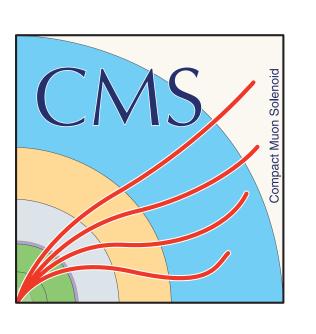
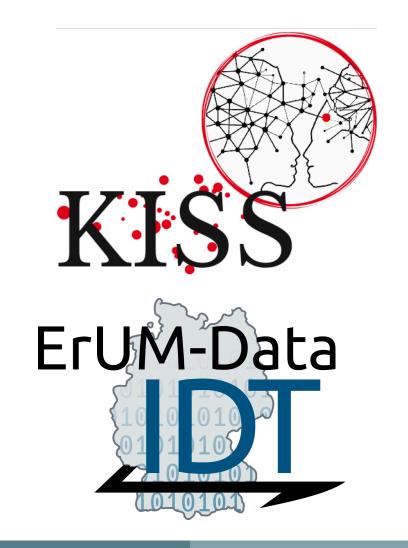
Generative Models for Particle Physics Data

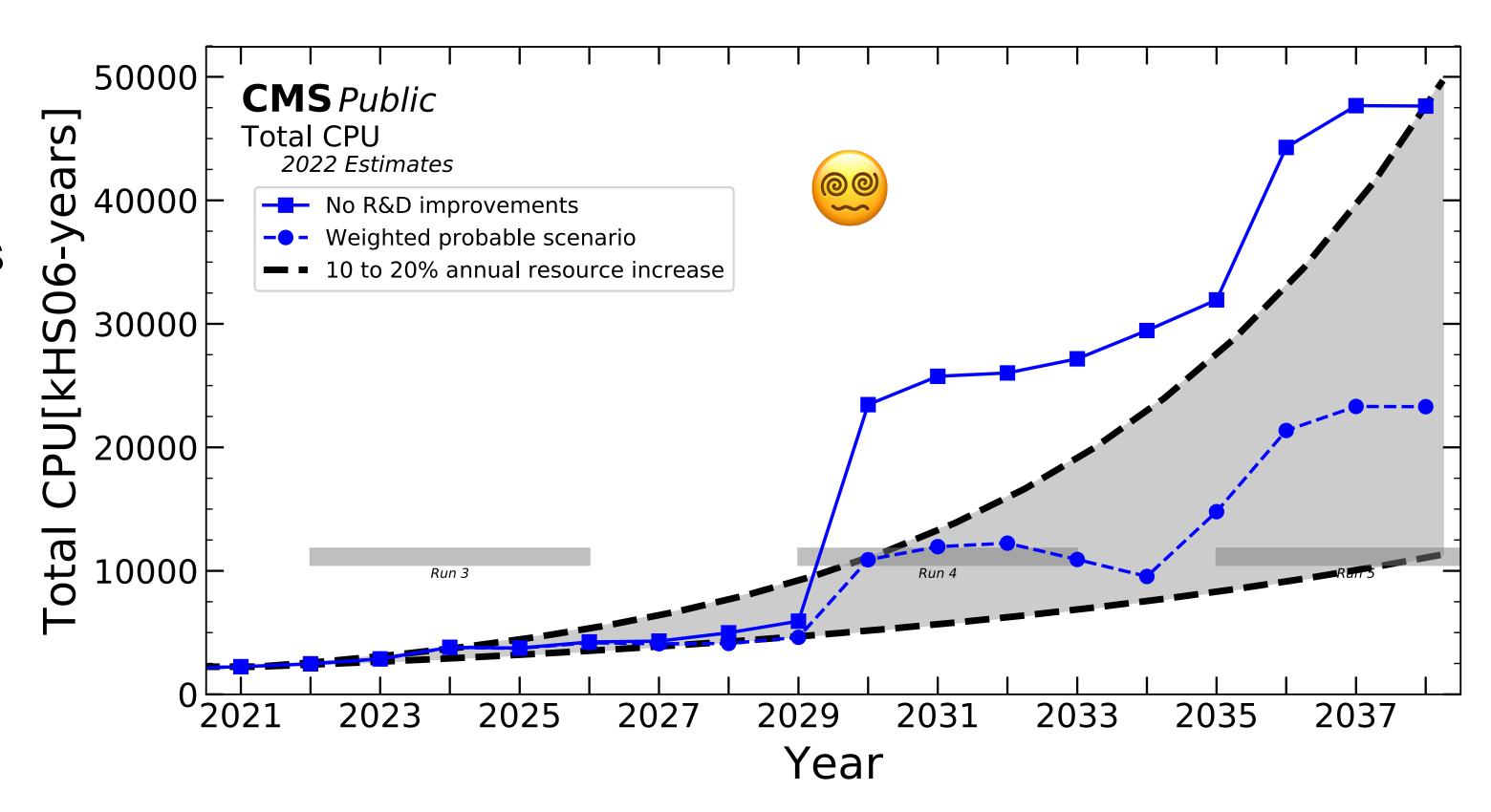
Erik Buhmann, Thorsten Buss, Sascha Diefenbacher, Engin Eren, Cedric Ewen, Frank Gaede, Gregor Kasieczka, William Korcari*, Anatolii Korol, Katja Krüge, Peter McKeown, Martina Mozzanica, Lennard Rustige, Lorenzo Valente





Monte Carlo Simulation in HEP

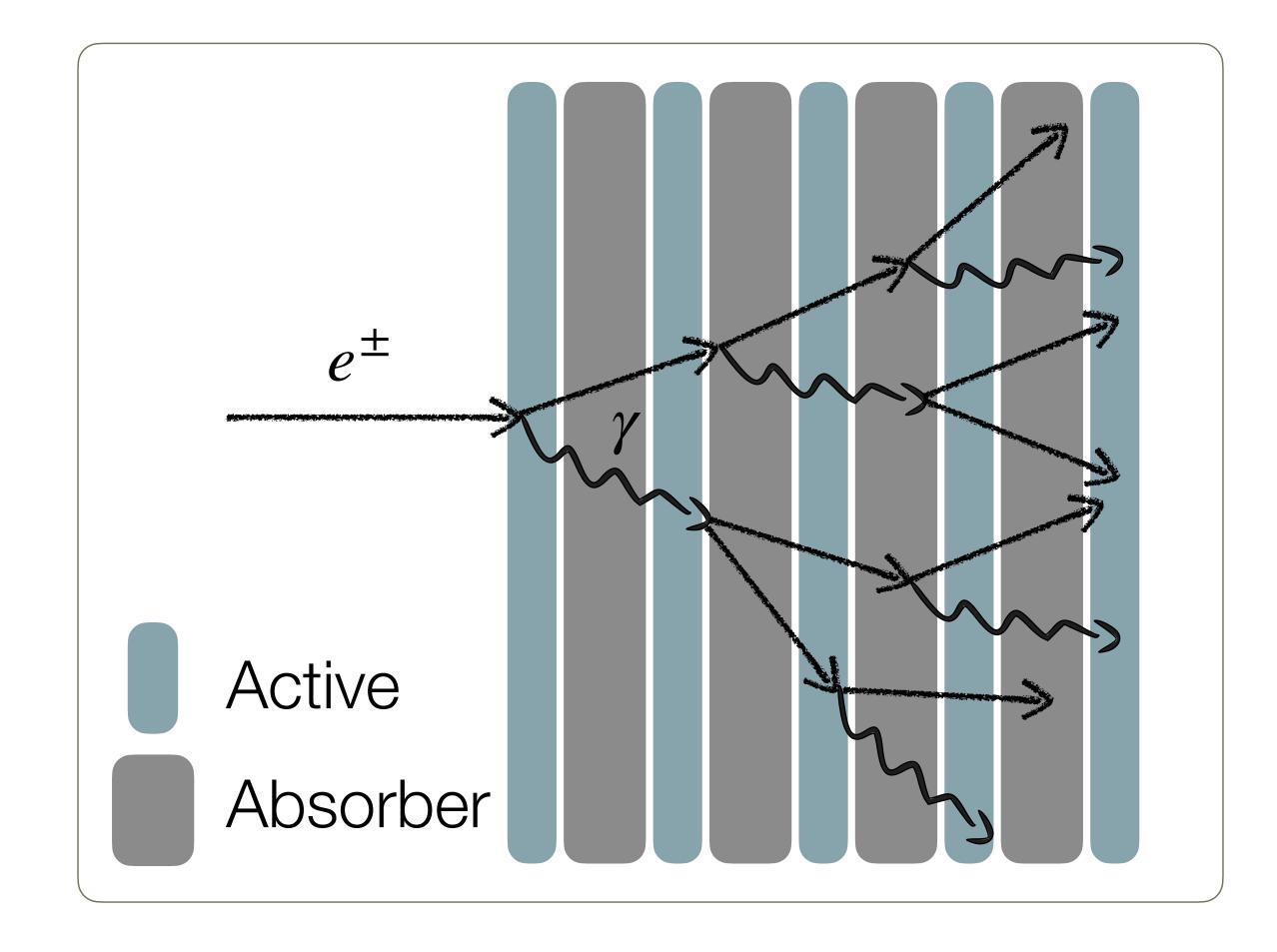
- Simulation fundamental to compare theory to measurements
- Detector simulation most expensive block of the chain
- Without R&D, increase in computing time exceeds the one in resources



CMS Offline and Computing Public Results

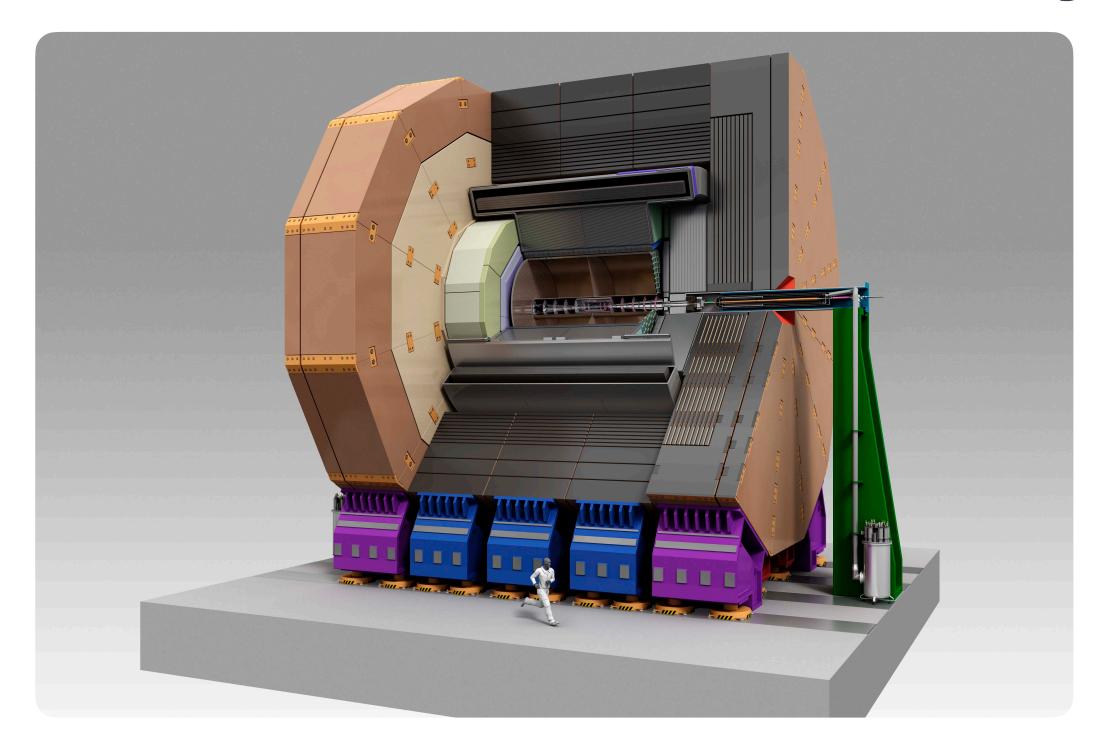
Calorimeters

- A calorimeter is a detector which fully absorbs the particles. The signals produced are a measure for the energy of the particle
- Incoming particle initiate the shower.
 Each secondary shower deposits energy and produces further particles
- Sampling calorimeter consists of alternating layers of passive absorbers and active detectors
- Electromagnetic and hadronic calorimeters

