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Medical Imaging

Modalities:

e computed tomography (CT)
e magnetic resonance imaging (MRI)
e x-ray, ultrasound, SPECT, PET

Tasks:

e reconstruction/motion correction
o acquired/filtered in frequency
space
© motion between slices
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Modalities:

e computed tomography (CT)
e magnetic resonance imaging (MRI)
e x-ray, ultrasound, SPECT, PET

Tasks:

e reconstruction/motion correction
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Medical Imaging

Modalities:

e computed tomography (CT)
e magnetic resonance imaging (MRI)
e x-ray, ultrasound, SPECT, PET

Tasks:

e reconstruction/motion correction
e registration
o images from different time-points
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Medical Imaging

Modalities:

e computed tomography (CT)
e magnetic resonance imaging (MRI)
e x-ray, ultrasound, SPECT, PET

Tasks:

e reconstruction/motion correction
e registration

e image segmentation
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Medical Imaging

Modalities:

e computed tomography (CT)
e magnetic resonance imaging (MRI)
e x-ray, ultrasound, SPECT, PET

Tasks:

e reconstruction/motion correction

e registration
e image segmentation

o identification of region of interests
and organs of risk
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Medical Imaging

Modalities:

e computed tomography (CT)
e magnetic resonance imaging (MRI)
e x-ray, ultrasound, SPECT, PET

Tasks:

e reconstruction/motion correction
e registration
e image segmentation

o detection/classification

L1

Inference

Anomaly Map

HPV Positiv

HPV Negative
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Medical Imaging

Modalities:

e computed tomography (CT)
e magnetic resonance imaging (MRI)
e x-ray, ultrasound, SPECT, PET

Tasks:

e reconstruction/motion correction
e registration

e image segmentation
e detection/classification

o replacement of invasive testing
o development of novel markers,
e.g. survival

Inference

Anomaly Map

HPV Positiv

HPV Negative
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Oropharynx Cancer

"classically” driven by smoking and alcohol consumption

Nasal cavity

e cases driven by the human papillomavirus (HPV) on the rise

o more radiosensitivel

Soft palato

Epightis

Larynx (voico box)

biopsy for HPV testing

Esophagus

A

b
b
[ vsontaryo [ vy [ Larmoconans

Trachea

2

only 2/3 tested in north America

1“The molecular mechanisms of increased radiosensitivity of HPV-positive OPSCC”, Liu et al., 2018 HELMHOLTZ MUNICIY
24“North-American survey on HPV-DNA and p16 testing for head and neck squamous cell carcinoma”, Maniakas et al., 2014
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Oropharynx Cancer

"classically” driven by smoking and alcohol consumption
e cases driven by the human papillomavirus (HPV) on the rise

Nasal cavity

o more radiosensitivel

Soft palato

Epightis

Larynx (voico box)

biopsy for HPV testing

Esophagus
Trachea

2

0
)
[ esconary [ oosvarye [ omontaryes

only 2/3 tested in north America

Can we train a algorithm to classify HPV based on CT images?

1“The molecular mechanisms of increased radiosensitivity of HPV-positive OPSCC”, Liu et al., 2018 HELMHOLTZ MUNICIY
2North-American survey on HPV-DNA and p16 testing for head and neck squamous cell carcinoma”, Maniakas et al., 2014
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Data

o diverse data set (external testing)

training sct validation sct test set
oPC HNSCC HN PET-CT HN1
Patients a2 23 90 0
HPV: pos/neg 290/122 223/40 71/19 23/57

Age

Sex: Female/Male

T-stage: T1/T2/T3/Td

N-stage: NO/N1/N2/N3

Tumor size [em?)

TPV status

pos
neg

pos
neg

58.81 (52.00-64.75)
61.82 (58.00-72.75)
a7/213
34788

46/93/94/57
9/35/43/35

33/22/215/20
36/16/62,

2035 (10.52-37.78)
36.99 (15.72-45.35)

5787 (52.00-64.00)

32/191
15/25

60/93/41/29
6/12/12/10

19/30/170/4
5/2/31/2

8 (3.94-14.04)

62.32 (58.00-66.00)
59.11 (49.50-69.50)

14/56
/15

10/37/15/9
3/4/8/4

11/10/4;

2/1/13/3

34.63 (14.91-41.77)

5/18
12/45

1/8/9/8
9/16/9/23

6/2/15/0
14/10/31/2

23.00 (10.83-34.20)
40.19 (11.77-54.42)

manufacturer

Toshiba
Philips
O
Siemens
other

transversal vaxel spacing [mim]
longitudinal voxel spacing [mm]

GE Med. Sys.

