Anomaly aware machine learning for dark
matter direct detection at DARWIN

Andre Scaffidi and Roberto Trotta for the DARWIN
collaboration.
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Overview

e Take simulated detector observables and construct anomaly
detection task.

e = New deep learning pipeline to improve upon traditional
likelihood approaches.

e Can improve sensitivity over standard approach.
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Dark Matter Direct Detection



The dark matter issue

@ AstroKatie/Planck13
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e Current and planned next-generation DD experiments are
probing/will probe a very large portion of the parameter space of
the WIMP (Weakly Interacting Massive Particle) model.
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Direct detection: Schematic
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Direct detection: The differential event rate
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Direct detection: The differential event rate
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Direct detection: The differential event rate
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(p = 0.3 GeVIcm?)
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Particle physics. Astrophysics

Expected number events after exposure MT":
W(E) = MT [ dE e(B) o(E. E:) R(E)
0

Don’t need to concern ourselves with €(F) ¢(E, E;) when using SBI



Direct detection: Experiments
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Direct detection: Experiments

e Search for WIMP dark matter.
e Variety of detector targets/strategies.

e Leading are underground® “low-background” experiments. This
work: DARWIN.

e Methods tractable by any low background new physics search.



RWIN collaboration: Proposal

DARWIN: 40 tonne( or XLZD: 60 tonne()

~ 200 Inember-s" .




DARWIN collaboration
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Direct detection: Traditional likelihood-based analysis

After some exposure — collect events:
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Direct detection: Traditional likelihood-based analysis

After some exposure — collect events:

e k()= (0) g (Ns + Ny)
n! H dE

i=1

L(s+b) ~

(Ei | 0)

e Expected number of signal events: us = MT - f dNg/dE
e Expected number of background events: p, = MT - [ dN,/dE

e Spectral information
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Direct detection: Traditional likelihood-based analysis

After some exposure — collect events:

e Hs(0)—pp(0) T d(Ng + Ny)
n! H dE

i=1

L(s+b) ~

(Ei | 0)

e Expected number of signal events: us = MT - f dNg/dE
e Expected number of background events: p, = MT - [ dN,/dE
e Spectral information

Model parameters § = {m,,o...} phenomenalogically determine two
things:

e Number of expected events )
} Important for ML analysis
e Signal spectrum ‘shape’

10



Direct detection in TPCs: Events
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e S1: Prompt scintillation signal from recoil event.

e S2: Electron charges produced during ionization drift upwards —

extracted into gaseous phase creating larger scintillation.
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Direct detection: Traditional likelihood-based analysis
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Direct detection: Traditional likelihood-based analysis
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Simulation based inference
(SBI)



Simulation-Based Inference (in a nutshell)

Simulation-based inference is a statistical technique that allows us to
make inferences about a population or process based on simulated
data. It involves the following steps:
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Simulation-Based Inference (in a nutshell)

Simulation-based inference is a statistical technique that allows us to
make inferences about a population or process based on simulated
data. It involves the following steps:

1. Generate simulated data.

2. Use deep neural nets to learn underlying features of simulated
data.

3. Use trained models to inference.

14



Benefits of SBI

e Can handle complex models with intractable likelihoods.
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Benefits of SBI

e Can handle complex models with intractable likelihoods.
e Use deep neural nets to learn underlying features of simulated
data/summary stats.

e Once a simulator has been established, possible to include
arbitrarily complicated simulations into analysis: prompt
readouts — high level summary stats.

e Makes no assumptions regarding the analytical form of the
likelihood.

e Need no special treatment of nuisance parameters.

e Can in principle simulate/calibrate any detector effects and learn
them directly.

15



Simulation-Based Inference with Neural Nets

We have a variety of simulated data/summary stats available to us

Train NN to extract
relevant features from
simulated data. Effectively
‘learning’ the likelihood
function directly from data.