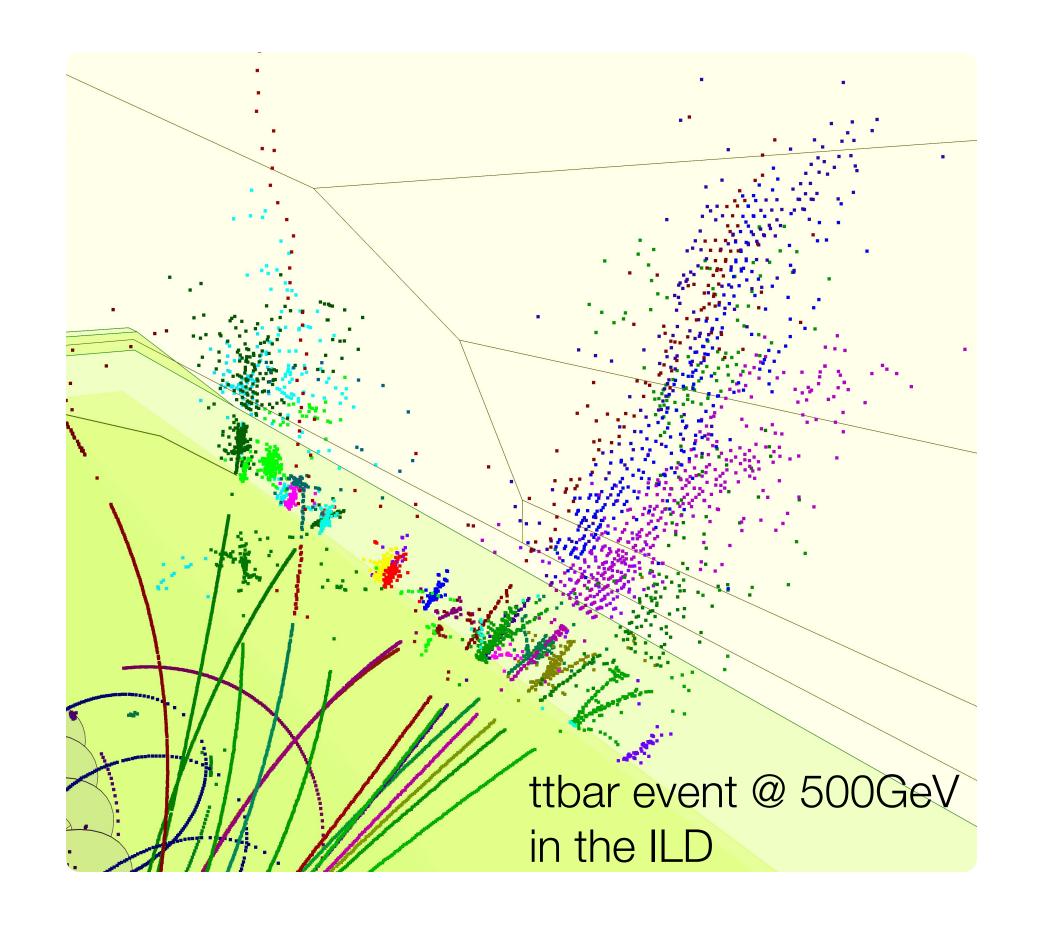


Schematic view of EM shower in a eCal

Case Study: ILD Calorimeter



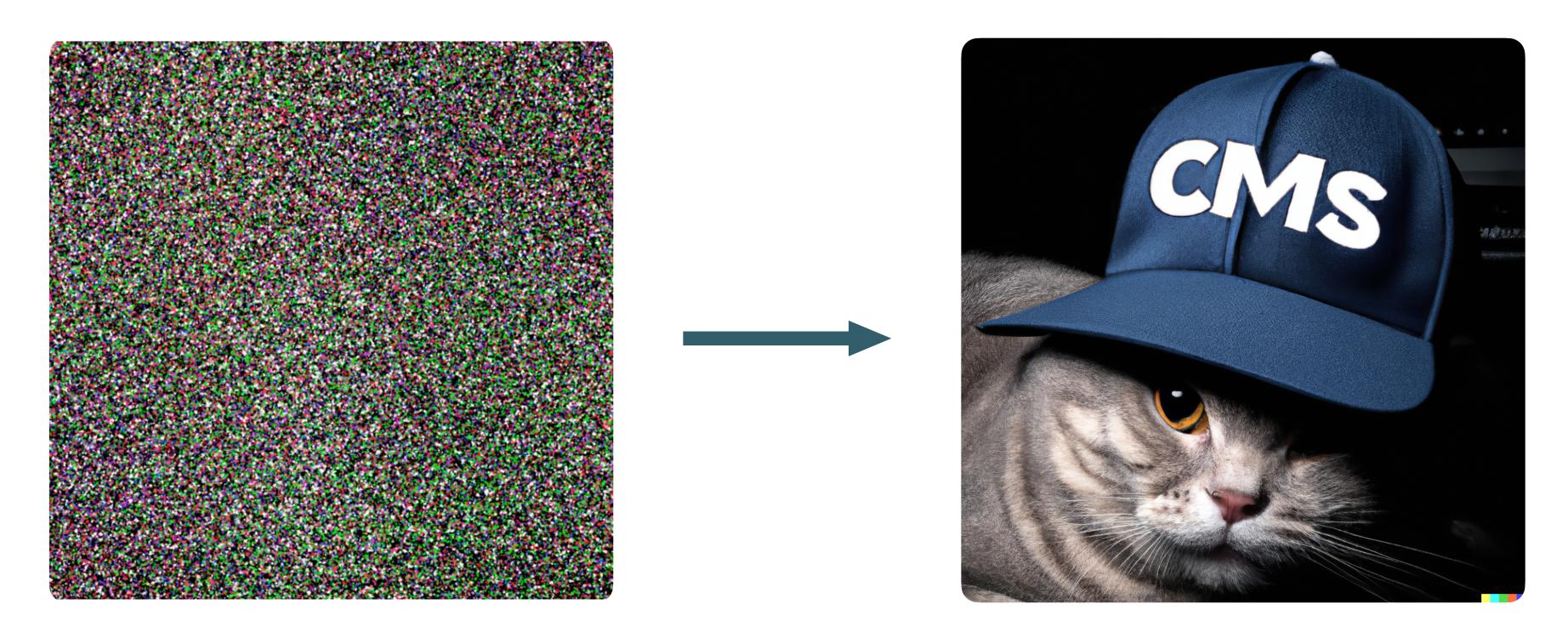
- International Large Detector (ILD) concept for the International Linear Collider (ILC)
- High-Granularity calorimeters:
 - ECal: Si-W 5mm x 5mm 30 layers
 - HCal: Sci-Fe 30mm x 30mm 49 layers



High granularity — Need for high fidelity simulation

Detector Simulation in HEP

- Generative models: map noise to structured data
- In our cases: to calorimeter showers



Numerous generative models:

- GANs Flow-based models
- Autoencoders, e.g. BiB-AE Diffusion models

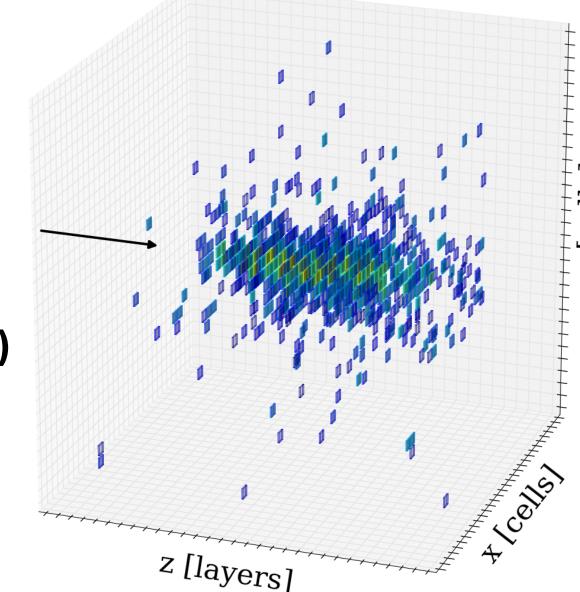
Data Representation of Showers

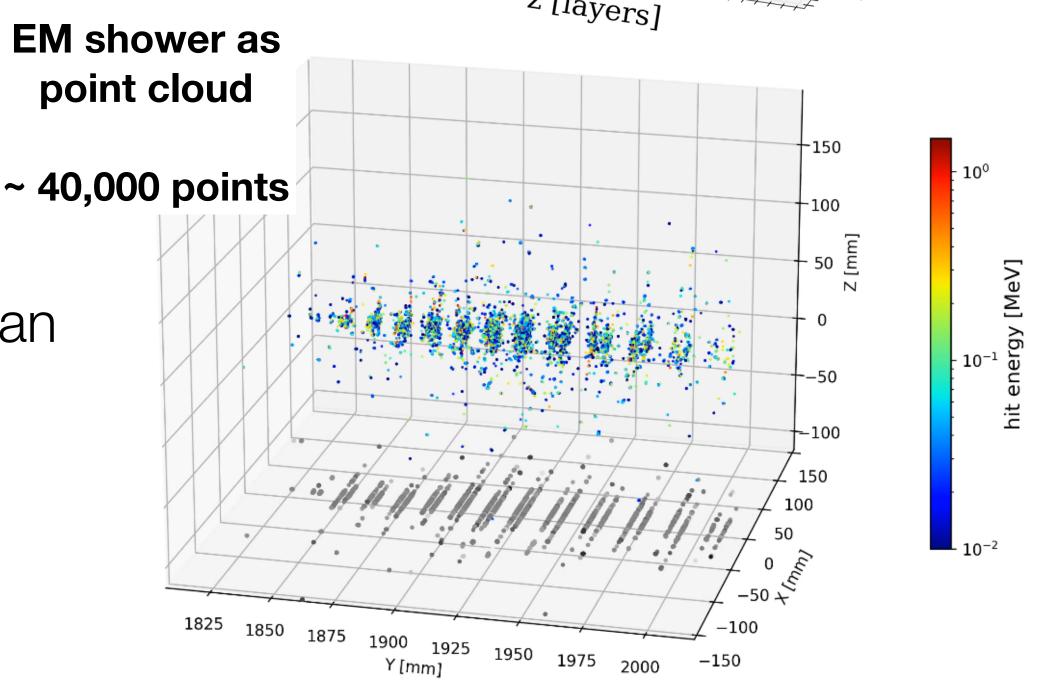
EM shower as 3D image

- Generative models for calorimeter showers applied to fixed 27,000 pixels (~ 1,000 non-zero)

 Calorimeter showers are very sparse (only ~ 4% filled pixels)

- Point clouds more memory efficient (variable-length, permutation-invariant sets)
- Generation of only non-zero points
- Can use clustered Geant4 steps with higher granularity than sensor size
- Allows for cell-geometry independent model



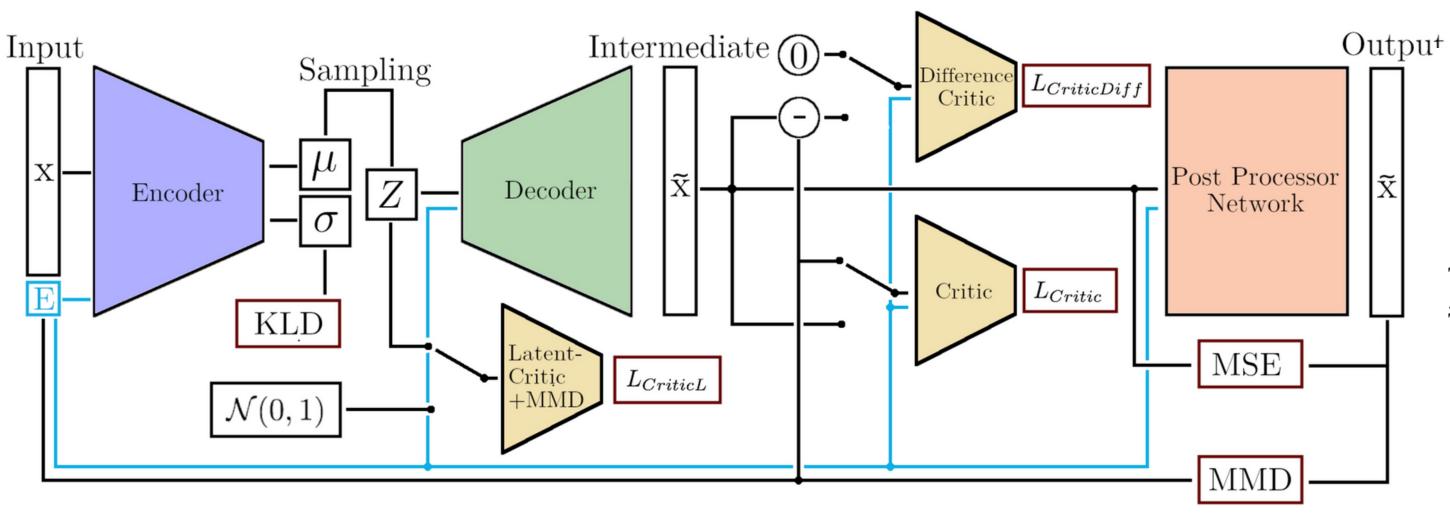


6

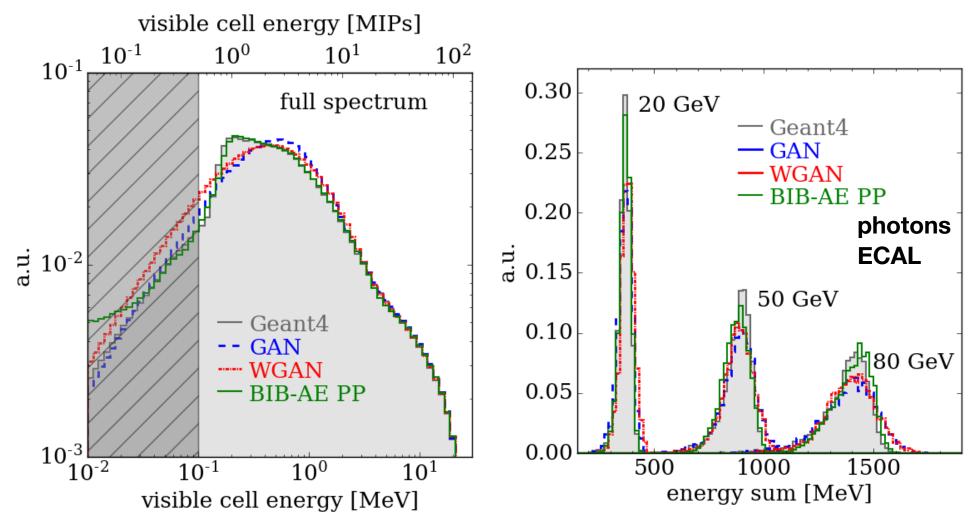
Image Based Models

BIB-AE: Photons and Pions

- Achieved **high fidelity** generation of **photon** and **pion** showers with **BIB-AE** architecture (and post processing)
 - 90 deg impact angle, fixed position in calorimeter
 - Fixed regular 3D grid geometry (O(10-100k) voxels)

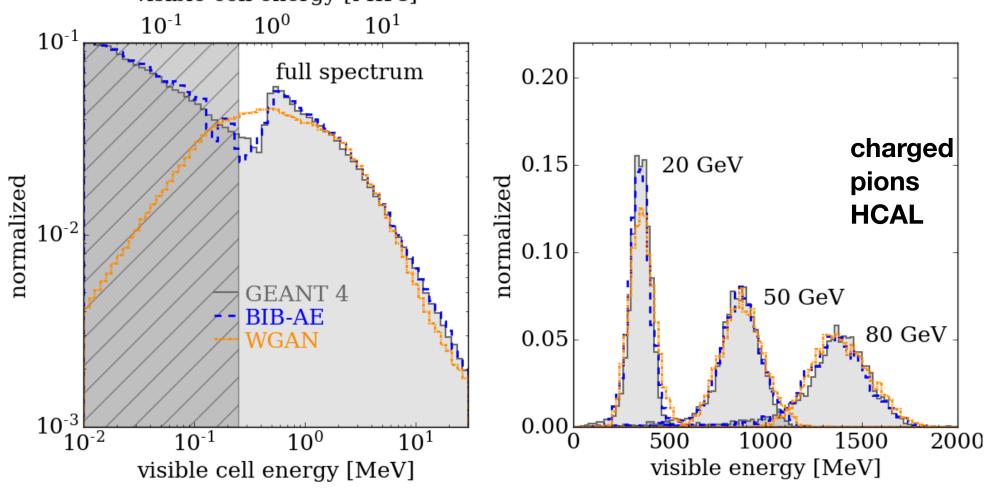


BIB-AE: Bounded Information Bottleneck Auto-Encoder



Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed

Buhmann et al., <u>arXiv:2005.05334</u>, Comput Softw Big Sci 5, 13 (2021) visible cell energy [MIPs]

