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Overview

• Take simulated detector observables and construct anomaly

detection task.

• ⇒ New deep learning pipeline to improve upon traditional

likelihood approaches.

• Can improve sensitivity over standard approach.
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Dark Matter Direct Detection



The dark matter issue
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• Current and planned next-generation DD experiments are

probing/will probe a very large portion of the parameter space of

the WIMP (Weakly Interacting Massive Particle) model.
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Direct detection: Schematic
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Direct detection: The differential event rate

Scattering rate [Events/(keV kg day)].

R(E, t) =
ρσ

2mχµ2
p

(Aeff)2F 2(E)︸ ︷︷ ︸
Particle physics.

η(E, t)︸ ︷︷ ︸
Astrophysics

, θ = {mχ, σ}

Expected number events after exposure MT :

µ(Ei) = MT

∫ ∞

0

dE ϵ(E) ϕ(E,Ei)R(E)

Don’t need to concern ourselves with ϵ(E) ϕ(E,Ei) when using SBI
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Direct detection: Experiments

• Search for WIMP dark matter.

• Variety of detector targets/strategies.

• Leading are underground∗ “low-background” experiments. This

work: DARWIN.

• Methods tractable by any low background new physics search.
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DARWIN collaboration: Proposal

∼ 200 members
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DARWIN collaboration
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Direct detection: Traditional likelihood-based analysis

After some exposure → collect events:

L(s+ b) ∼ e−µs(θ)−µb(θ)

n!

n∏
i=1

d (Ns +Nb)

dE
(Ei | θ)

• Expected number of signal events: µs = MT ·
∫
dNs/dE

• Expected number of background events: µb = MT ·
∫
dNb/dE

• Spectral information

Model parameters θ = {mχ, σ...} phenomenalogically determine two

things:

• Number of expected events

• Signal spectrum ‘shape’
Important for ML analysis
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Direct detection in TPCs: Events

• S1: Prompt scintillation signal from recoil event.

• S2: Electron charges produced during ionization drift upwards →
extracted into gaseous phase creating larger scintillation.
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Direct detection: Traditional likelihood-based analysis

n∏
i=1

d (Ns +Nb)

dE
(Ei | θ) → 2D pdf derived from ’templates’

Relies heavily on high-level

summary statistics cS1,cS2:

⇒ E = g(cS1, cS2)
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Direct detection: Traditional likelihood-based analysis

n∏
i=1

d (Ns +Nb)

dE
(Ei | θ) → 2D pdf derived from ’templates’

Relies heavily on high-level

summary statistics cS1,cS2:

⇒ E = g(cS1, cS2)

Fitted analytically

M. Doerenkamp
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Simulation based inference

(SBI)



Simulation-Based Inference (in a nutshell)

Simulation-based inference is a statistical technique that allows us to

make inferences about a population or process based on simulated

data. It involves the following steps:

1. Generate simulated data.

2. Use deep neural nets to learn underlying features of simulated

data.

3. Use trained models to inference.
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Benefits of SBI

• Can handle complex models with intractable likelihoods.

• Use deep neural nets to learn underlying features of simulated

data/summary stats.

• Once a simulator has been established, possible to include

arbitrarily complicated simulations into analysis: prompt

readouts → high level summary stats.

• Makes no assumptions regarding the analytical form of the

likelihood.

• Need no special treatment of nuisance parameters.

• Can in principle simulate/calibrate any detector effects and learn

them directly.
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Simulation-Based Inference with Neural Nets

We have a variety of simulated data/summary stats available to us

	 Train NN to extract

relevant features from

simulated data. Effectively

‘learning’ the likelihood

function directly from data.
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Underground TPCs: Two types of events

• Nuclear Recoil (NR) → WIMPs

• (Dominant) Background → Electron Recoil (ER).

• Distance and ratio between S1/S2 peaks → NR vs. ER.

• NN can learn this instead! 17
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DARWIN: Simulation pipeline

18



DARWIN: NR event realisation

Nuclear recoil (NR) event example.
19



• SBI generally useful i.e parameter estimation DM mass/σ (Won’t

talk about it now.).

• Focus on ’Anomaly detection’.