16



Simulation




Underground TPCs: Two types of events
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e Nuclear Recoil (NR) — WIMPs

e (Dominant) Background — Electron Recoil (ER).
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e Nuclear Recoil (NR) — WIMPs
(Dominant) Background — Electron Recoil (ER).

e Distance and ratio between S1/S2 peaks — NR vs. ER.
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Underground TPCs: Two types of events
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e Nuclear Recoil (NR) — WIMPs
(Dominant) Background — Electron Recoil (ER).

e Distance and ratio between S1/S2 peaks — NR vs. ER.

e NN can learn this instead! 17



DARWIN: Simulation pipeline
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DARWIN: NR event realisation

Area per sampie [ PE ]

Area per sample { PE |

Time (s

Time tns)
Top array Bottom array
s
200
™ =
o © 25
20
§ . .
S OO0 600001
E 00 OO0000
90000 .
yo00e 00 eeoeeseel
50 _
s
0 0100 2
=T G W ‘ E e o o
X[em]

g
X[em]

Nuclear recoil (NR) event example. 19



e SBI generally useful i.e parameter estimation DM mass/o (Won’t
talk about it now.).
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e SBI generally useful i.e parameter estimation DM mass/o (Won’t
talk about it now.).
e Focus on "Anomaly detection’.
e Can we significantly detect excess NR (WIMP)?

e Increase power of technique with extensive simulation capabilities
for DARWIN.

20



Analysis pipeline 1:
Classification of recoil events




Classification: Signal vs. Background

e First primary objective in an analysis is to veto the dominant ER
background.
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Classification: Signal vs. Background

e First primary objective in an analysis is to veto the dominant ER
background.

e Binary classification: ER background vs. NR signal

e Traditional analyses — Must sacrifice NR acceptance due to ER
events leaking into a low energy WIMP search region.

e Previous studies Sanz et. al, Herrero-Garcia et. al
arXiv:1911.09210, 2110.12248 for XENONnT.
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Classification: Signal vs. Background

Sanz et al. method:

1. Assume fixed WIMP mass 500 GeV and cross-section o = 10~*°
cm? (34.2 live-days)
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Sanz et al. method:
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Classification: ER vs. NR

Our method:

1. Assume fixed WIMP mass 500 GeV and cross-section o = 1074°
cm? (34.2 live-days)

2. Generate image output of the simulated WIMP and
"background” events

3. Train a Convolutional Neural Network (CNN) to classify
WIMP vs. background

Discovered this can work with ensemble of WIMP masses.
Cross-section irrelevant for event-by-event bkg/signal classification.

I.e only learning if ER or NR.
. O

23



Training data: Simulations

RAW event output S1, S2 PMT deposits (4-fold coincidence, 200 ns):

Yiem)

—> x = [S1WaveformTotal, S2WaveformTotal, S2Pattern ]
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Training data: Simulations

RAW event output S1, S2 PMT deposits (4-fold coincidence, 200 ns):

—> x = [S1WaveformTotal, S2WaveformTotal, S2Pattern ]

Two distinct quanta: Electron Recoil (ER) and Nuclear Recoil (NR)

24



Classification: ER vs. NR Results

e Train on ~ 40000 images. Take testing sub-sample of ~ 40%
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Classification: ER vs. NR Results

e Train on ~ 40000 images. Take testing sub-sample of ~ 40%
e Check performance — confusion matrix:
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e Takeaway = 98.03% accuracy. (Recall = 98.07%, Precision =
96.39%)
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Classification: ER vs. NR Results

e Train on ~ 40000 images. Take testing sub-sample of ~ 40%
e Check performance — confusion matrix:
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e Takeaway = 98.03% accuracy. (Recall = 98.07%, Precision =
96.39%)

e This works regardless mass and cross-section: NR/ER
are what matter. 25



Great! But...

e Trained an effective event-by-event ER veto: In standard
DARWIN pipeline, need to sacrifice NR acceptance!
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Great! But...

e Trained an effective event-by-event ER veto: In standard
DARWIN pipeline, need to sacrifice NR acceptance!

e Current DARWIN estimate 99.98% ER rejection. 30% NR
acceptance.
e No need with SBI NN classifier.

e However, no information regarding the energy of events: WIMPs
manifest through number of events + spectral distribution!

e Can we learn the spectral information?

26



Analysis pipeline 2:
Unsupervised approach




Generative Deep Learning: The Variational Auto-Encoder

e Variety of studies in HEP use these for anomaly detection tasks.
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Generative Deep Learning: The Variational Auto-Encoder

e Variety of studies in HEP use these for anomaly detection tasks.

e Goal: Learn low dimensional representation (encoding) of data
via dimensional reduction.

