynamic contrast enhanced (DCE)-MRI features higher sensitivity

• but comes with: long scan times - high costs - contrast agent - motion artifacts

- mammography depicts the standard breast cancer screening technique
- but features
 - susceptibility to overdiagnosis
 - o low sensitivity in dense tissue
- dynamic contrast enhanced (DCE)-MRI features higher sensitivity

• but comes with: long scan times - high costs - contrast agent - motion artifacts

 \rightarrow anomaly detection models may have the power to overcome those limitations?

• masked autoencoder for anomaly detection

- masked autoencoder for anomaly detection
- train on healthy non-contrast enhanced breast cancer MRI

- masked autoencoder for anomaly detection
- train on healthy non-contrast enhanced breast cancer MRI
- during inference:
 - \circ introduce multiple random masks \rightarrow probability to mask anomaly
 - use complete autoencoder structure

	AUROC	AP
MAEMI	0.732	0.081
DCE-MRI	0.705	0.127

Future work:

- train/test on larger external dataset
- further validation with radiologists

Reconstruction of pseudo-health examples

[&]quot;Generalizing Unsupervised Anomaly Detection: Towards Unbiased Pathology Screening", Bercea et al., 2023

Reconstruction of pseudo-health examples

[&]quot;Generalizing Unsupervised Anomaly Detection: Towards Unbiased Pathology Screening", Bercea et al., 2023

Reconstruction of pseudo-health examples

Current limitations:

- bounding boxes as ground truth labels
- no healthy examples

[&]quot;Generalizing Unsupervised Anomaly Detection: Towards Unbiased Pathology Screening", Bercea et al., 2023

Thank you!

lang@helmholtz-munich.de

langdaniel

Liu, Changxing et al. "The molecular mechanisms of increased radiosensitivity of HPV-positive OPSCC". In: Journal of Otolaryngology-Head & Neck Surgery 47.1 (2018), pp. 1–8 (cit. on pp. 12, 13). Maniakas, Anastasios et al. "North-American survey on HPV-DNA and p16 testing for head and neck squamous cell carcinoma". In: Oral oncology 50.10 (2014), pp. 942–946 (cit. on pp. 12, 13). ì Tran, Du et al. "Learning spatiotemporal features with 3d convolutional networks". In: Proceedings of the *IEEE international conference on computer vision*, 2015, pp. 4489–4497 (cit. on pp. 18–20). Lang. Daniel M et al. "Deep learning based HPV status prediction for oropharyngeal cancer patients". In: Cancers 13.4 (2021), p. 786 (cit. on p. 21). Göttgens, Eva-Leonne et al. "HPV, hypoxia and radiation response in head and neck cancer". In: The British journal of radiology 92.1093 (2018), p. 20180047 (cit. on pp. 37-40). Cox. David R. "Regression models and life-tables". In: Journal of the Royal Statistical Society: Series B (Methodological) 34.2 (1972), pp. 187–202 (cit. on pp. 43–46). Isensee, Fabian et al. "nnU-Net: Self-adapting framework for U-Net-based medical image segmentation". In: arXiv preprint arXiv:1809.10486 (2018) (cit. on pp. 51–53). Bercea. Cosmin I et al. "Generalizing Unsupervised Anomaly Detection: Towards Unbiased Pathology Screening". In: Medical Imaging with Deep Learning. 2023 (cit. on pp. 81-83).