.95-0.98)
2,00 (2.00-2.00)

272
138

(5.80-22.85)
0.49-0.51)
1.00-2.50)

238

3

12

0

1

[

106 (0.98-1
2.80 (3.00-3.27

)

)

0.98 (0.98-0.98)
2,99 (3.00-3.00)

sygzooo
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Data

o diverse data set (external testing)

training set validation sct tost st
oPC HNSCC HN PET-CT __ HN1
Patients 2 90 0
HPV: pos/neg 200/122 71/19 23/57
TPV status
Age
pos | 3881 (52006075 5787 (52.00-64.00) 62.32 (38.00-66.00) 5752 (52.00-62.50)
neg | 6152 (58.00-7275)  60.02 (51.50-67.25) 59.11 (19.50-69.50) 6091 (56.00-66.00)
Sex: Female/Male
pos | 47/243 32/191 14/56 5/18
neg | 31/88 15/25 /15 12/15
T-stage: T1/T2/T3/T4
pos | 46/93/94/57 60/93/41/29 10/37/15/9 1/8/9/8
nes | 9/35/43/35 6/12/12/10 3/4/8/4 9/16/9/23
Nestage: NO/N1/N2/N3
pos | 33/22/215/20 19/30/170/4 11/10/4 6/2/15/0
neg | 36/16/62 5/2/31/2 2/1/13/3 14/10/31/2
Tumor size [em?)
pos | 2935 (1052-3778) 1178 (394-14.04) 34,63 (14.91-41.77) 23,00 (10.83-31.29)
neg | 36.99 (15.7245.35) 23,57 (5.80-22.85) 82) 4019 (1.77-54.42)
transversal voxel spacing [mm] | 0.97 (0.95-0.08) 0.98 (0.95:0.8)
longitudinal voxel spacing [mm] | 2.00 (2.00-2.00) 2,90 (3.00-3.00)
manufacturer
GE Med. Sys. | 272 238 5 0
Toshiba. 138 3 0 0
Philips 2 12 25 0
CMS 0 0 0 3
Siemens 0 1 0 37
other 0 ] 0 0

o still very small (in terms of deep learning)
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Data

o diverse data set (external testing)

training sct validation sct test set
oPC HNSCC HN PET-CT HN1
Patients a2 90 0
HPV: pos/neg 290/122 71/19 23/57
TPV status
Age
pos | 58.8L (52.00-64.75)  57.87 (52.00-64.00) 6232 (58.00-66.00) 57.52 (52.00-62.50)
neg | 6182 (58.00-7275)  60.02 59.11 (49.50-69.50)  60.91 (56.00-66.00)

Sex: Female/Male
pos | 47/213 32/191 14/56
neg | 31/88 15/25 /15
T-stage: T1/T2/T3/Td

pos 60/93/41/29 10/37/15/9

neg 6/12/12/10 3/4/8/4
N-stage: NO/N1/N2/N3

pos | 33/22/215/20 19/30/170/4 11/10/47/3

neg | 36/16/62, 5/2/31/2 2/1/13/3

Tumor size [em?)

pos | 2935 (10.52-37.78)  11.78 (3.94-14.04)  34.63 (14.91-41.77)
neg | 36.99 (15.72-45.35)  23.57 (5.80-22.85) 2-47

5/18
12/45

1/8/9/8
9/16/9/2:
6/2/15/0

14/10/31/2

23.00 (10.83-34.20)
40.19 (11.77-54.42,

)

transversal voxel spacing [mimn] 0.97 (0.95-0.95) (0.49:051)
longitudinal voxel spacing [mm] | 2.00 (2.00-2.00) (1.00-2.50)
manufacturer
GE Med. Sys. | 272 28
Toshiba 138 3
2 12
0 0
Siemens 0 1
other 0 [

0.98 (0.95-0.98)
2,99 (3.00-3.00)

sygzooo

o still very small (in terms of deep learning)