27



Generative Deep Learning: The Variational Auto-Encoder

e Variety of studies in HEP use these for anomaly detection tasks.

e Goal: Learn low dimensional representation (encoding) of data
via dimensional reduction.

e Latent space (bottleneck) layer is a bunch of normal distributions
parameterized by some p and o.

27



Generative Deep Learning: The Variational Auto-Encoder

Variety of studies in HEP use these for anomaly detection tasks.

Goal: Learn low dimensional representation (encoding) of data
via dimensional reduction.

Latent space (bottleneck) layer is a bunch of normal distributions
parameterized by some p and o.

Our goal: Learn the latent representation of the background
(ER) events. = Spectral information (E).

\
_/

C

o Va\ Ty
o i
o2 L
e \g/,‘ z
4 /) A

: S

\\

\\_/‘

27



Variational-Auto-Encoder: Training

e Use same data as with supervised classification.
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Variational-Auto-Encoder: Training

e Use same data as with supervised classification.
e Train VAE on just* ER data.

e Train by maximising evidence lower bound (ELBO):

p(z, z)
lo pszLBO:Ezz{lo }
g p(x) aGzle) (108 o

= Ellogp(z|2)] — BDkL(q(z]2)||p(2))
z = Input
z = Latent vector

[ = Regularization parameter
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Variational-Auto-Encoder: Training

e Use same data as with supervised classification.
e Train VAE on just* ER data.

e Train by maximising evidence lower bound (ELBO):

p(z, z)
lo pszLBO:Ezz{lo }
g p(x) aGzle) (108 o

= Ellogp(z|2)] — BDkL(q(z]2)||p(2))
z = Input
z = Latent vector

[ = Regularization parameter

e Loss = —ELBO

28



VAE: Training

e Train the network for 200 epochs.

Loss

Loss = —ELBO

3000 A
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—— Train Reconstruction Loss
—— Test Reconstruction Loss
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Spectral information
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e Auto-encoder can learn underlying spectral information of events
= Sensitivity to WIMP mass.

e Can we also just fully reconstruct the energy of an event straight
from the data? Yes!

30



Follow up work: E reconstruction

Neural posterior density estimation (Masked auto-regressive flows)
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Looking for non
background-like events




Anomaly detection

e Traditionally unsupervised methods have been used.
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Anomaly detection

e Traditionally unsupervised methods have been used.

e Anomaly Detection: Once trained, run data the network has
never seen before through trained network.

e If VAE has learned the underlying properties of ER bkg events,
any non-background events will in general have higher loss
(smaller ELBO).

e Loss distribution of anomalous data (new physics) will show as
an excess over background only loss distribution...

32



Anomaly detection

ER bkg only
NR bkg only
WIMP only

10000 11000 12000 1%( 00 14000 15000

-ELBO

e Background loss distributions + WIMP loss distribution.
e Any* anomalous signal will show up as statistical deviation in
(pseudo)data loss vs. (known) background loss.

33



Semi-unsupervised anomaly detection: New distance met-

ric

Cool. But...

e A bit rubbish: Can we get greater separation (anomaly
awareness) between these distributions?
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Semi-unsupervised anomaly detection: New distance met-

ric

Cool. But...

e A bit rubbish: Can we get greater separation (anomaly
awareness) between these distributions?

e New ‘anomaly function’ that utilizes pre-trained supervised NN
classifier:
TS=—-FLBO +RHp,
where

e Hp=—+ Zfio log (1 —p(x;)) (Binary cross-sentropy.)
e R scales the contribution of the cross-entropy term — makes it
more/less supervised.
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Semi-unsupervised anomaly detection: Full pipeline
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Semi-unsupervised anomaly detection: New distance met-

ric

TS = (—~ELBO) + RHp ,

= Semi-unsupervised. Much greater anomaly awareness!

B ER
1 NR

ER background  NR background
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A 14

10000 15000 20000 25000 30000 35000 40000
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Pseudo-data sets

Re-weight anomaly score distributions 7S according to expected
ER+NR backgrounds and inject some WIMP signal

[ 1 Total background = fj
1 WIMP

10000 15000 20000 25000 30000 35000 10000

TS 37



Pseudo-data sets

Re-weight anomaly score distributions 7S according to expected
ER+NR backgrounds and inject some WIMP signal: ER [2-10] keVee,

NR [5-35] keVur

[ 1 Total background = fj
1 WIMP

10000 15000 20000 25000 30000 35000 10000

TS 37



Dimensionally reduced analysis

e = 1D analysis in 7'S space: Accept/reject
Ho : X ~ P (x| No signal).

