

NNPDF4.0

Neural networks techniques for parton distribution functions evaluation

Andrea Barontini on behalf of the NNPDF collaboration

Alpaca: modern algorithms in machine learning and data analysis: from medical physics to research with accelerators and in underground laboratories 20/11/2023

Based on: hep-ph:1907.05075,2109.02653,2208.08372,1906.10698,1509.00209

Outline

Results and outlook

Outline

The NNPDF framework

Results and outlook

Describing a collision

The theoretical description of a **collision** involves several **QCD** (Quantum ChromoDynamics) ingredients

We are going to focus on

And, in particular, on Parton Distribution Functions (PDFs)

Describe the hadronic initial state in terms of their partonic components

Initial state = hadrons (protons, neutrons ,...)

Factorization: divide and conquer

PDFs

$$\sigma(x,Q^2) = \hat{\sigma}_{ij} \otimes f_i \otimes f_j = \int dz_1 dz_2 \hat{\sigma}(z_1, z_2, Q^2) f_i\left(\frac{x}{z_1}, Q^2\right) f_j\left(\frac{x}{z_1}, Q^2$$

Partonic (hard) cross sections

- $\sigma(x, Q^2)$ is our **observable**
- Q^2 is the energy scale of the process
- $\hat{\sigma}(z_1, z_2, Q^2)$ can be computed in **perturbation theory**
- $f_{i/i}(x, Q^2)$ cannot be computed in perturbation theory

(and they are **universal**)

BUT WHY??

Initial state = hadrons (protons, neutrons ,...)

Asymptotic freedom

In QCD we are usually expand quantities in terms of the strong coupling $\alpha_{c}(Q^{2})$ (Notable counterexample is lattice QCD)

PDF extraction

$$\sigma(x,Q^2) = \hat{\sigma}_{ij} \otimes f_i \otimes f_j = \int dz_1 dz_2 \hat{\sigma}(z_1, z_2, Q^2) f_i\left(\frac{x}{z_1}\right)$$

Measured in experiments

computed in perturbation theory

Also, **DGLAP equations** allow us to compute the PDFs at all scale Q^2 , once known at a certain scale Q_0^2

$$f_i(Q^2) = E_{ij}(Q^2 \leftarrow Q_0^2) f_j(Q_0^2)$$

PDFs are then just a set of **unknown functions**

$$f_i: [0,1] \to \mathbb{R}$$

 $f_i(x) \sim \text{probability of extracting parton i from the proton with momentum fraction x}$

Let's look at the **Factorization theorem** from another prospective

unknown

$$Q^2 \int f_j \left(\frac{x}{z_2}, Q^2\right)$$

Inverse problem

NNPDF4.0 NNLO Q = 3.2 GeV1.0 g/10 u_v 0.8 dv S S o o ū 0.6 🦲 d С. С 0.4 0.2 0.0 + 10⁻³ 10^{-2} 10^{-1} Х

Outline

The Physics

Results and outlook

^{~4600} datapoints in NNPDF4.0

Propagating uncertainties: data to PDFs

NB: Another possibility is the Hessian approach. The two methods can be converted one in the other (hep-ph:1505.06736)

NNPDF adopt a **Monte Carlo** approach

- Start with the original dataset D and its covariance 1. matrix C
- 2. Generate N_{rep} pseudodata D_i according to C
- Fit a **Neural Network NN**_{*i*} to each of the pseudodata 3. replica
- 4. Deliver the full set of replicas

PDFs uncertainties are given by the distribution of the Monte Carlo set

The Neural Network

Architecture: 2-25-20-8 Activation functions: hyperbolic; linear for the last layer Preprocessing: $A_k x^{-\alpha_k} (1-x)^{\beta_k}$ Optimizer: Adadelta Physics assumptions:

$$\Rightarrow \quad Sum \, Rules \qquad \int_0^1 dx V(x, Q) = 3$$

- PDF positivity
- Integrability

The Neural Network: training

Automated model selection

Minimize sources of **bias** in the PDFs:

- Functional form \rightarrow Neural Network
- Model parameters → Hyperoptimization

Idea is to scan over a large enough hyperparameter space and select the best set

Best \rightarrow best χ^2 on a **test dataset** (never seen by the NN)

NB: Still requires some human input (more on this later)

Can we trust our results?

Downside of Neural Networks: we lack a **full analytical insight** on the process

NN is often considered to be a **black box**

Closure and future tests

Closure test

Test the algorithm in a controlled environment where the "truth" is known

- 1. Choose a PDF as underlying truth 2. Generate central fake data (**LEVEL 0**) 3. Generate smeared fake data with the experimental covariance matrix (**LEVEL 1**)
- Generate and fit pseudodata replica (**LEVEL 2**) 4.
- 5. Compare the results with known distribution

Divide the dataset **chronologically** and perform a fit for each set: yesterday's extrapolation region is today's data region

The NNPDF code is open-source

The full NNPDF code has been made **public** along with **user friendly documentation**

https://github.com/NNPDF/nnpdf

https://docs.nnpdf.science/

Outline

The Physics

The NNPDF framework

Results and outlook

Fit quality: PDFs

1.75 1.50 ū at 100 GeV 1.25 LHC dir. photon prod. 1.00 0.75 0.50 0.25 LHC jet prod NNPDF4.0 (LO) (68 c.l.+1σ) LHC top-quark pair prod. NNPDF4.0 (NLO) (68 c.l.+1σ) NNPDF4.0 (NNLO) (68 c.l. $+1\sigma$) 10-2 10^{-1} LHC W,Z prod. (pT and jets) Tevatron W,Z prod. (incl.) 10^{0} х LHC W,Z prod. (incl.) g at 100 GeV NNPDF4.0 NLO NNPDF4.0 NNLO The fit quality clearly **improves** with the perturbative order (LO < NLO < NNLO) 10-2 10^{-1} 10^{0} Х

DIS NC (fixed target)

LHC single t prod

DIS CC (fixed target)

Fit quality: predictions vs data

Also the description of the data clearly **improves** from NLO to NNLO

Comparison to other methodologies

rather good

than the other groups \rightarrow effect of the NN

Outlook: WIP and future projects

Physics projects

- Fit with theoretical uncertainties
- Fit with photon induced effects
- Fit at N3LO perturbative order

Preliminary results!

Methodology projects

- Bayesian fit
- New overfitting metrics for hyperopt
- Closure tests with inconsistent data

Conclusions

- → Using neural networks techniques for PDF evaluation has led to several successes
- The comparison with other PDF fitting groups has shown that using NN techniques it is possible to obtain results with smaller uncertanties, while keeping them reliable
- → For the future, it will be important to focus on explainability and improvements of the methodology

Neural networks techniques for parton distribution functions evaluation

Andrea Barontini on behalf of the NNPDF collaboration

Alpaca: modern algorithms in machine learning and data analysis: from medical physics to research with accelerators and in underground laboratories

20/11/2023