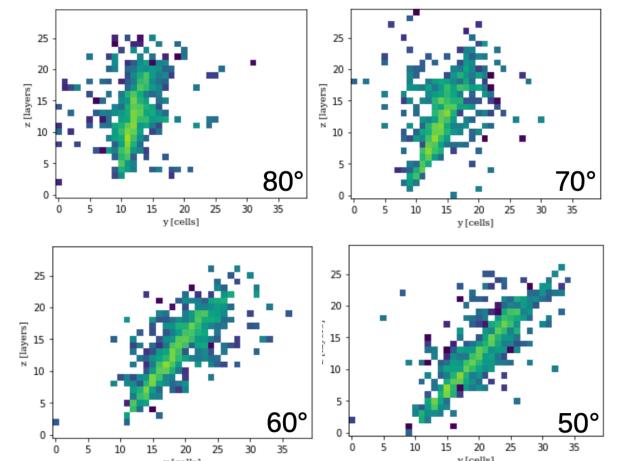


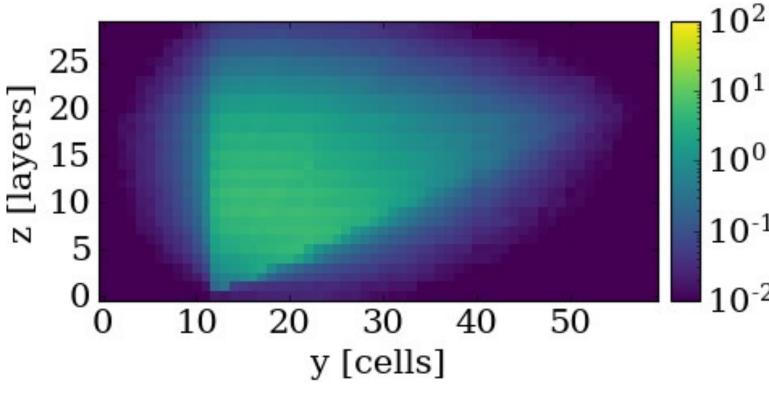
Hadrons, Better, Faster, Stronger

E. Buhmann, et al, <u>arXiv:2112.09709</u>, MLST 3 2, 025014 (2022)

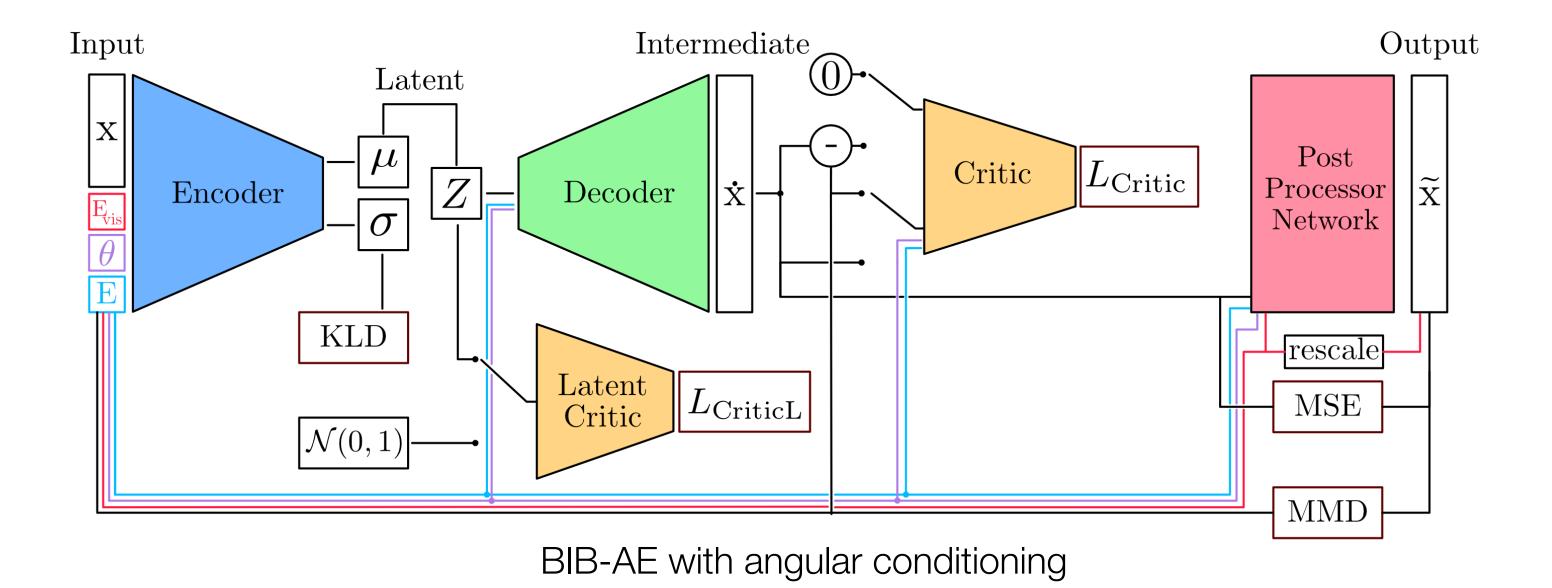
Energy and Angular Conditioning

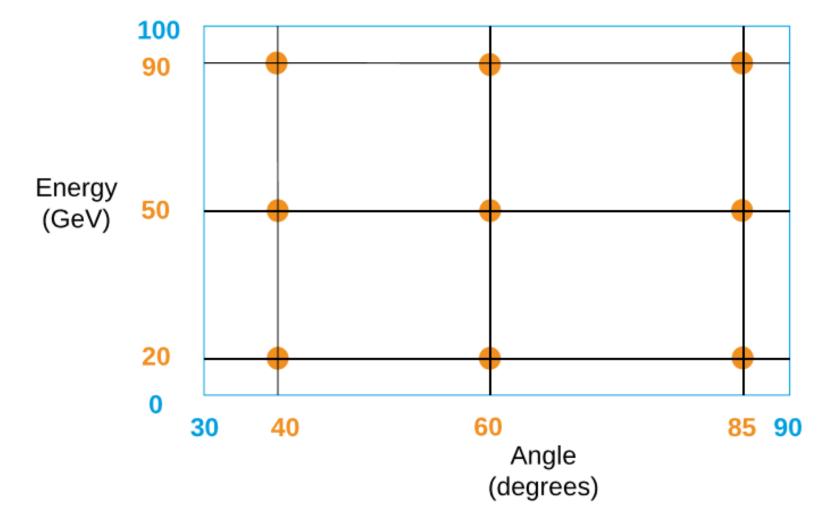
- Extend BIB-AE architecture
- Vary incident energy and polar angle
 - Large training sample: 500k showers
 - Uniform in [10-100 GeV, 30-90 deg]
 - Test/validation samples at dedicated energies and angles
- Full reconstruction with PandoraPFA





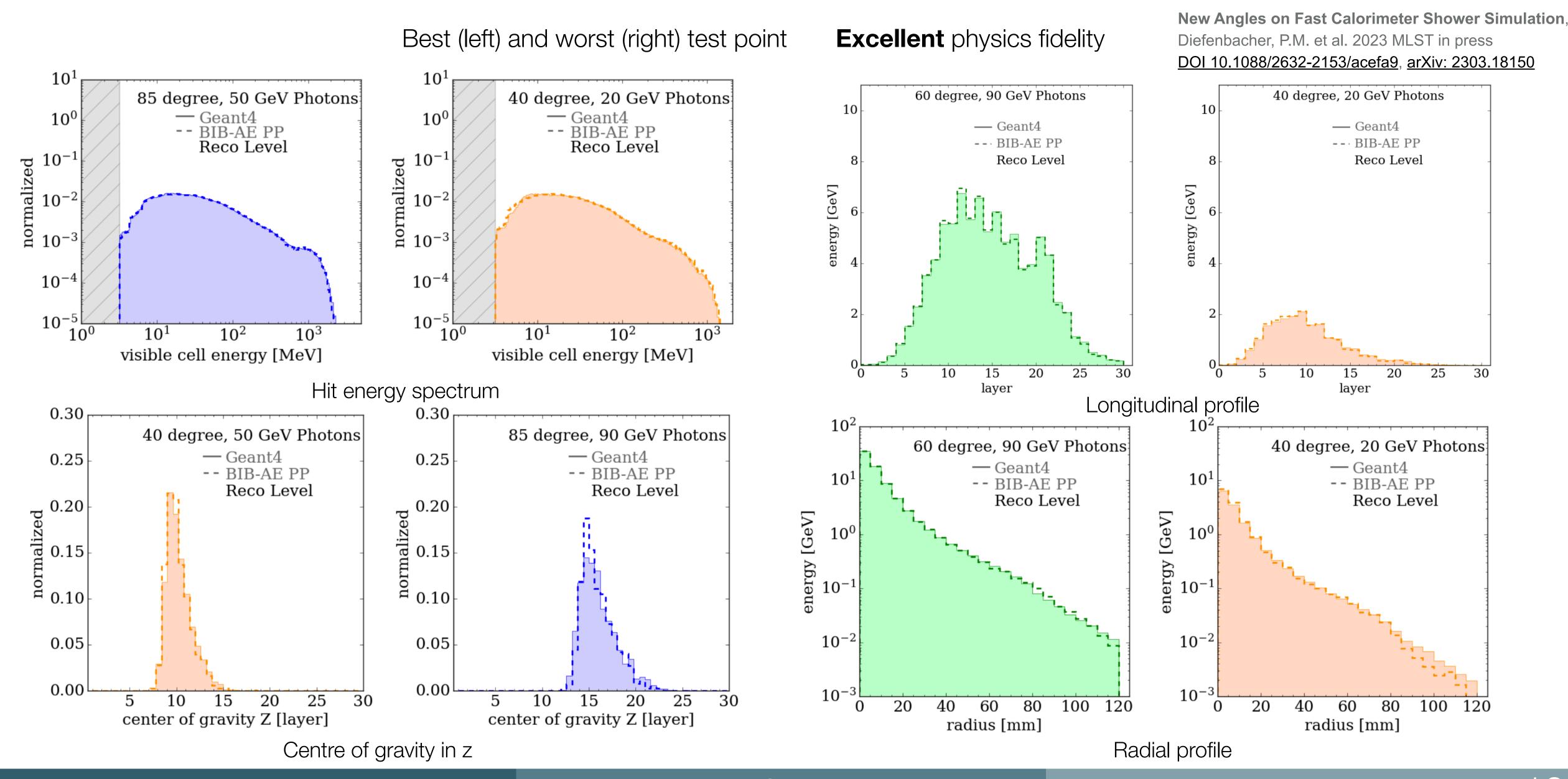
5k shower overlay



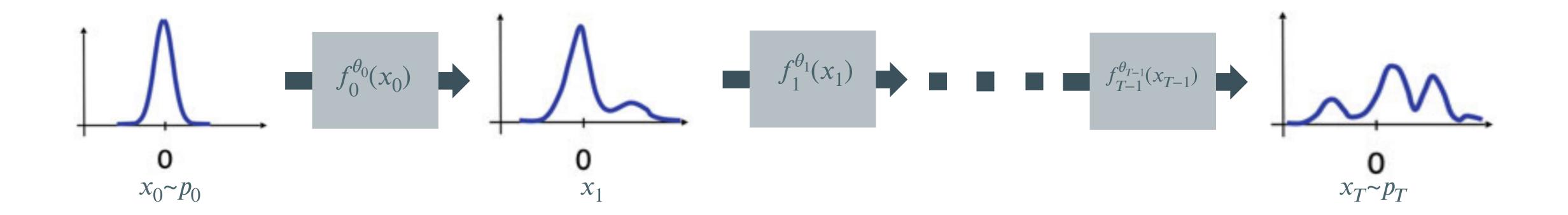


Combinations of incident energy and angle used for training

Performance after Reconstruction



Normalizing Flows



Training:
$$\log p_T(x_T) = \log p_0(x_0) - \log \left| \frac{\partial f_t^{\theta}}{\partial x_t} \right|$$

Sampling:
$$x_T = f_{T-1} \circ \dots \circ f_0(x_0)$$

- f must be invertible
- Determinant computationally expensive
 - Restricted transformations needed

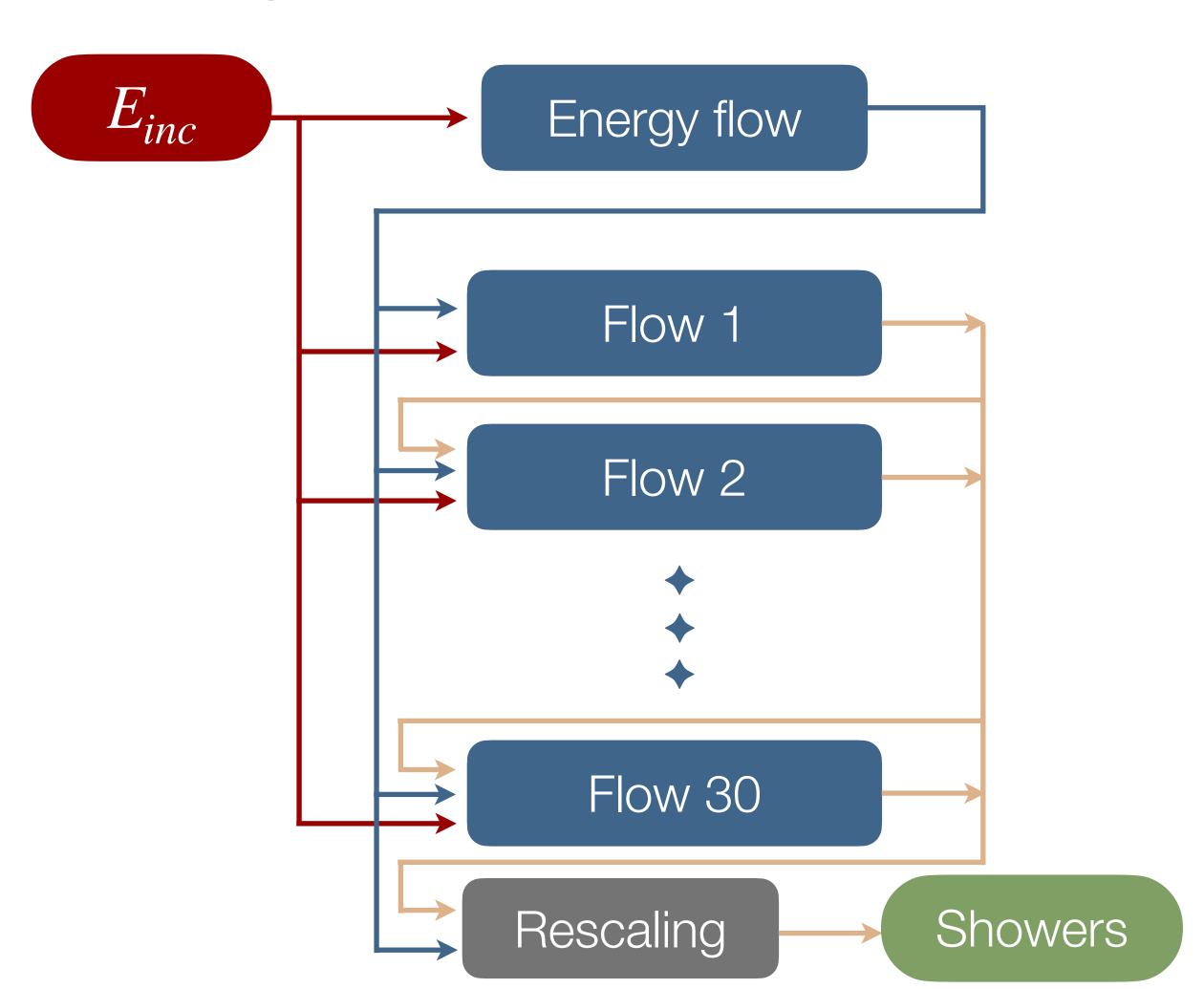
Variational Inference with Normalizing Flows

Rezende et al.; <u>arXiv:1505.05770</u>

Layer-to-Layer Normalizing Flows Model

- Expands on CaloFlow¹ and L2LFlows²:
 - Changed MADE blocks to Convolutional Coupling blocks
 - Better scaling: can handle higher granularity
 - Faster generation
- One energy distribution flow
 - Learns distribution of layer energies
 - Conditioned on incident energy
- 30 causal flows
 - Learn shower shape in layer
 - Conditioned on:
 - Incident energy
 - Layer energy
 - Previous layers

Paper coming soon!