— transfer learning
knowledge gained from initial task P; to improve downstream task P
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Data

e diverse data set (external testing)

training set validation tost st
oPC HNSCC HN PET-C
Patients 2 G: 90 0
HPV: pos/neg 200/122 71/19 23/57
TPV status
Age
pos | 3881 (52006075 5787 (52.00-64.00) 62.32 (38.00-66.00) 5752 (52.00-62.50)
neg | 6152 (58.00-72.75)  60.02 59.11 (49.50-69.50)  60.91 (56.00-66.00)
Sex: Female/Male
pos | 47/243 32/191 14/56 5/18
neg | 31/88 15/25 115 12/15
pos | 46/93/94/57 60/93/41/29 10/37/15/9 1/8/9/8
neg | 9/35/13/35 6/12/12/10 3/4/8/4 9/16/9/23
Nestage: NO/N1/N2/N3
pos | 33/22/215/20 19/30/170/4 11/10/47/3 6/2/15/0
neg | 36/16/62 5/2/31/2 2/1/13/3 14/10/31/2
Tumor size [em?)
pos | 2935 (1052-3778) 1178 (394-14.04) 34,63 (14.91-41.77) 23,00 (10.83-31.29)
neg | 36.99 (15.72-45.35) 2357 (5.80-22.85)  35.00 (17.32-47.82) 4019 (11.77-54.42)
transversal voxel spacing [mm] | 0.97 (0.95-0.08) 049051)  L06 (095-117)  0.98 (0.95-0.95)
longitudinal voxel spacing [mm] | 2.00 (2.00-2.00) (LO0250) 289 (300-327) 299 (3.00-3.00)
manufacturer
GE Med. Sys. | 272 238 15 0
Toshiba. 138 3 0 0
2 12 15 0
0 0 0 13
Siemens 0 1 0 37
other 0 ] 0 0

o still very small (in terms of deep learning)

— transfer learning

knowledge gained from initial task P1 to improve downstream

but: CT data is 3D (models usually pretrained on ImageNet)

task Py
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Learning Spatiotemporal Features with 3D Convolutional Networks

Du Tran'2, Lubomir Bourdev!, Rob Fergus', Lorenzo Torresani?, Manohar Paluri*
1Facebook Al Research, 2Dartmouth College

{dutran, lorenzo}@cs.dartmouth.edu {lubomir, robfergus,mano}@fb.com
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“Learning spatiotemporal features with 3d convolutional networks”, Tran et al., 2015
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“Learning spatiotemporal features with 3d convolutional networks”, Tran et al., 2015
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Results

Receiver operating characteristics curves

g
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False Positive Rate

3D video pre-trained 3D from scratch 2D ImageNet pre-trained

AUC C3D CNN VGG
test set  0.81 (0.77, 0.84)  0.64 (0.56, 0.70)  0.73 (0.70, 0.75)

e AUC: probability that a randomly chosen case with a positive ground truth label

is ranked with greater suspicion than a randomly chosen ground truth negative case
HELMHOLTZ MUNICI}

"Deep learning based HPV status prediction for oropharyngeal cancer patients”, Lang et al., 2021 5/25



Is there no better solution?
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Is there no better solution? — Self-supervised Learning
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Masked Autoencoders Are Scalable Vision Learners

Kaiming He*!  Xinlei Chen*  Saining Xie Yanghao Li Piotr Dolldr Ross Girshick
*equal technical contribution ' project lead

Facebook Al Research (FAIR)
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Masked Autoencoders Are Scalable Vision Learners

Kaiming He"'  Xinlei Chen* Saining Xie Yanghao Li Piotr Dolldr Ross Girshick
*equal technical contribution ' project lead

Facebook Al Research (FAIR)
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e masking for self-supervised pretraining
o no need for labeled data
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Masked Autoencoders Are Scalable Vision Learners

Kaiming He"'  Xinlei Chen* Saining Xie Yanghao Li Piotr Dolldr Ross Girshick

*equal technical contribution ' project lead

Facebook Al Research (FAIR)

e masking for self-supervised pretraining
o no need for labeled data

e transformer based autoencoder

Probabilties

Attention Is All You Need

svatastogogie con egieton aiisassorie e

Lion o o -
i e s s PR o i

[ —

Nx

Positional
Encoding
PE (0,2 = sin(pos/10000%/dma)

PE(pos 2141) = cos(pos/10000%/ 4=

Positional
Encoding

QR4

Gutout
Embedding

Outputs
(shitted right)

Inputs.