• Can we significantly detect excess NR (WIMP)?

• Increase power of technique with extensive simulation capabilities

for DARWIN.
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Analysis pipeline 1:

Classification of recoil events



Classification: Signal vs. Background

• First primary objective in an analysis is to veto the dominant ER

background.

• Binary classification: ER background vs. NR signal

• Traditional analyses → Must sacrifice NR acceptance due to ER

events leaking into a low energy WIMP search region.

• Previous studies Sanz et. al, Herrero-Garcia et. al

arXiv:1911.09210, 2110.12248 for XENONnT.
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Classification: Signal vs. Background

Sanz et al. method:

1. Assume fixed WIMP mass 500 GeV and cross-section σ = 10−45

cm2 (34.2 live-days)

2. Generate image output of the simulated WIMP and

”background” events

3. Train a Convolutional Neural Network (CNN) to classify

WIMP vs. background
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Classification: ER vs. NR

Our method:

1. Assume fixed WIMP mass 500 GeV and cross-section σ = 10−45

cm2 (34.2 live-days)

2. Generate image output of the simulated WIMP and

”background” events

3. Train a Convolutional Neural Network (CNN) to classify

WIMP vs. background

Discovered this can work with ensemble of WIMP masses.

Cross-section irrelevant for event-by-event bkg/signal classification.

I.e only learning if ER or NR.

23



Training data: Simulations

RAW event output S1, S2 PMT deposits (4-fold coincidence, 200 ns):

⇒ x = [S1WaveformTotal, S2WaveformTotal, S2Pattern ]

Two distinct quanta: Electron Recoil (ER) and Nuclear Recoil (NR)

24
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Classification: ER vs. NR Results

• Train on ∼ 40000 images. Take testing sub-sample of ∼ 40%

• Check performance → confusion matrix:

• Takeaway ⇒ 98.03% accuracy. (Recall = 98.07%, Precision =

96.39%)

• This works regardless mass and cross-section: NR/ER

are what matter. 25
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Great! But...

• Trained an effective event-by-event ER veto: In standard

DARWIN pipeline, need to sacrifice NR acceptance!

• Current DARWIN estimate 99.98% ER rejection. 30% NR

acceptance.

• No need with SBI NN classifier.

• However, no information regarding the energy of events: WIMPs

manifest through number of events + spectral distribution!

• Can we learn the spectral information?

26
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Analysis pipeline 2:

Unsupervised approach



Generative Deep Learning: The Variational Auto-Encoder

• Variety of studies in HEP use these for anomaly detection tasks.

• Goal: Learn low dimensional representation (encoding) of data

via dimensional reduction.

• Latent space (bottleneck) layer is a bunch of normal distributions

parameterized by some µ and σ.

• Our goal: Learn the latent representation of the background

(ER) events. ⇒ Spectral information (E).

27
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Variational-Auto-Encoder: Training

• Use same data as with supervised classification.

• Train VAE on just* ER data.

• Train by maximising evidence lower bound (ELBO):

log p(x) ≥ ELBO = Eq(z|x)

[
log

p(x, z)

q(z | x)

]
= E[log p(x|z)]− βDKL(q(z|x)||p(z))

x = Input

z = Latent vector

β = Regularization parameter

• Loss ≡ −ELBO

28
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VAE: Training

• Train the network for 200 epochs.

Loss ≡ −ELBO

0 25 50 75 100 125 150 175 200
Epochs

2000
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3000

Lo
ss

Train Reconstruction Loss
Test Reconstruction Loss
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Spectral information
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• Auto-encoder can learn underlying spectral information of events

⇒ Sensitivity to WIMP mass.

• Can we also just fully reconstruct the energy of an event straight

from the data? Yes!
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Follow up work: E reconstruction

Neural posterior density estimation (Masked auto-regressive flows)

0 20 40 60 80 100

ER

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e

Estimated Coverage

Nominal coverage = 68.0

Neural posterior density estimation + WALDO

0 20 40 60 80 100

ER

0.5

0.6

0.7

0.8

0.9

1.0

C
ov

er
ag

e
Estimated Coverage

Nominal coverage = 68.0

Neural posterior + WALDO

arXiv:2205.15680

31



Looking for non

background-like events



Anomaly detection

• Traditionally unsupervised methods have been used.