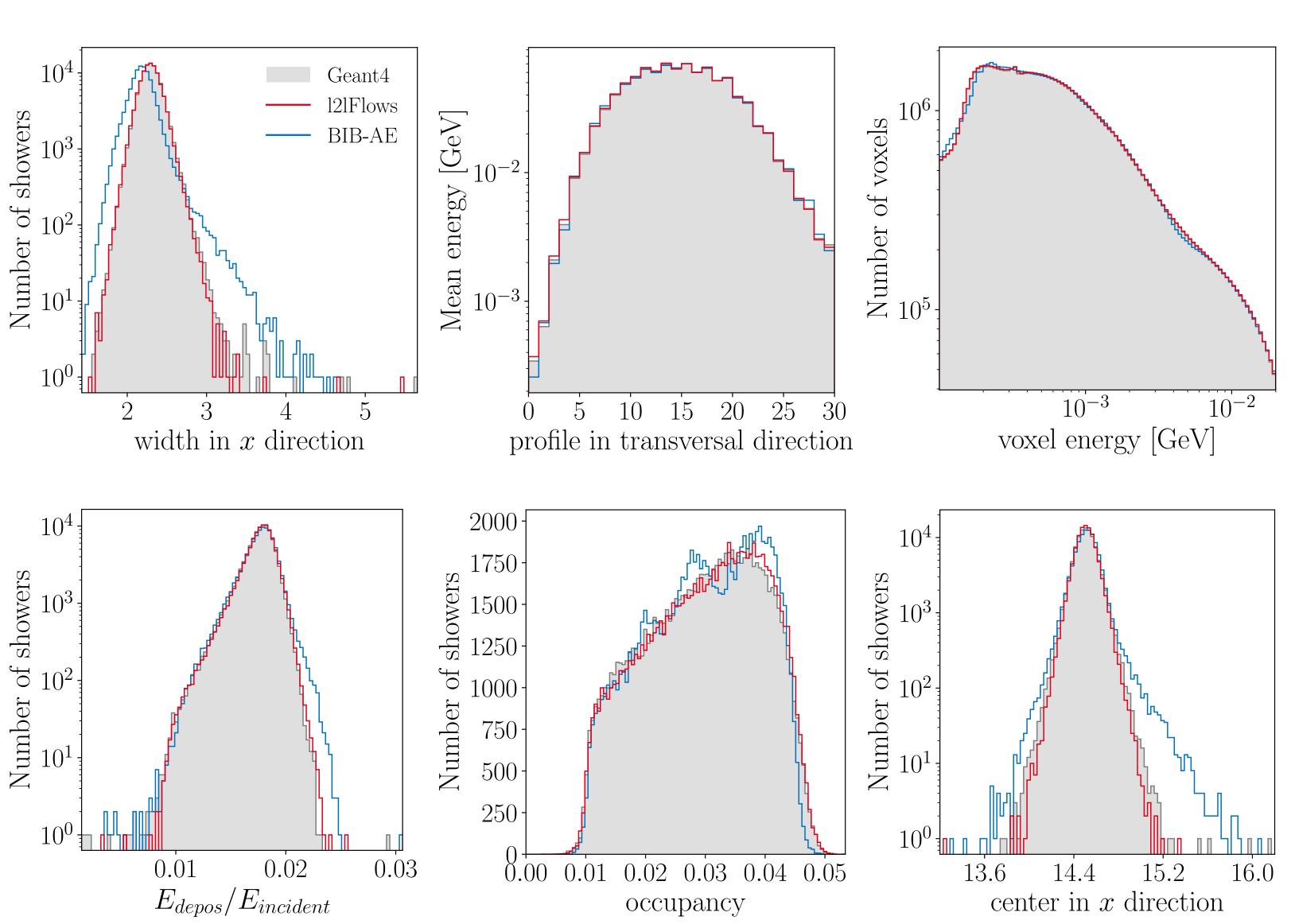


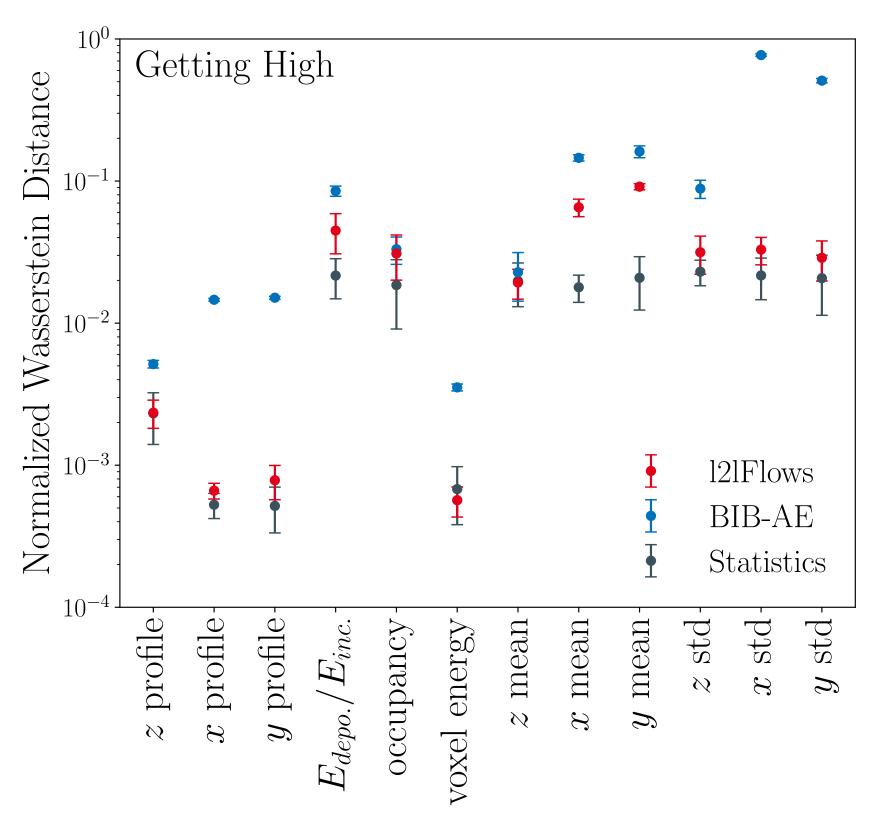
[1]CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause and David Shih. arXiv: 2106.05285.

[2]L2LFlows: Generating High-Fidelity 3D Calorimeter Images

Sascha Diefenbacher et al; arXiv: 2302.11594.

L2L Flows Model Results

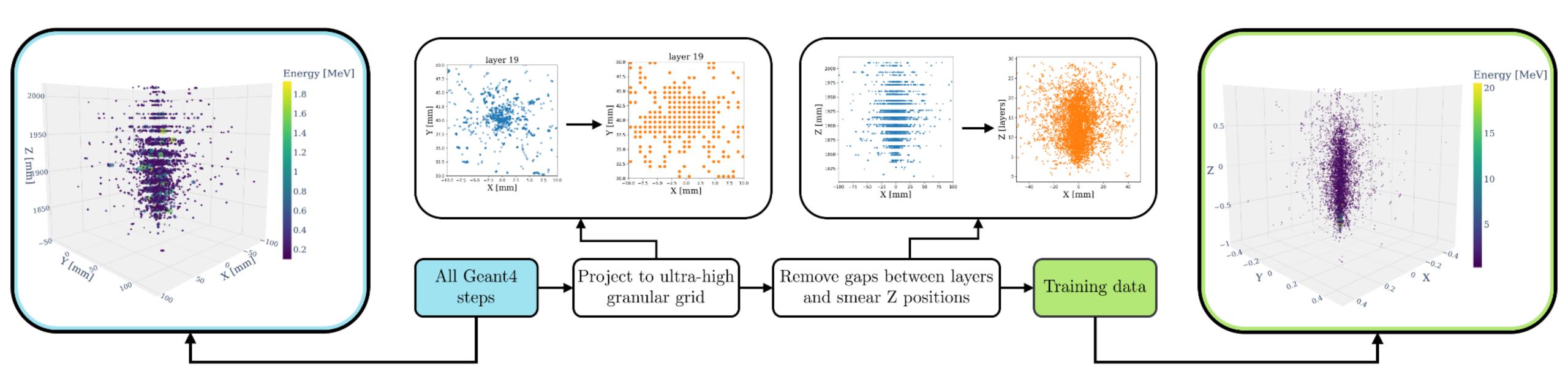




- -Superior simulation-level performance vs a BIB-AE across a range of observables
- -More work required to achieve competitive simulation speed

Point Cloud Models

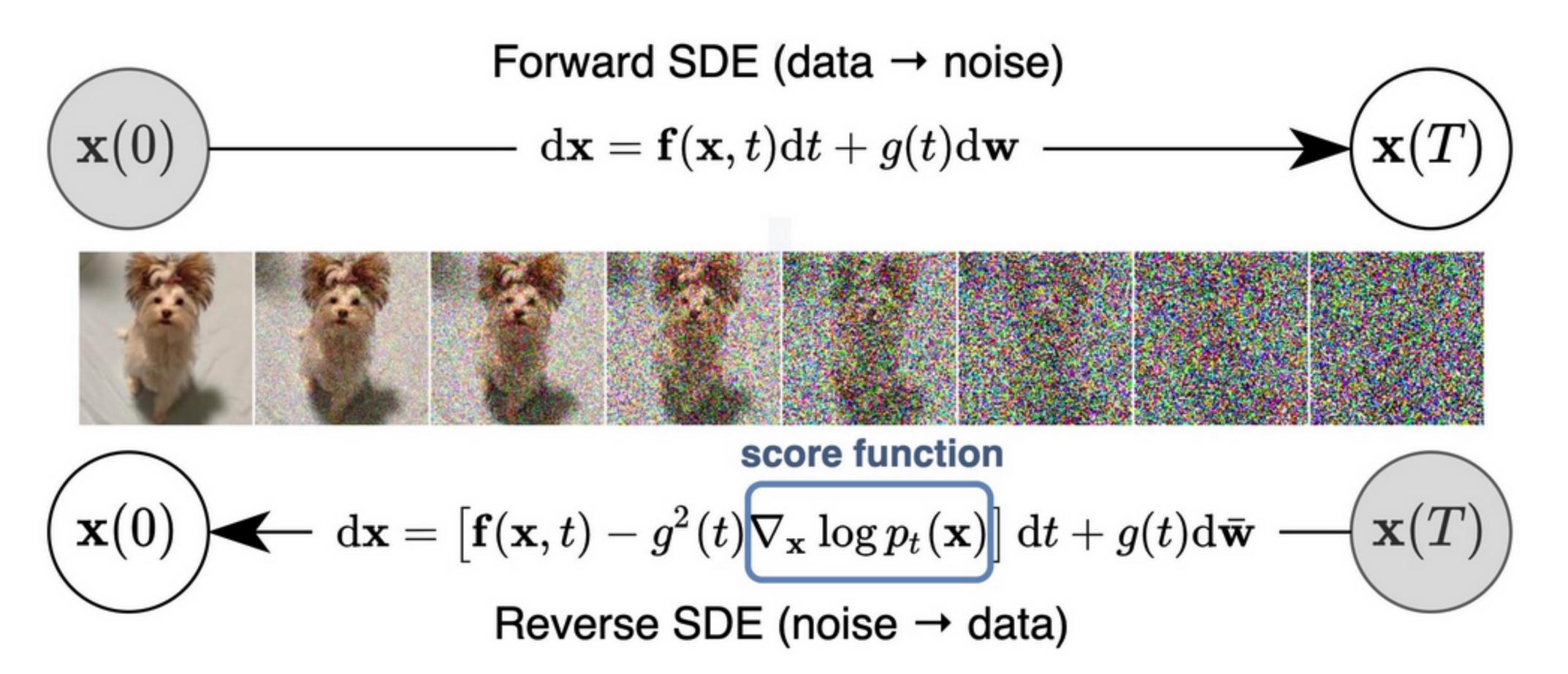
Data Processing



- Photon showers (10-90 GeV) in the electromagnetic calorimeter (ECAL) of the International Large Detector (ILD) at the International Linear Collider (ILC)
- - Multiple points per cell & geometry independent

	points / shower	Note
All Geant4 steps	40 000	Initial output of Geant4
Clustered Geant4 steps	6 000	Input/output of CALOCLOUDS
Hits in calorimeter grid	1 500	Calculation of physics observables

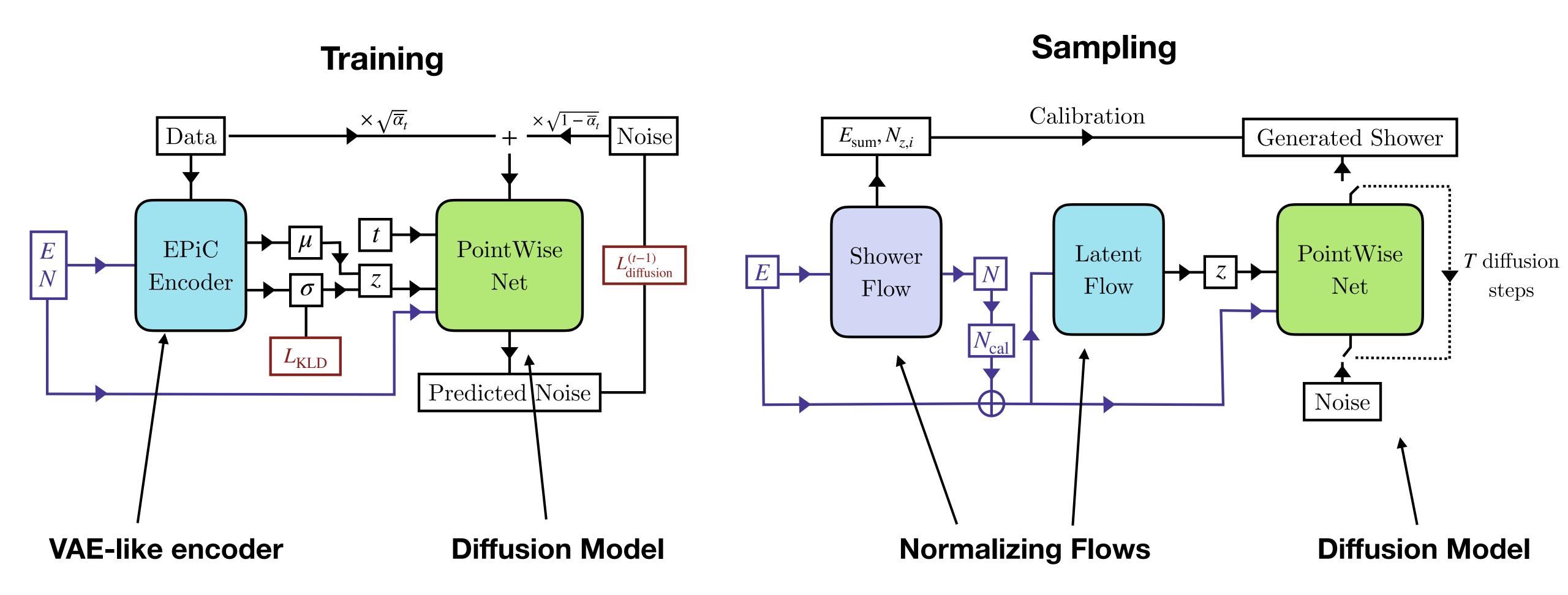
Diffusion Models



- Progressively perturb data with stochastic differential equation (SDE)
- Train by estimating the score function, fixed ${\it f}$ and ${\it g}$
- Sample by solving reverse SDE

Score-Based Generative Modeling through Stochastic Differential Equations Song et al.; arxiv:2011.13456

CaloClouds Model



Equivariant Point Cloud Generation for Particle Jets

E. Buhmann, G Kasieczka, J Thaler:

EPiC-GAN

- Post-diffusion calibration: number of points per layer, energy per layer, center of gravity in X and Y-direction