HELMHOLTZ MUNICIY

6/25



Masked Autoencoders Are Scalable Vision Learners

Kaiming He"'  Xinlei Chen* Saining Xie Yanghao Li Piotr Dolldr Ross Girshick
*equal technical contribution ' project lead

Facebook Al Research (FAIR)

[
u
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/] ]
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[
> ‘encoder - decoder
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]
input . . ) n
|
[
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e masking for self-supervised pretraining
o no need for labeled data

e transformer based autoencoder

Vision Transformer (ViT) Transformer Encoder
A

“Transformer Encoder

| |
- BOOY 000 i o)

Linear Projection of Flattened Patches

"R

Multi-Head
Attention
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encoder, —

-

CEERENYL

mask the input for self-supervised pretraining
o cases without HPV status
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encoder

e mask the input for self-supervised pretraining
o cases without HPV status

e remodel the vision transformer to be able to handle
3D data

P

decoder
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encoder

e mask the input for self-supervised pretraining
o cases without HPV status

e remodel the vision transformer to be able to handle
3D data

L~

3D sinusoidal
encoding

@/

patch embedding

s
positional embedding tokens
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e mask the input for self-supervised pretraining
o cases without HPV status

e remodel the vision transformer to be able to handle
3D data

e HPV classification as a downstream task

encoder —> classification

HELMHOLTZ MUNICIY
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Results

e extend the public H&N dataset

o include cases without HPV status info
o no external testing

HELMHOLTZ MUNICIY
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Results

o extend the public H&N dataset 1.0, Receiver operating characteristics curves
o include cases without HPV status info /r—f_f
o no external testing

0.8
e test set results j

o MAEMI: AUC = 0.723 .
0.4 #fr(

o C3D: AUC = 0.710
IJ ' —— MAEMI (AUC = 0.723)

True Positive Rate
o
o

o
N
=1

€3D-based (AUC = 0.710)

o
e
o

0.2 0.4 0.6 0.8 1.0
False Positive Rate
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Results

o extend the public H&N dataset 10 Receiver operating characteristics curves
o include cases without HPV status info /(—f_'ﬁ
o no external testing 08
o test set results o j
o MAEMI: AUC = 0.723 206 j
o C3D: AUC = 0.710 2 1
2 ,
o MAEMI not significantly better 04
o small dataset =
o MAEMI: 1k cases 0.2 |'
& C3D: 1M cases '
== MAEMI (AUC = 0.723)
o optimization limited by computing 00 ]J C3D-based (AUC = 0.710)
resources 0.0 02 04 06 08 1.0

False Positive Rate

HELMHOLTZ MUNICIY
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"HPV positive tumors are more radiosensitive”

HELMHOLTZ MUNICI?

L“HPV, hypoxia and radiation response in head and neck cancer”, Géttgens et al., 2018
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"HPV positive tumors are more radiosensitive”

e determined in vitro via cell survival curves!

e on a patient level this is only empirically known

HELMHOLTZ MUNICI?
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"HPV positive tumors are more radiosensitive”

e determined in vitro via cell survival curves!

e on a patient level this is only empirically known

— Survival Analysis

HELMHOLTZ MUNICI?

L“HPV, hypoxia and radiation response in head and neck cancer”, Géttgens et al., 2018
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Survival Analysis

end of study
event ~
Patient A y
lost to follow up
Patient B /

Patient C

Patient D

timeline

e censoring — no simple regression task

e classical machine learning — Cox model

HELMHOLTZ MUNICIY
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Survival Analysis

Two most common quantities to model survival are

survival function
S(t) =Pr(T > t), (1)

probability to survive beyond time ¢, event at T'

hazard function

Prt< T < t+At|T > ¢
h) = Jfim, s <A:r =23,
t—

)

momentary rate of occurrence at time ¢

HELMHOLTZ MUNICI?
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Cox model

Hazard function for an individual j with covariates x;:

hi(tx;) = Ao(t) exp{x;B}, (3)

e )\o(t) the baseline hazard function

o exp{x;8} relative risk associated with x;

HELMHOLTZ MUNICI
1“Regression models and life-tables”, Cox, 1972
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Cox model

Hazard function for an individual j with covariates x;:

hi(tx;) = Ao(t) exp{x;B}, (3)

e )\o(t) the baseline hazard function

o exp{x;8} relative risk associated with x;

Cox! partial likelihood for coefficients 3:

L(B) = H _exp{xif} (4)