• Anomaly Detection: Once trained, run data the network has

never seen before through trained network.

• If VAE has learned the underlying properties of ER bkg events,

any non-background events will in general have higher loss

(smaller ELBO).

• Loss distribution of anomalous data (new physics) will show as

an excess over background only loss distribution...
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Anomaly detection

10000 11000 12000 13000 14000 15000

-ELBO

ER bkg only

NR bkg only

WIMP only

• Background loss distributions + WIMP loss distribution.

• Any* anomalous signal will show up as statistical deviation in

(pseudo)data loss vs. (known) background loss.
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Semi-unsupervised anomaly detection: New distance met-

ric

Cool. But...

• A bit rubbish: Can we get greater separation (anomaly

awareness) between these distributions?

• New ‘anomaly function’ that utilizes pre-trained supervised NN

classifier:

TS = −ELBO +RHB ,

where

• HB = − 1
N

∑N
i=0 log (1− p (xi)) (Binary cross-sentropy.)

• R scales the contribution of the cross-entropy term → makes it

more/less supervised.
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Semi-unsupervised anomaly detection: Full pipeline
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Semi-unsupervised anomaly detection: New distance met-

ric

TS = (−ELBO) +RHB ,

⇒ Semi-unsupervised. Much greater anomaly awareness!
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Pseudo-data sets

Re-weight anomaly score distributions TS according to expected

ER+NR backgrounds and inject some WIMP signal: ER [2-10] keVee,

NR [5-35] keVnr
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Dimensionally reduced analysis

• ⇒ 1D analysis in TS space: Accept/reject

H0 : X ∼ P (x | No signal).

L(TS|H0) ∝ e−B
N∏
i=1

(Bf0 (TSi))

• Unbinned.

• Parametrically independent on WIMP model.

• No auxiliary terms required assuming simulations have suitably

descriptive coverage.

• Capability to conduct ER only searches with same machinery.

• Backgrounds currently taken from templates: In principal can

propagate uncertainties on the bkg from simulation (or even

better, calibration).
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Forecasting sensitivity



Median sensitivity

• Probability to accept/reject H0 after some exposure.

• Model independent.

• Simulate ∼ 104 realisations of −2 lnL(TS |H0) to ascertain the

asymptotic form of H0.

p =

∫ ∞

qmed

dq H0(q) .
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Median Sensitivity
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As a function of exposure

• Neural net

• Binned likelihood based: Median sensitivity [30% NR acceptance, 99%

ER rejection]
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Full sensitivity
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Thank you!



Backup Slides



Energy reconstruction SBI with masked autoregressive

flows

Detector model

(MAF)

 

 

 

 

Neural posterior density estimation: Estimate posterior on       from data.

Extract WALDO test statistic 
using amortized posterior                                            

prediction with exact 
coverage

C.I. with correct coverage.

τWALDO (D;θ0) = (E[θ | D]− θ0)
T V[θ | D]−1 (E[θ | D]− θ0)
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Backgrounds

0 5 10 15 20 25 30
Energy [ keV ]

10−2

10−1

100

R
at

e
[

(
ke

V
·t
·y

)−
1

]

Solar ν

2νββ

Kr85
222Rn

Total

10 20 30 40 50 60
Energy [ keV ]

10−10

10−8

10−6

10−4

10−2

100

102

R
at

e
[

(
ke

V
·t
·y

)−
1

]

CEvNS, 8b

CEvNS, hep

CEvNS, DSNB

CEvNS, atm

Total

• Intrinsic and extrinsic.

• Coherent neutrino scattering provides dominant background for

WIMP searches.
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Binned likelihood based approach

L(x) =
bins∏
i=1

λi
ni

ni!
e−λi : ER veto (99.98%), fidiucilization etc.
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Effect of R

• Explore effect of the R parameter.

• Three mock data sets corresponding to 10, 500 and 1000 GeV at

fixed σ = 10−45cm2, 5 t·yr exposure.
• Best result for R ∼ 170, but generally free to choose!
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