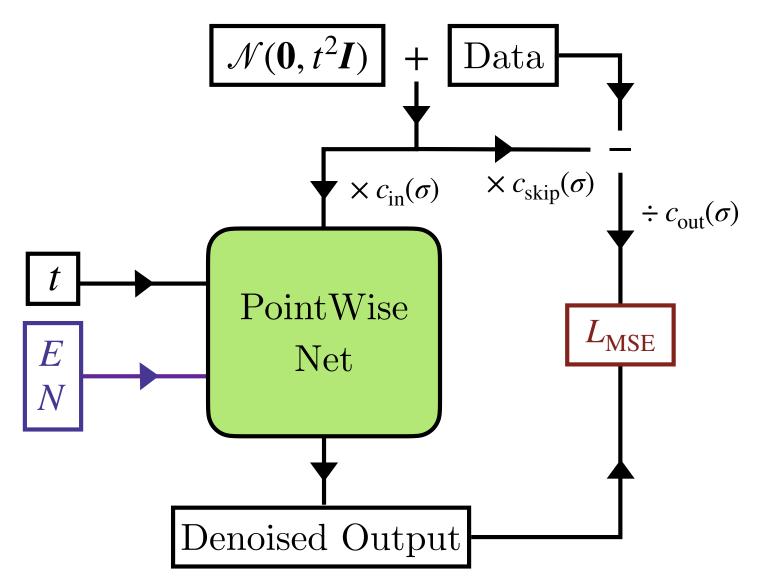
CaloClouds I & II

- CaloClouds diffusion model based on discrete-time Denoising Diffusion Probabilistic Models³ (DDPM)
- Number of diffusion steps: training = sampling
 - Here: 100 denoising steps
- CaloClouds II diffusion model based on a continuous-time diffusion model⁴
 - Allows for a variety of stochastic and ordinary differential equation solvers (ODE / SDE solvers)
 - Fewer & variable number of steps during sampling
 - Here: Heun ODE solver with 25 model evaluations
 - Allows for distillation into a consistency model⁵
 - Here: Consistency model for single-shot generation
- CaloClouds II: No latent space (no encoder & latent flow)

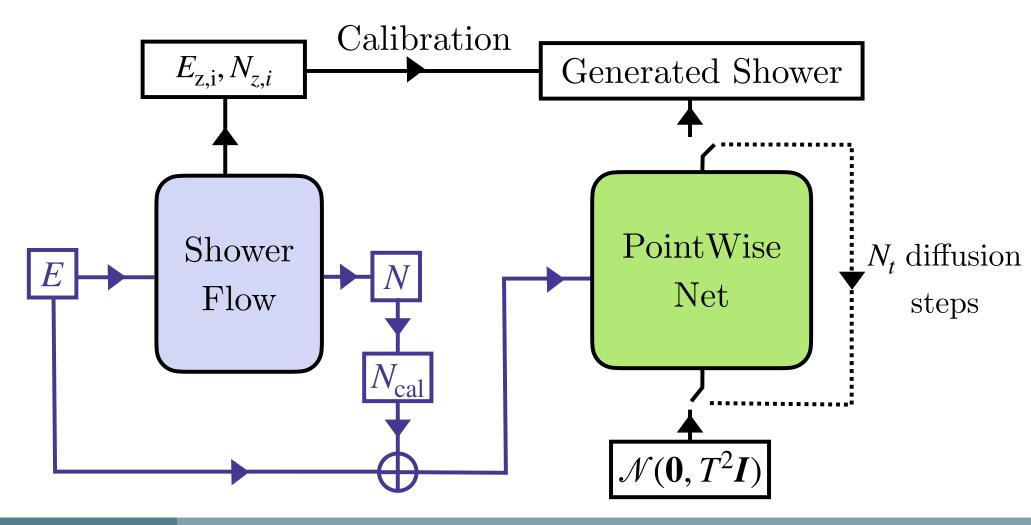
[3] Denoising Diffusion **Probabilistic Models**; J Ho et al. <u>arxive</u>: 2006.11239 [4] Elucidating the Design Space of **Diffusion-Based Generative Models** T. Karras et al: arxive: 2206.00364

[5]Consistency Models Y Song et al; arXiv: 2303.01469

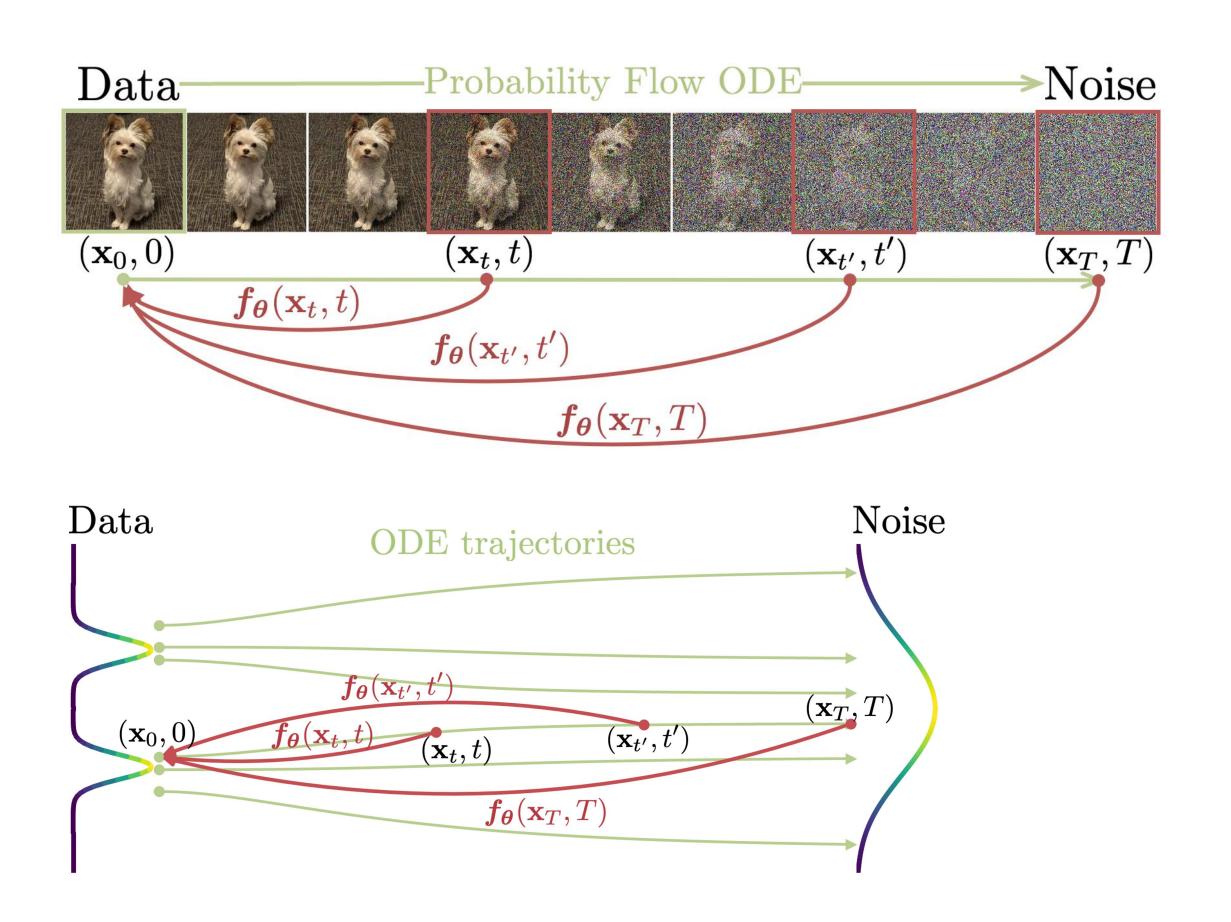
Training (CaloClouds II)



Sampling (CaloClouds II)

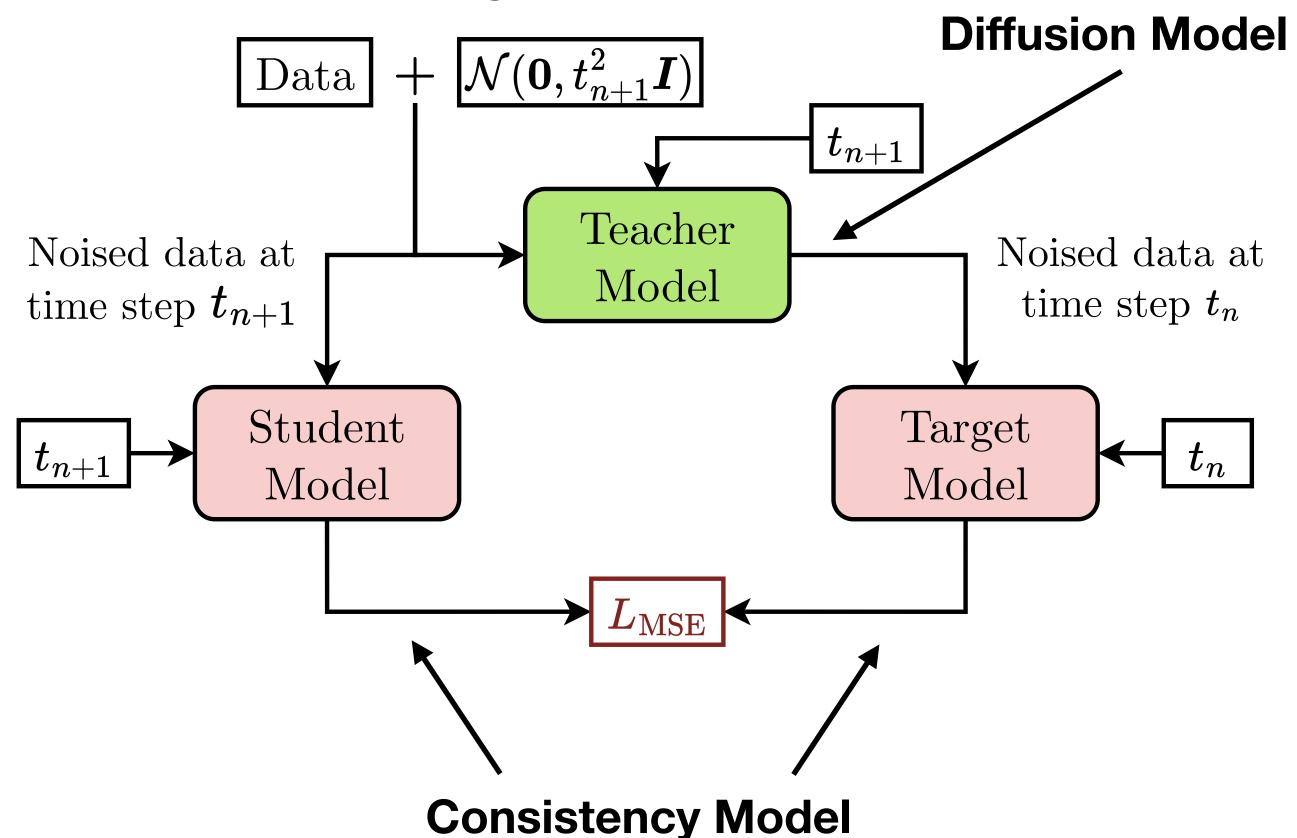


Consistency Models



- Consistency Models trainable standalone or distilled from a diffusion model
- Allow for single-step & multi-step generation

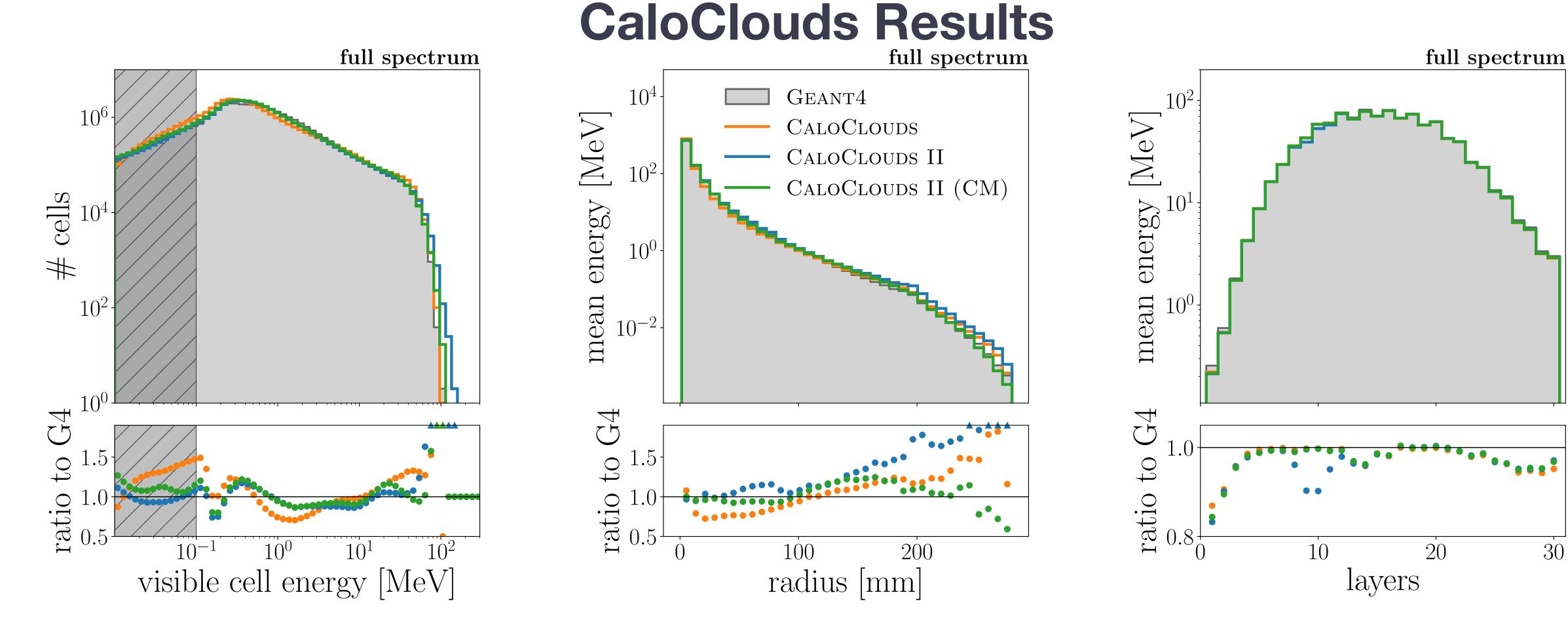
Consistency distillation:



Student model: updated via gradient descent Target model: updated via weight average

Consistency Models

Y Song et al; <u>arXiv: 2303.01469</u>



- All evaluations with point cloud showers projected to regular cell geometry
- Hit energy spectrum, radial energy profile, and longitudinal energy profile well modeled by all three CaloClouds variants (40,000 showers each)
- CaloClouds II models improve the radial energy profile

30

Generation Speed Comparison

_	Hardware	Simulator	NFE	Batch Size	Time / Shower [ms]	Speed-up
(Intel Xe	CPU on CPU E5-2640)	GEANT4			3914.80 ± 74.09	$\times 1$
		CALOCLOUDS	100	1	3146.71 ± 31.66	$\times 1.2$
		CaloClouds II	25	1	651.68 ± 4.21	$\times 6.0$
		CaloClouds II (CM)	1	1	84.35 ± 0.22	$\times 46$
	GPU	CaloClouds	100	64	24.91 ± 0.72	$\times 157$
(NVID	IA A100 40 GB)	CaloClouds II	25	64	6.12 ± 0.13	$\times 640$
		CaloClouds II (CM)	1	64	2.09 ± 0.13	$\times 1873$