)
T'; uncensored ZT;Z T; exp{x]ﬁ}

i

HELMHOLTZ MUNICI
1“Regression models and life-tables”, Cox, 1972
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Cox model

Hazard function for an individual j with covariates x;:

hj(tlx5) = Xo(t) exp{x;5},

e )\o(t) the baseline hazard function

o exp{x;8} relative risk associated with x;

Cox! partial likelihood for coefficients 3:

exp{x;3}

L(B) = S 1o n exp (B}

T; uncensored

e Cox could be implemented as a loss in deep learning

1“Regression models and life-tables”, Cox, 1972

3)

4)
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Cox model

Hazard function for an individual j with covariates x;:

hj(tlx5) = Xo(t) exp{x;5},

e )\o(t) the baseline hazard function

o exp{x;8} relative risk associated with x;

Cox! partial likelihood for coefficients 3:

exp{x;3}

L(B) = S 1o n exp (B}

T; uncensored

e Cox could be implemented as a loss in deep learning

e but batch wise processing/optimization of weights

1“Regression models and life-tables”, Cox, 1972

3)

4)

HELMHOLTZ MUNICI?
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Discrete Survival Model

A scalable discrete-time survival model
for neural networks

Michael F. i and

 Department of

y . Stanford, CA,
Stanford U Stanford, CA, U
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Discrete Survival Model

A scalable discrete-time survival model
for neural networks

Michael F. Gensheimer' and i : — mf m ) / /J;
 Department of y oy, Stanford, CA, . <AL T ——F%%
St Sanford Unves Sano, .U ’

L h o h
e o o o o
L [
Lo bbb t tha by
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Discrete Survival Model

A scalable discrete-time survival model
for neural networks

Michael F. Gensheis and
Department of | tanford Uy ford, CA, United America

M e 2 e

[
b b ot thz tha

Loss for time interval j: with

h’ hazard probability for individual 7 during j

d; T T . . .

. . r; individuals not experienced failure or censoring
E ln(h]?) + E In(1— h’;)? before j
i=1 i=dj+1

d; suffering failure during j

HELMHOLTZ MUNICIY
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Progression free survival

Task:

e prediction of progression free survival in head and neck cancer
Data:

e PET/CT images for 224 training cases

e 101 test cases

e other clinical patient data

HELMHOLTZ MUNICIY
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Segmentation

148352

.

83

E
163 || )

12

8 -l

30 Convolution
= kemel: (5,5, 5), stride: (1,1, 1)

3D Convolution
kemel: (3, 3, 3), stride: (1, 1, 1)

— skip connections

(Transpose) 3D Convolution
kemnel: (5, 5, 5), stride: (3, 3, 3)
(Transpose) 3D Convolution

kemel: (3, 3, 3), stride: (2,2, 2)

LennU-Net: Self-adapting framework for U-Net-based medical image segmentation”, Isensee et al., 2018

Dice = 0.932

Dice < 0.10 Dice = 0.564

@ ground truth GTV ® predicted GTV

e modified U-Net to fit large 3D volumes

HELMHOLTZ MUNICIY
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Segmentation

o= E
! 1

.

o=

& 6
163 || I-
| 1 Dice < 0.10 Dice = 0.564 Dice = 0.932
1 »
¢ -l -l @ ground truth GTV ® predicted GTV

"l" -
! ! e modified U-Net to fit large 3D volumes
2zl.”.'l e segmentation with DICE of 0.71

_ 2JANB|
DSC = mrerm

3D Convolution g (anspese) 30 Convolution
kemel: (5, 5, 5), stride: (1, 1, 1) kemnel: (5, 5, 5), stride: (3, 3, 3)

30 Convolution g (Tenspose) 30 Canvolution

kemel: (3, 3, 3), stride: (1, 1, 1) kemel: (3, 3, 3), stride: (2,2, 2)

— skip connections

HELMHOLTZ MUNICIY

LennU-Net: Self-adapting framework for U-Net-based medical image segmentation”, Isensee et al., 2018
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Segmentation

E
163 || )

12

8 -l

30 Convolution
= kemel: (5,5, 5), stride: (1,1, 1)

3D Convolution
kemel: (3, 3, 3), stride: (1, 1, 1)

— skip connections

(Transpose) 3D Convolution
kemnel: (5, 5, 5), stride: (3, 3, 3)
(Transpose) 3D Convolution

kemel: (3, 3, 3), stride: (2,2, 2)