N
L(TS|Ho) o e P [[ (Bfo (TS:))

i=1
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Dimensionally reduced analysis

e = 1D analysis in 7'S space: Accept/reject
Ho : X ~ P (x| No signal).

N
L(TS[Ho) o e P [ (Bfo (T'Sy))
i=1
e Unbinned.
e Parametrically independent on WIMP model.

e No auxiliary terms required assuming simulations have suitably

descriptive coverage.
e (Capability to conduct ER only searches with same machinery.

e Backgrounds currently taken from templates: In principal can
propagate uncertainties on the bkg from simulation (or even
better, calibration).
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Forecasting sensitivity




Median sensitivity

e Probability to accept/reject Hp after some exposure.

pz/oo dg Ho(q) -

Gmed
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Median sensitivity

e Probability to accept/reject Hp after some exposure.
e Model independent.

e Simulate ~ 10* realisations of —21In £L(TS|Ho) to ascertain the

asymptotic form of H.

pz/oo dg Ho(q) -

Gmed
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Median Sensitivity
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As a function of exposure

e Neural net
e Binned likelihood based: Median sensitivity [30% NR acceptance, 99%

ER rejection]

og = 4.5 x 107% ¢m 2, m, = 50 GeV

Probability

¢ — Median sensitivity Neural net
1061 ===" Median sensitivity Likelihood based

10773
0 100 200 300 400 500

Exposure (tyr)
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Full sensitivity

2.85 x 1074+ 08

0.7

7.05 x 10747+ 06
— )
o =]
= 0.5 %
. )
TR LT x 1074 Loa 2
S 5:

-0.3

4.33 x 107504 -02

-0.1

1.07 x 10750

‘ ; i ‘ } i g -0.0
10 . y ; 710 810 910

Caution: 90% C.L upper limit is model dependent — weaker’ test.
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Energy reconstruction SBI with masked autoregressive

flows

Detector model

1 Neural posterior density estimation: Estimate posterior on Er from data.

simulated data neural density estimator
x = [0.6915368, 6.48629665, 5.176619, ...,

v (KeV) x
575 x

posterior

833 x
24.6 x3
600  x

Er

data or summary data

2 Extract WALDO test statistic
using amortized posterior

prediction with exact
coverage

—— Confidence Interval

TEST STATISTIC

E[0]|2]
. d

an w—
Ve | 2]

=> C.L with correct coverage.

ALY, 0)

Ep (keV)

TWALDO (D 90) = (E[0 | D] — 80)" V[0 | D]~ (E[@ | D] — 60) 43



Backgrounds

i ] 10%4
T —— Solarv —— CEWNS, 8b
— wpp Y —— CEWNS, hep
— K85 n —— CEvNS, DSNB
22Rn i~ CEVNS, atm
—— Total = Total
Z
<
0 5 o 15 20 2 3

Energy [ keV |

e Intrinsic and extrinsic.

e Coherent neutrino scattering provides dominant background for
WIMP searches.
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Binned likelihood based approach

L(x) = ‘¢~ . ER veto (99.98%), fidiucilization etc.

M WIMP CEvNS (Solar v) M Neutron
M ER W CEvNS (Atm+DSN)

cS2;, [PE]

S [T AN N N MR N SN 45
3 10 20 30 40 50 60 70 80 90 100




Effect of R

e Explore effect of the R parameter.

log(p)

— 10 GeV
300 GeV
1000 GeV
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Effect of R

e Explore effect of the R parameter.
e Three mock data sets corresponding to 10, 500 and 1000 GeV at

fixed ¢ = 10~%5cm?, 5 t-yr exposure.

log(p)

13— 10 GeV
300 GeV
1071 1000 GeV
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Effect of R

e Explore effect of the R parameter.

e Three mock data sets corresponding to 10, 500 and 1000 GeV at
fixed ¢ = 10~%5cm?, 5 t-yr exposure.

e Best result for R ~ 170, but generally free to choose!

log(p)

— 10 GeV
500 GeV e
1071 1000 GeV

10! 10° 10! 107 1 10°
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