- Speed-up scales with the number of function evaluations (NFE)
- Largest speed-up for CaloClouds II (CM), even on CPU
- CPUs more widely available than GPUs, cheaper, and current simulation chain optimized on CPUs

More Point Clouds

JetNet30

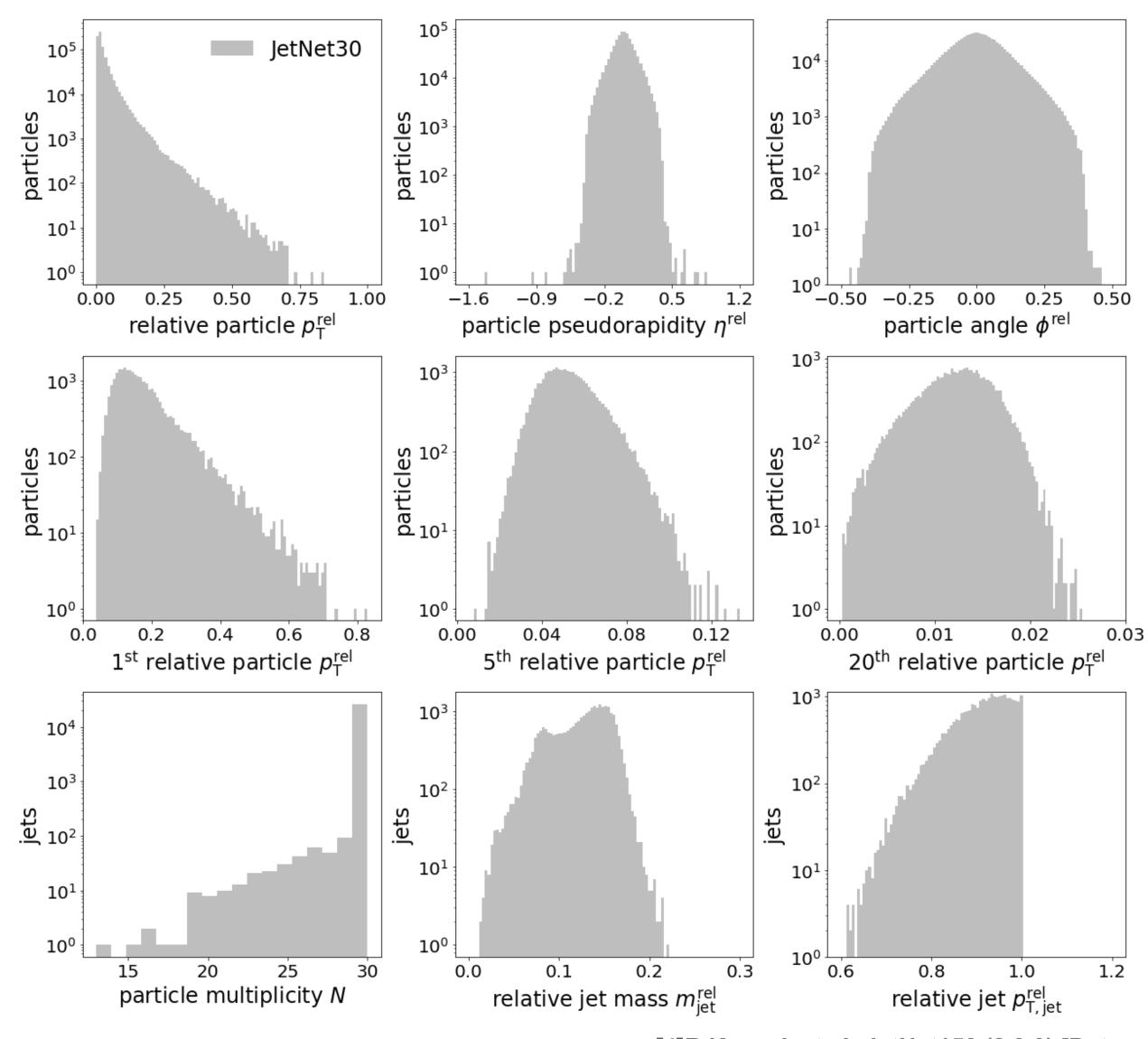
- Benchmark dataset: JetNet30 [4]
- Simulated jets from proton-proton collisions
- Anti- $k_{\rm T}$ clustered with R=0.8 and maximum particle multiplicity N=30
- Particle collider coordinates normalized and centered

$$- p_{\mathrm{T}}^{\mathrm{rel}} = p_{\mathrm{T}}^{\mathrm{particle}} / p_{\mathrm{T}}^{\mathrm{jet}}$$

$$- \eta^{\text{rel}} = \eta^{\text{particle}} - \eta^{\text{jet}}$$

$$- \phi^{\text{rel}} = \phi^{\text{particle}} - \phi^{\text{jet}}$$

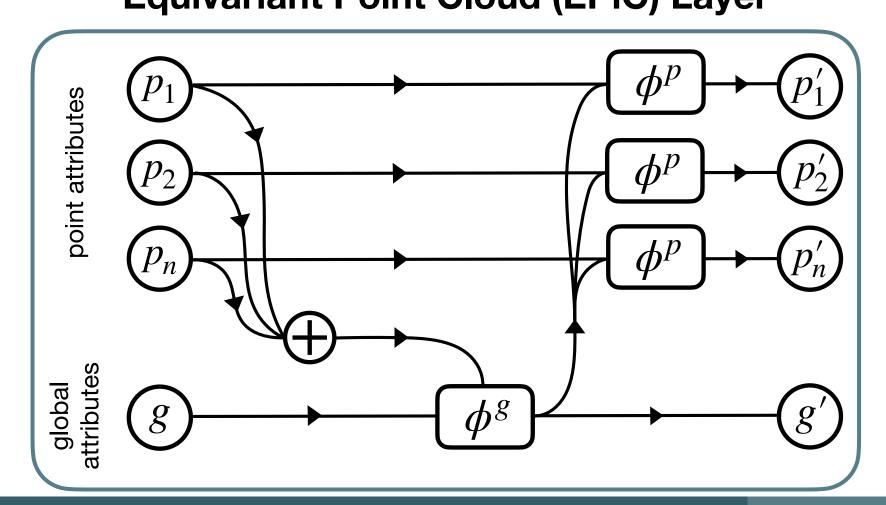
- Jet types: Gluon, light quarks, top quark



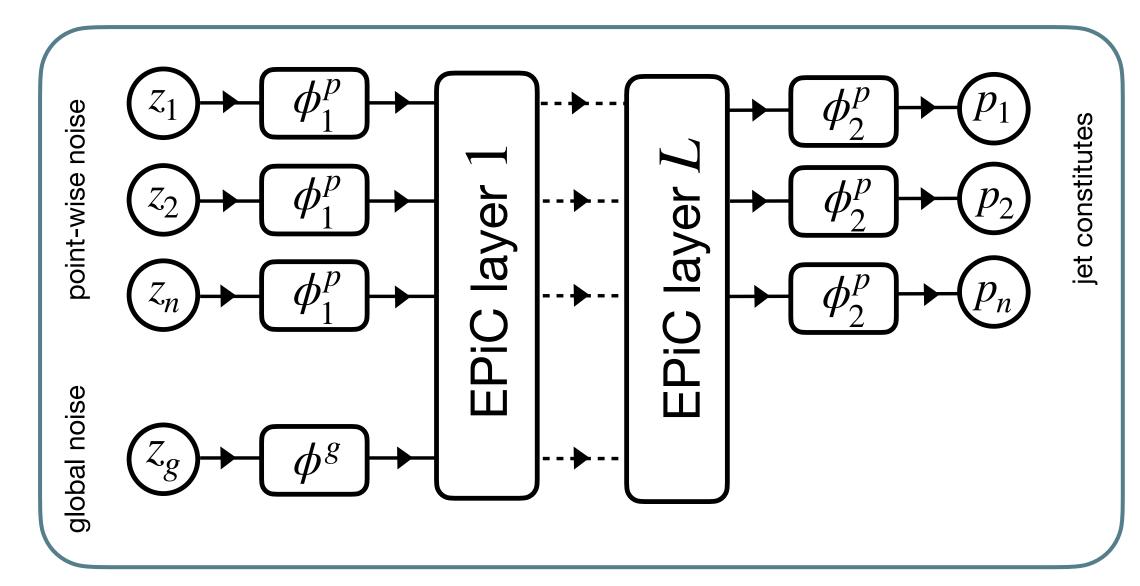
[4]R Kansal, et al: JetNet150 (2.0.0) [Data set]. Zenodo

Equivariant Point Cloud (EPiC) GAN

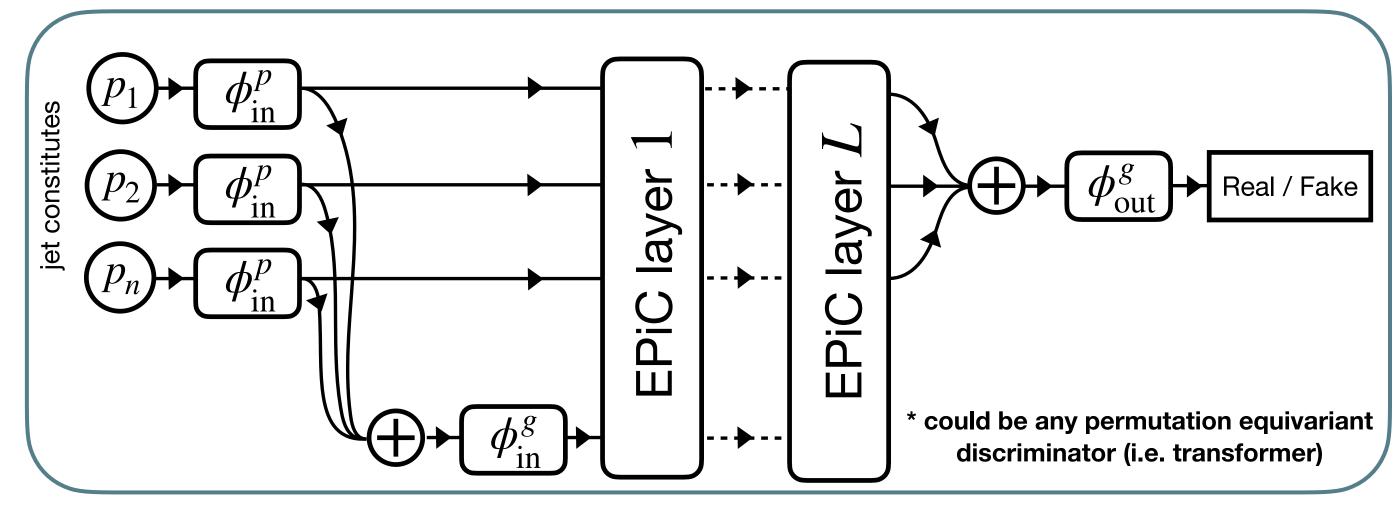
- 2 step update process per EPiC layer:
 - Global attributes g are updated based on particle-wise attributes p_i
 - Particle attributes \boldsymbol{p}_i are updated base on the updated global attributes \boldsymbol{g}'
- Control of communication between local vectors via:
 - Length of global vector $dim(\mathbf{g})$
 - Number of stacked EPiC layers L Equivariant Point Cloud (EPiC) Layer



Generator:

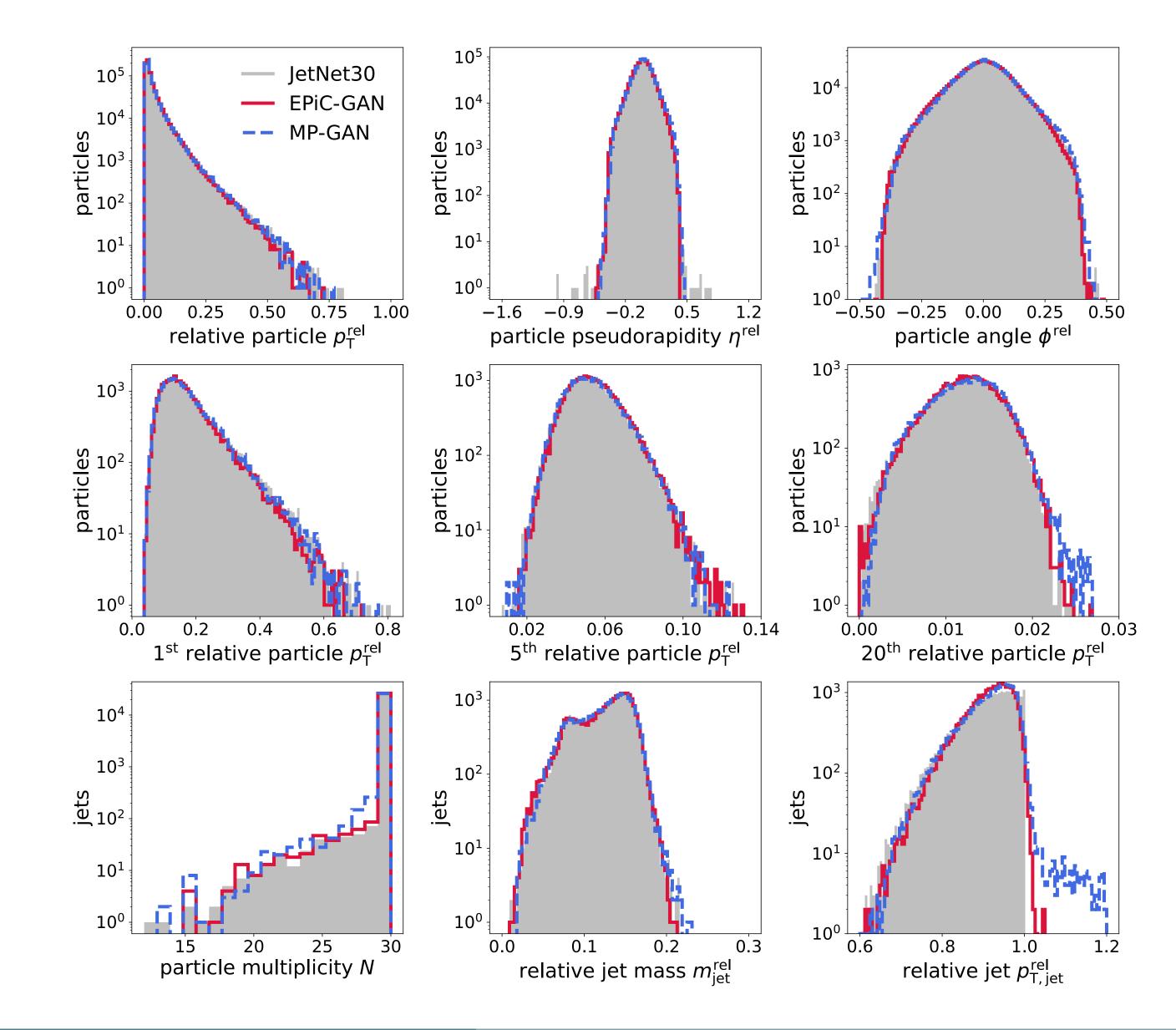


Discriminator:



Results on JetNet30 tops

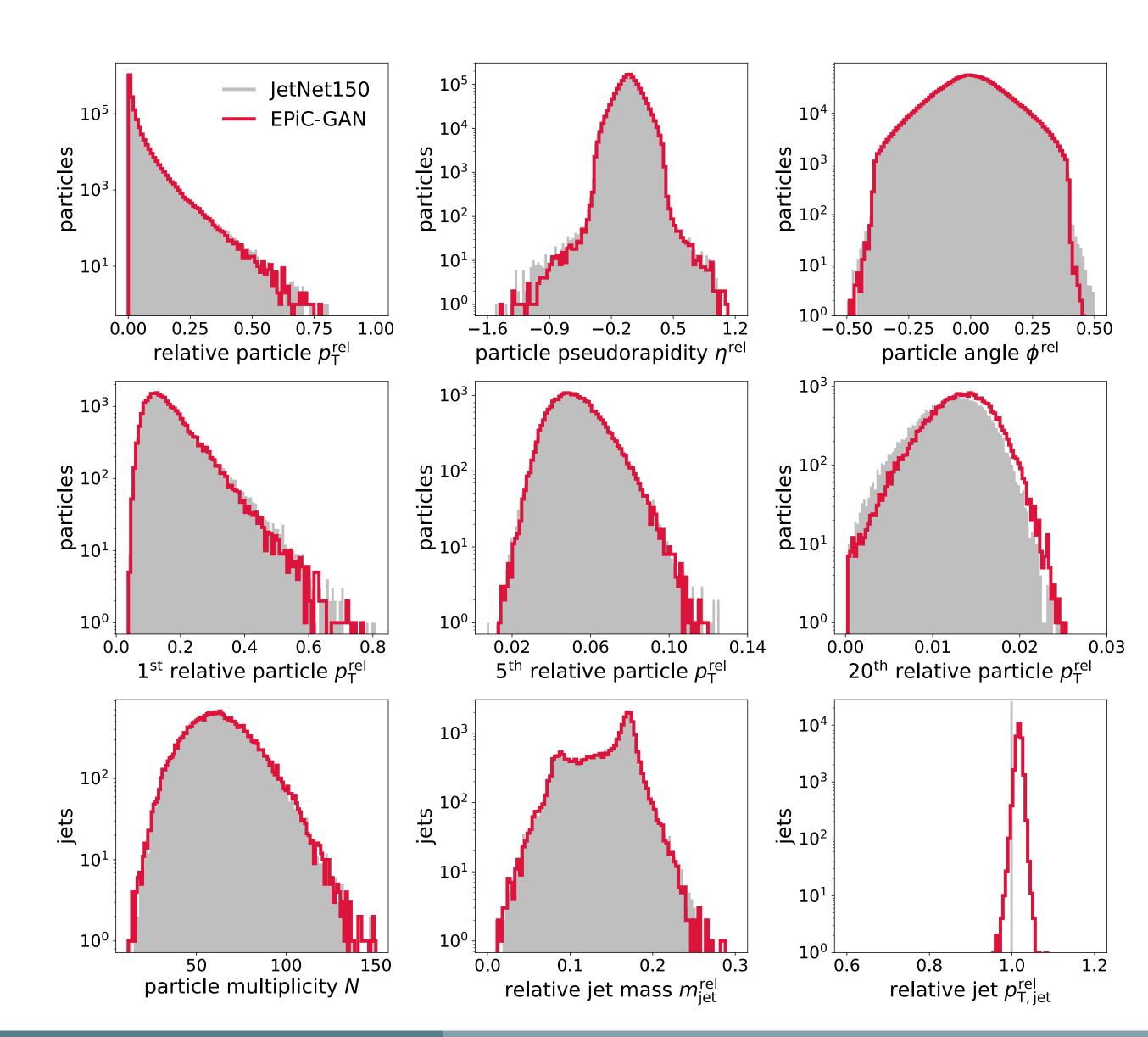
- EPiC-GAN setup:
 - $L_{\rm gen} = 6$, $L_{\rm discr} = 3$ EPiC layers
 - $dim(\mathbf{g}) = 10$ global attributes
- High generative fidelity after six equivariant update steps
- Distributions well represented by EPiC-GAN, jet mass distributions particularly challenging
- Very similar performance to state-ofthe-art message passing (MP)-GAN⁶



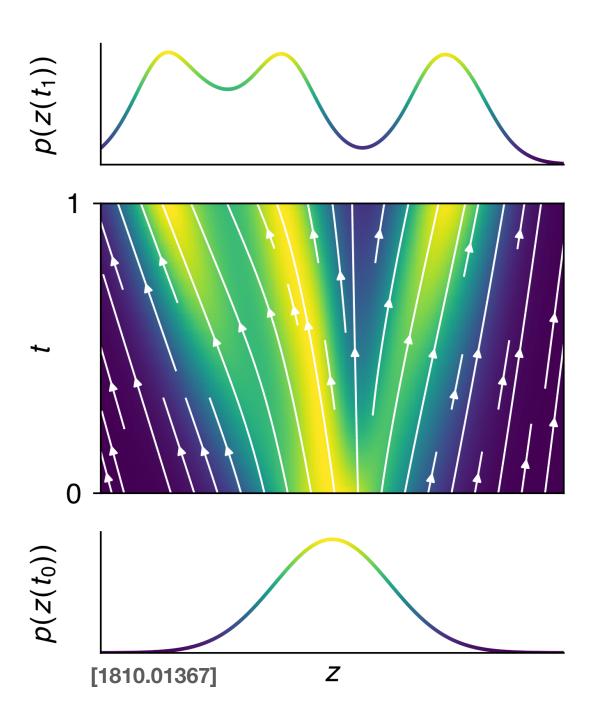
[6]Particle Cloud Generation with Message Passing Generative Adversarial Networks
R Kansal, et al.; arXiv: 2106.11535v3

Results on JetNet150 tops

- EPiC-GAN setup:
 - $L_{\rm gen} = 6$, $L_{\rm discr} = 3$ EPiC layers
 - $dim(\mathbf{g}) = 10$ global attributes
- Works well for up to 150 particles
- Distributions well represented by EPiC-GAN, jet mass distributions particularly challenging
- Sharp relative jet p_{T} distribution challenging; can be resolved by calibration



Flow Matching



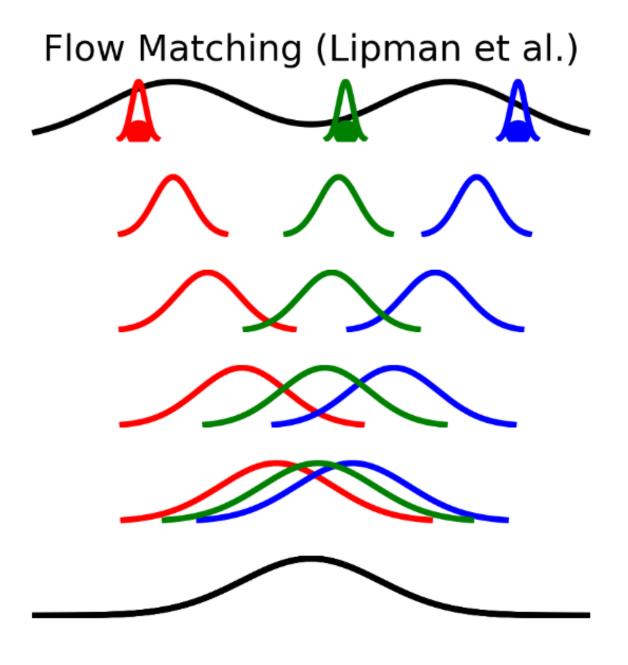
Continuous Normalizing Flow (CNF)

- Training is difficult because ODE needs to be solved

$$\frac{\partial x_t}{\partial t} = v_{\theta}(x_t, t)$$

Flow Matching for Generative Modeling

Lipman et al.; <u>arxiv:2210.02747</u>



Flow Matching (FM)

- Simulation-free training objective (no ODE solving during training)
- Regressing against conditional flows
- Much faster training

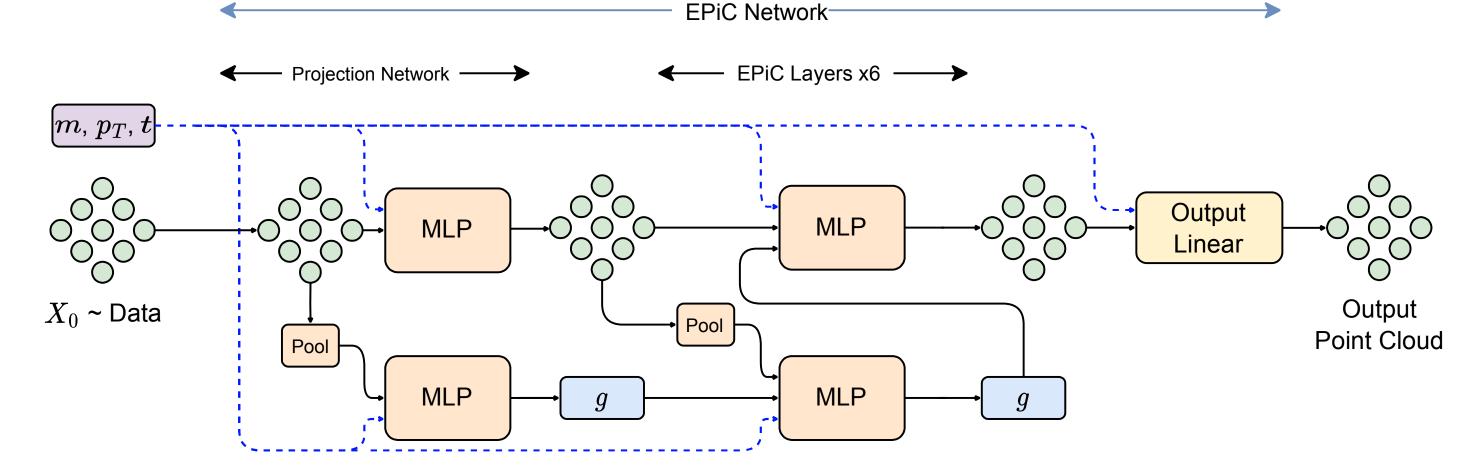
$$L_{FM} = \left| \left| v_{\theta}(x_t) - u_t(x_t | x_0) \right| \right|^2$$

EPiC-FM & EpiC JeDi

- EPiC-FM: EPiC Architecture with Flow Matching $L_{FM}(v_{\theta}, u_{t}(x \mid x_{0})) = \left| \left| v_{\theta}(x_{t}, t) - \left((1 - \sigma_{min})\epsilon - x_{0} \right) \right| \right|^{2}$

- EPiC-JeDi: EPiC Architecture with JeDi diffusion

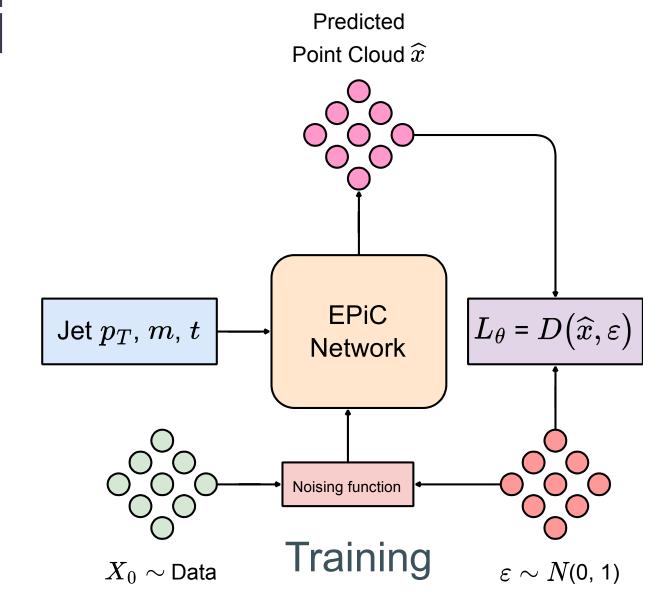
$$L_{JeDi}\left(v_{\theta}, s_{t}(x \mid x_{0})\right) = \left(1 - \alpha \frac{\beta(t)}{\sigma(t)^{2}}\right) \left| v_{\theta}(x_{t}, t) - \epsilon \right|^{2}$$

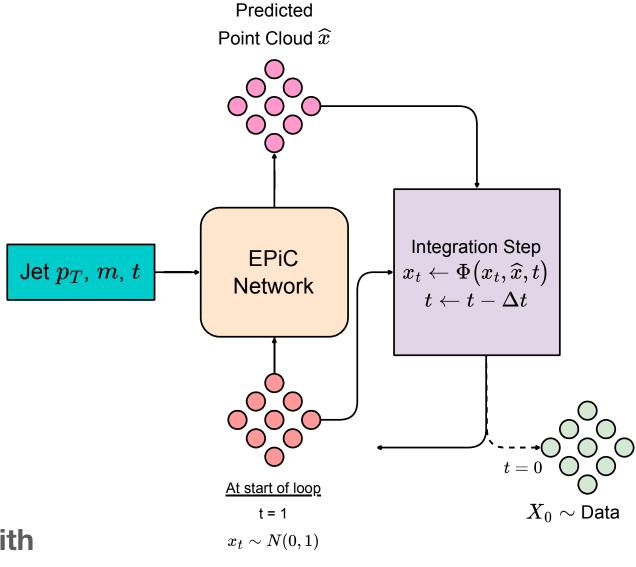


EPiC Network

EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion

E. Buhmann, et al, <u>arxiv: 2310.00049</u>





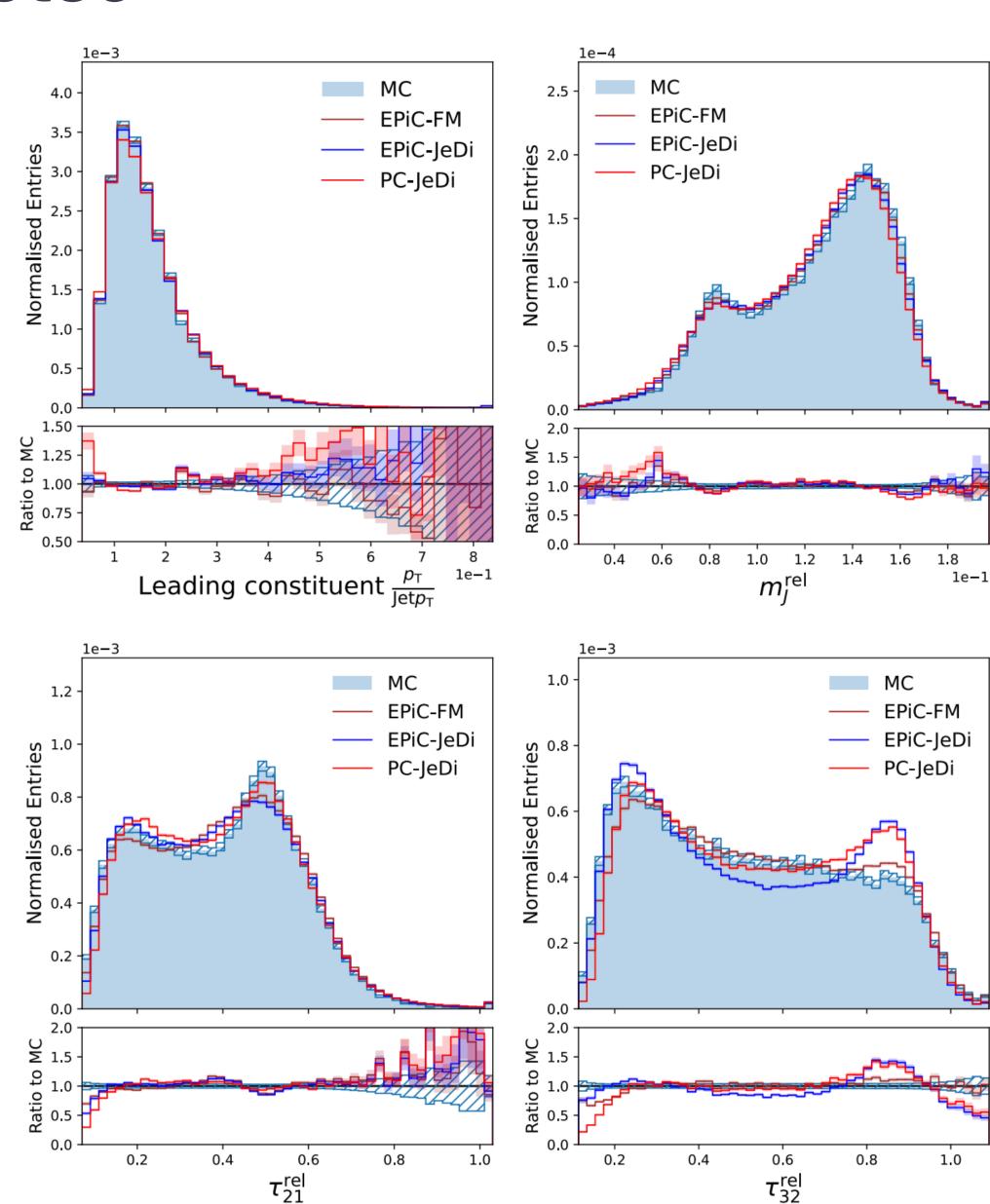
Sampling

Results on JetNet30

- Unconditioned and conditioned version (mass, p_T^{Jet})
- Generate conditioning with normalizing flow
- Comparison to EPiC GAN and PC-JeDi
- Substructure most challenging to learn
- Similar results on JetNet150