LennU-Net: Self-adapting framework for U-Net-based medical image segmentation”, Isensee et al., 2018

Dice < 0.10 Dice = 0.564 Dice = 0.932

@ ground truth GTV ® predicted GTV

e modified U-Net to fit large 3D volumes
e segmentation with DICE of 0.71

_ 2JANB|
DSC = mrerm

e use the nn-Unet!
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Survival Model

clinical
information

El

pretrained C3D 1
model

0

I
—
Survival Probability

pretrained C3D

Time
model
a
W CTfeatures dense layer + RelLu + 0.5 dropout
W PET features [1 dense layer + sigmoid

W clinical features
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Survival Model

clinical
information

El

e compute expected time-to-event

pretrained C3D (]
@ model 510 n k—1
al §o75 \/\ E(T):} : KE H(l—hl) tk, (5)
050
I k=1 =0
retrained C3D “o .
@ P model e to rank cases (concordance index)
a)
W CT features dense layer + ReLu + 0.5 dropout
I PET features [] dense layer + sigmoid

W clinical features
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Survival Model

clinical
information

El

e compute expected time-to-event

@ pretr:::s:l c3D 1 Jam n k—1
N \/\ B(T) =S 0t [Ta-w) 5, (5)
5 k=1 =0
£ oas
ined C3D 0.00- .
@ pretrained Tme to rank cases (concordance index)
o e patient stratification into subgroups
o high and low risk cases
W CT features dense layer + ReLu + 0.5 dropout
W PET features [ dense layer + sigmoid

W clinical features
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Results

‘ training ‘ validation
c-index ‘ 0.899 ‘ 0.833
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Results

l

. s Survival t
‘ training ‘ validation urvivattime

c—index‘ 0.899 ‘ 0.833 e event

© no event

pairs of correctly ordered subjects
c-index =

subjects that can actually be ordered
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Results

l

‘ training ‘ validation ‘ test Survival time
c-index ‘ 0.899 ‘ 0.833 ‘ 0.668 o event

o noevent

pairs of correctly ordered subjects

c-index =
subjects that can actually be ordered
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Results

| training | validation | test
cindex | 0899 | 0833 | 0.668

e considerable drop between train/validation and test set

o small dataset — overfitting
o partial external testing

— larger dataset needed
e a perfect model would be suspicious

.
L
I

| —
t

]
1

¢
¢
. o . o
s

Survival time

® event
o noevent

c-index =

pairs of correctly ordered subjects

subjects that can actually be ordered
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Results

| training | validation | test
cindex | 0899 | 0833 | 0.668

e considerable drop between train/validation and test set
o small dataset — overfitting
o partial external testing
— larger dataset needed

e a perfect model would be suspicious
© no treatment information included

.
L
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]
1

¢
¢
. o . o
s

Survival time

® event
o noevent

c-index =

pairs of correctly ordered subjects

subjects that can actually be ordered
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Anomaly detection
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Unsupervised anomaly detection

train model to detect any kind of divergence from normal/healthy examples
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Unsupervised anomaly detection

train model to detect any kind of divergence from normal/healthy examples

Training

autoencoder

healthy
examples only
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Unsupervised anomaly detection

train model to detect any kind of divergence from normal/healthy examples

Training

healthy L .
examples only only able to recover healthy tissue reasonably well
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Unsupervised anomaly detection

train model to detect any kind of divergence from normal/healthy examples

Inference
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Unsupervised anomaly detection

train model to detect any kind of divergence from normal/healthy examples

Inference
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Breast cancer anomaly detection

e mammography depicts the standard breast cancer screening technique
e but features

o susceptibility to overdiagnosis
o low sensitivity in dense tissue
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Breast cancer anomaly detection

e mammography depicts the standard breast cancer screening technique
e but features

o susceptibility to overdiagnosis

o low sensitivity in dense tissue

e dynamic contrast enhanced (DCE)-MRI features higher sensitivity

2 > diff | —
contrast injection
pre-contrast post-contrast fat-saturated btract
fat-saturated images from consecutive subtraction
image time points image
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Breast cancer anomaly detection

e mammography depicts the standard breast cancer screening technique
e but features

o susceptibility to overdiagnosis

o low sensitivity in dense tissue

e dynamic contrast enhanced (DCE)-MRI features higher sensitivity

2 ‘ > diff | —
contrast injection
pre-contrast post-contrast fat-saturated btract
fat-saturated images from consecutive subtraction
image time points image

e but comes with: long scan times - high costs - contrast agent - motion artifacts
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Breast cancer anomaly detection

e mammography depicts the standard breast cancer screening technique
e but features

o susceptibility to overdiagnosis

o low sensitivity in dense tissue

e dynamic contrast enhanced (DCE)-MRI features higher sensitivity

2 ‘ > diff | —
contrast injection

pre-contrast post-contrast fat-saturated
fat-saturated images from consecutive
image time points

