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Medical Imaging
Modalities:

• computed tomography (CT)
• magnetic resonance imaging (MRI)

• x-ray, ultrasound, SPECT, PET

Tasks:

• reconstruction/motion correction
• registration
• image segmentation
• detection/classification
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Medical Imaging
Modalities:

• computed tomography (CT)
• magnetic resonance imaging (MRI)
• x-ray, ultrasound, SPECT, PET

Tasks:

• reconstruction/motion correction
• registration
• image segmentation
• detection/classification

◦ replacement of invasive testing
◦ development of novel markers,

e.g. survival
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Oropharynx Cancer

• ”classically” driven by smoking and alcohol consumption
• cases driven by the human papillomavirus (HPV) on the rise

◦ more radiosensitive1

• biopsy for HPV testing
• only 2/3 tested in north America2

Can we train a algorithm to classify HPV based on CT images?

1“The molecular mechanisms of increased radiosensitivity of HPV-positive OPSCC”, Liu et al., 2018
2“North-American survey on HPV-DNA and p16 testing for head and neck squamous cell carcinoma”, Maniakas et al., 2014
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Data
• diverse data set (external testing)

• still very small (in terms of deep learning)
→ transfer learning
knowledge gained from initial task P1 to improve downstream task P2

but: CT data is 3D (models usually pretrained on ImageNet)
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“Learning spatiotemporal features with 3d convolutional networks”, Tran et al., 2015
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Results

AUC C3D CNN VGG
test set 0.81 (0.77, 0.84) 0.64 (0.56, 0.70) 0.73 (0.70, 0.75)

• AUC: probability that a randomly chosen case with a positive ground truth label
is ranked with greater suspicion than a randomly chosen ground truth negative case

“Deep learning based HPV status prediction for oropharyngeal cancer patients”, Lang et al., 2021 5 / 25



Is there no better solution?

• masking for self-supervised
pretraining

◦ no need for labeled data

• transformer based
autoencoder
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• mask the input for self-supervised pretraining
◦ cases without HPV status

• remodel the vision transformer to be able to handle
3D data

• HPV classification as a downstream task
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Results

• extend the public H&N dataset
◦ include cases without HPV status info
◦ no external testing

• test set results
◦ MAEMI: AUC = 0.723
◦ C3D: AUC = 0.710

• MAEMI not significantly better
◦ small dataset

� MAEMI: 1k cases
� C3D: 1M cases

◦ optimization limited by computing
resources
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”HPV positive tumors are more radiosensitive”

• determined in vitro via cell survival curves1

• on a patient level this is only empirically known

→ Survival Analysis

1“HPV, hypoxia and radiation response in head and neck cancer”, Göttgens et al., 2018
9 / 25



”HPV positive tumors are more radiosensitive”

• determined in vitro via cell survival curves1

• on a patient level this is only empirically known

→ Survival Analysis

1“HPV, hypoxia and radiation response in head and neck cancer”, Göttgens et al., 2018
9 / 25



”HPV positive tumors are more radiosensitive”

• determined in vitro via cell survival curves1

• on a patient level this is only empirically known

→ Survival Analysis

1“HPV, hypoxia and radiation response in head and neck cancer”, Göttgens et al., 2018
9 / 25



”HPV positive tumors are more radiosensitive”

• determined in vitro via cell survival curves1

• on a patient level this is only empirically known

→ Survival Analysis

1“HPV, hypoxia and radiation response in head and neck cancer”, Göttgens et al., 2018
9 / 25



Survival Analysis

• censoring → no simple regression task
• classical machine learning → Cox model
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Survival Analysis

Two most common quantities to model survival are

survival function

S(t) = Pr(T > t), (1)

probability to survive beyond time t, event at T

hazard function

h(t) = lim
∆t→0

Pr(t ≤ T < t +∆t|T ≥ t)
∆t

, (2)

momentary rate of occurrence at time t
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Cox model
Hazard function for an individual j with covariates xj :

hj(t|xj) = λ0(t) exp{xjβ}, (3)

• λ0(t) the baseline hazard function
• exp{xjβ} relative risk associated with xj

Cox1 partial likelihood for coefficients β:

L(β) =
∏

Ti uncensored

exp{xiβ}∑
Tj≥Ti

exp{xjβ}
, (4)

• Cox could be implemented as a loss in deep learning
• but batch wise processing/optimization of weights

1“Regression models and life-tables”, Cox, 1972
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Discrete Survival Model

Loss for time interval j:

dj∑
i=1

ln(hi
j ) +

rj∑
i=dj+1

ln(1 − hi
j ),

with
hi hazard probability for individual i during j
rj individuals not experienced failure or censoring
before j
dj suffering failure during j
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Progression free survival

Task:
• prediction of progression free survival in head and neck cancer

Data:
• PET/CT images for 224 training cases
• 101 test cases
• other clinical patient data

14 / 25



Segmentation

• modified U-Net to fit large 3D volumes

• segmentation with DICE of 0.71

DSC =
2|A∩B|
|A|+|B|

• use the nn-Unet1

1“nnU-Net: Self-adapting framework for U-Net-based medical image segmentation”, Isensee et al., 2018
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Survival Model

• compute expected time-to-event

E(T) =
n∑

k=1
hk

k−1∏
l=0

(1 − hl) tk , (5)

to rank cases (concordance index)
• patient stratification into subgroups

◦ high and low risk cases
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Results

training validation
c-index 0.899 0.833

c-index =
pairs of correctly ordered subjects

subjects that can actually be ordered

• considerable drop between train/validation and test set
◦ small dataset → overfitting
◦ partial external testing

→ larger dataset needed
• a perfect model would be suspicious

◦ no treatment information included
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Anomaly detection

18 / 25



Unsupervised anomaly detection

train model to detect any kind of divergence from normal/healthy examples
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Breast cancer anomaly detection
• mammography depicts the standard breast cancer screening technique
• but features

◦ susceptibility to overdiagnosis
◦ low sensitivity in dense tissue

• dynamic contrast enhanced (DCE)-MRI features higher sensitivity

• but comes with: long scan times - high costs - contrast agent - motion artifacts

→ anomaly detection models may have the power to overcome those limitations?
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Breast cancer anomaly detection

• masked autoencoder for anomaly detection
• train on healthy non-contrast enhanced breast cancer MRI
• during inference:

◦ introduce multiple random masks → probability to mask anomaly
◦ use complete autoencoder structure
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Breast cancer anomaly detection
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Breast cancer anomaly detection

Future work:
• train/test on larger external dataset
• further validation with radiologists
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Reconstruction of pseudo-health examples

“Generalizing Unsupervised Anomaly Detection: Towards Unbiased Pathology Screening”, Bercea et al., 2023
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Reconstruction of pseudo-health examples

Current limitations:
• bounding boxes as ground truth labels
• no healthy examples

“Generalizing Unsupervised Anomaly Detection: Towards Unbiased Pathology Screening”, Bercea et al., 2023
24 / 25



Thank you!

lang@helmholtz-munich.de

langdaniel
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