DCE-MRI

subtraction
image

e but comes with: long scan times - high costs - contrast agent - motion artifacts

— anomaly detection models may have the power to overcome those limitations?
HELMHOLTZ MUNICI

20/25



Breast cancer anomaly detection

[ [
| | |
| |

- | |
| =
| | |
| &
| gecoaer |
| |

| |

- =
[ |
pre-contrast - | |
" "

fat-saturated & random mask reconstructed image

non-fat saturated
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Breast cancer anomaly detection

[
| |
| |
| |
§ | |
|
"
encoder —» | decoder & —»
| |
| |
| |
- =
[
pre-contrast |
"

fat-saturated & random mask reconstructed image

non-fat saturated

e masked autoencoder for anomaly detection
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Breast cancer anomaly detection

d

13

pre-contrast
fat-saturated & random mask
non-fat saturated

reconstructed image

e masked autoencoder for anomaly detection

e train on healthy non-contrast enhanced breast cancer MRI
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Breast cancer anomaly detection

. E encoder — | decoder| N +| diff >
pre-contrast multiple random multiple reconstructed anomaly
fat-saturated & masks images map

non-fat saturated

e masked autoencoder for anomaly detection

e train on healthy non-contrast enhanced breast cancer MRI
e during inference:

o introduce multiple random masks — probability to mask anomaly
o use complete autoencoder structure
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Breast cancer anomaly detection

T1-weighted T1l-weighted subtractionimage anomaly map
non-fat saturated fat saturated (DCE-MRI) (MAEMI)
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Breast cancer anomaly detection

T1-weighted T1l-weighted subtractionimage anomaly map
non-fat saturated fat saturated (DCE-MRI) (MAEMI)

AUROC AP
MAEMI | 0.732 0.081
DCE-MRI 0.705 0.127
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Breast cancer anomaly detection
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<
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masking ratio
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Breast cancer anomaly detection

0.730 0.080
<
0.725 %
o
g o720 0.078°g
g o
0.715 \
< 10076 Q
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0.65 070 075 0.85 090 095

HELMHOLTZ MUNICIY

23/25



Breast cancer anomaly detection

0.730

0.725
Q
g o720
Sons
<

0.710

0.705

— AuRoC
a

0.85

0.65 0.70 0.75 0.80
masking ratio

Future work:

e train/test on larger external dataset

e further validation with radiologists

0.080

0.078

. 10076

0.074

average precision
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Reconstruction of pseudo-health examples

) Encoder Loss Training Inference
() Decoder Loss x X,
4O
_____ I
! EBO | !
| — — SRR e — L I S
= - ! EBO | !
,,,,,, ! -
N I T
{ Reversed ! I Perceptual Anomaly Map
____ 1
I
,,,,,, . I _ q
! expELBO | ! N
\meo v — —x_fake KO
i
'
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“Generalizing Unsupervised Anomaly Detection: Towards Unbiased Pathology Screening”, Bercea et al., 2023
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Reconstruction of pseudo-health examples

Resection _ Enlarged Ventricles Mass Iv. substance Edema Lesions

Input

lexper amotation

Abnormal

<
S
T
=4
B
2
s
g
1
[
o
§
=
>
g
3
H

Normal
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Reconstruction of pseudo-health examples

Resection _ Enlarged Ventricles Mass Iv. substance Edema Lesions

Input

lexper amotation

Abnormal

<
S
T
=4
B
2
s
g
1
[
o
§
=
>
g
3
H

Normal

Current limitations:
e bounding boxes as ground truth labels

e no healthy examples
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“Generalizing Unsupervised Anomaly Detection: Towards Unbiased Pathology Screening”, Bercea et al., 2023
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Thank you!

lang@helmholtz-munich.de

0 langdaniel
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