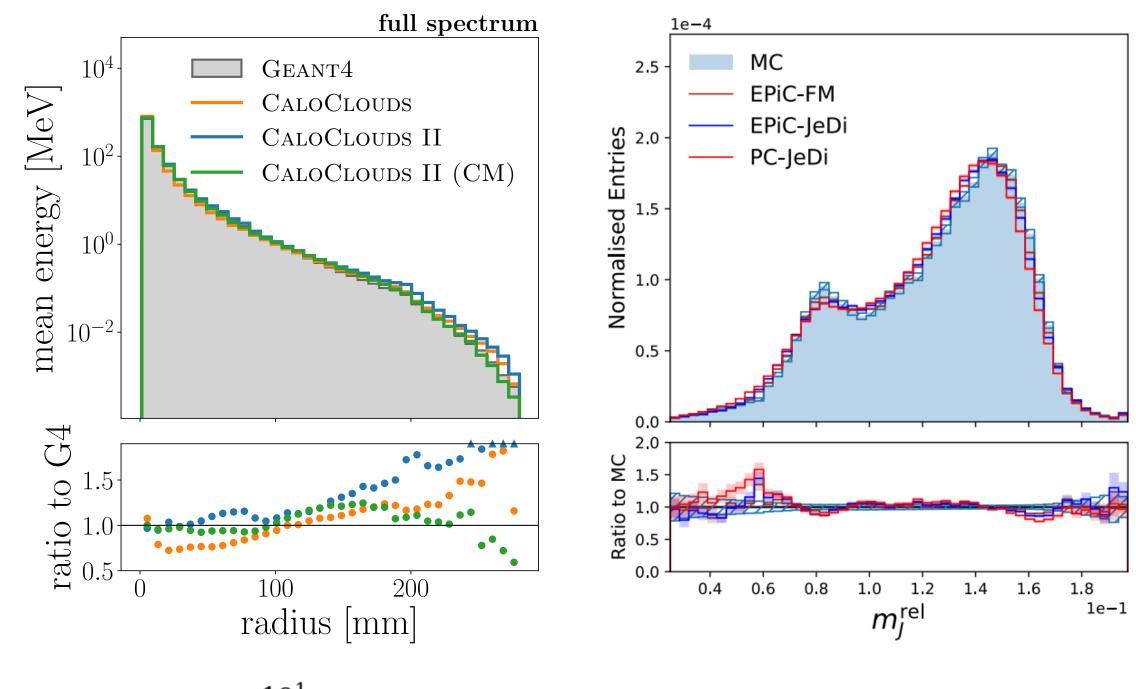
Generation	Model	NLP	$KL^m(\times 10^{-3})$	$\mathrm{KL}^{p_T^{\mathrm{const}}}(\times 10^{-3})$	$KL^{\tau_{21}}(\times 10^{-3})$	$KL^{\tau_{32}}(\times 10^{-3})$
Conditional	PC-JeDi EPiC-JeDi EPiC-FM	3.08 3.1 1.35	8.56 ± 0.75 5.26 ± 0.51 3.77 ± 0.50	3.25 ± 0.09 2.99 ± 0.05 2.03 ± 0.02	12.82 ± 1.16 7.81 ± 0.61 7.40 ± 0.64	27.08 ± 1.40 17.34 ± 1.08 8.09 ± 0.93
Unconditional	EPiC-GAN EPiC-JeDi EPiC-FM	3.43 3.11 1.38	3.71 ± 0.42 18.42 ± 1.12 5.80 ± 0.54	3.33 ± 0.03 3.73 ± 0.08 2.03 ± 0.01	8.28 ± 0.76 8.00 ± 0.80 7.69 ± 0.71	17.68 ± 0.91 15.27 ± 1.35 9.24 ± 1.00

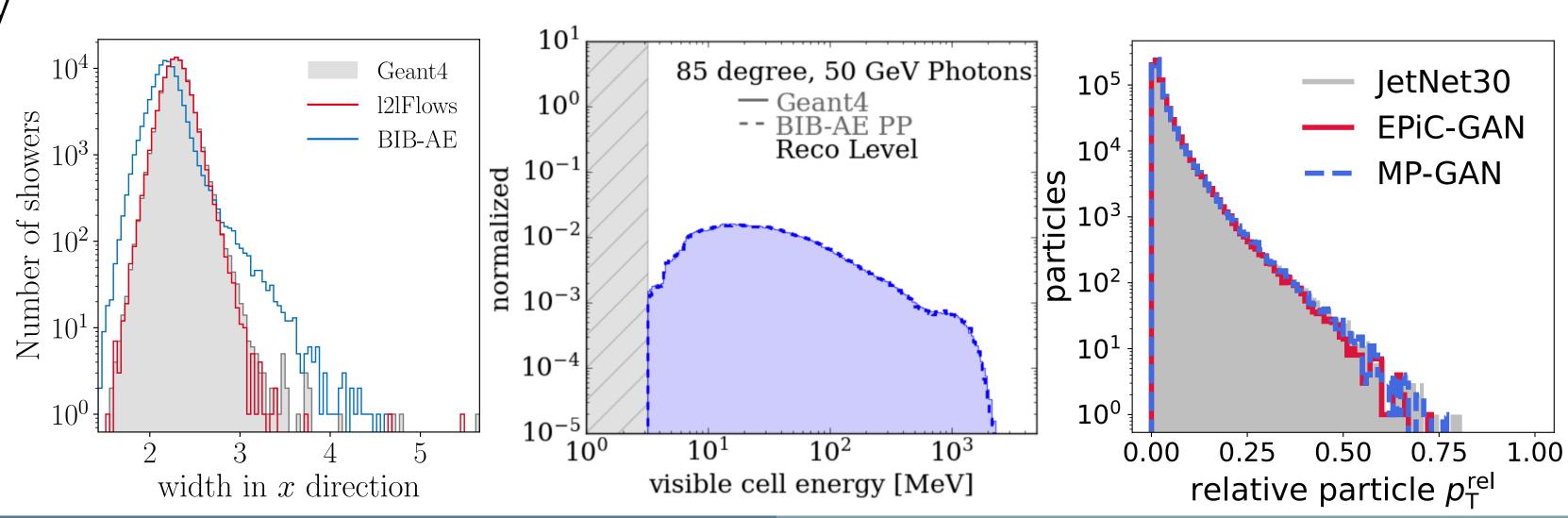
PC-JeDi: Diffusion for Particle Cloud Generation in High Energy Physics M. Leigh et al.; arXiv: 2303.05376



Summary

- **BIB-AE** with angular conditioning nice distributions after full reconstruction with PandoraPFA
- Layer-to-Layer Flows with improved performance over BiB-AE
- CaloClouds produces high fidelity and geometry independent showers
- **EPiC-GAN** and **EPiC-FM** good performances on JetNet30





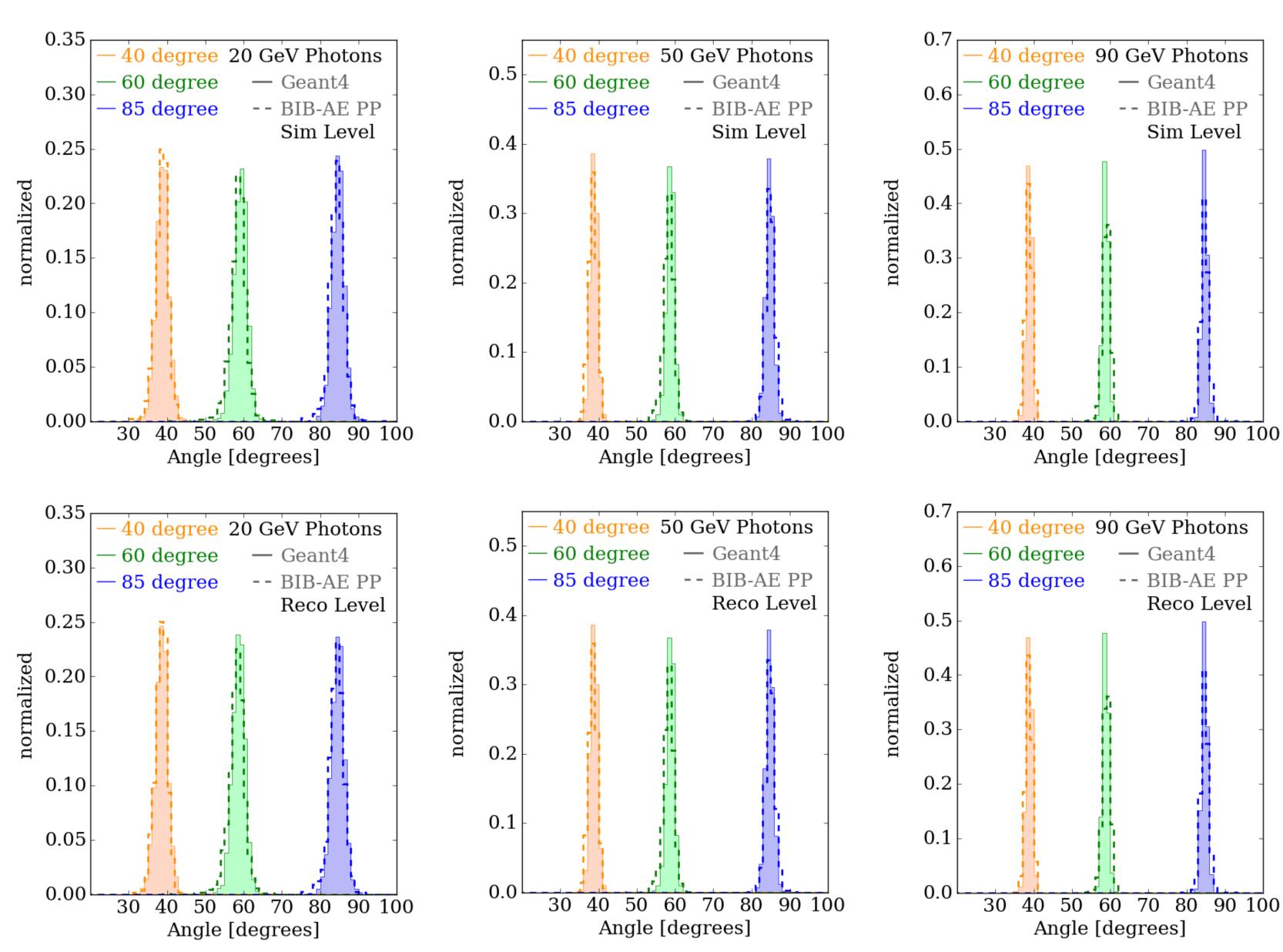
Thank you

Backup Slides

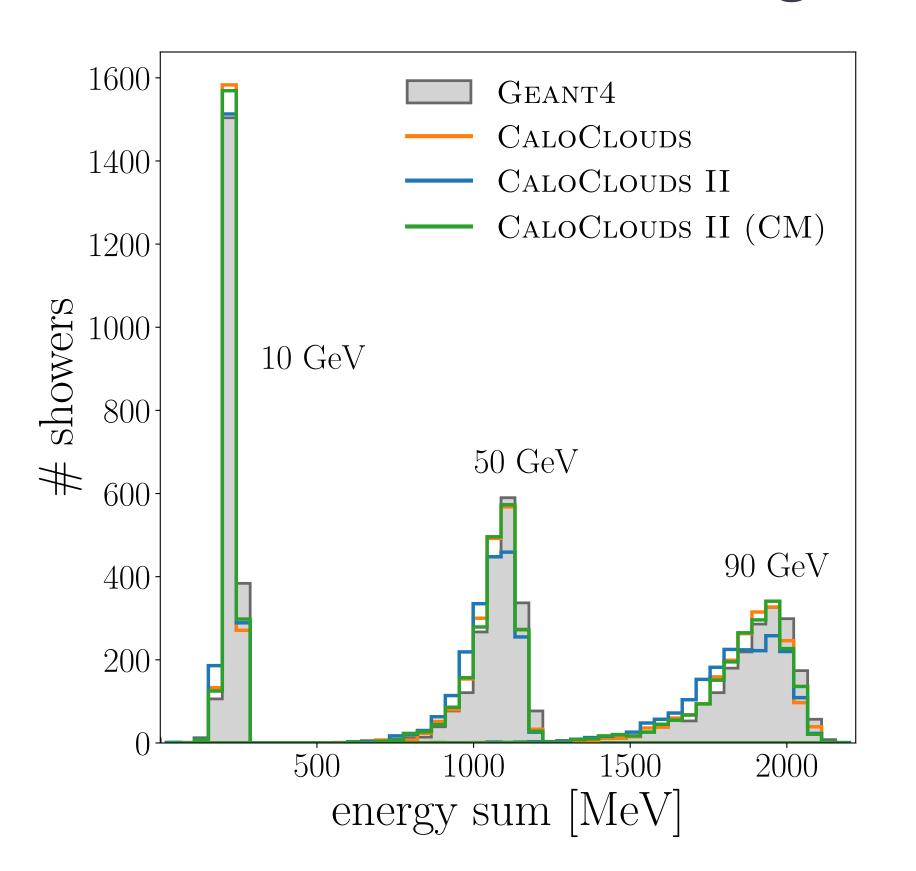
BiB-AE: Photons and Pions

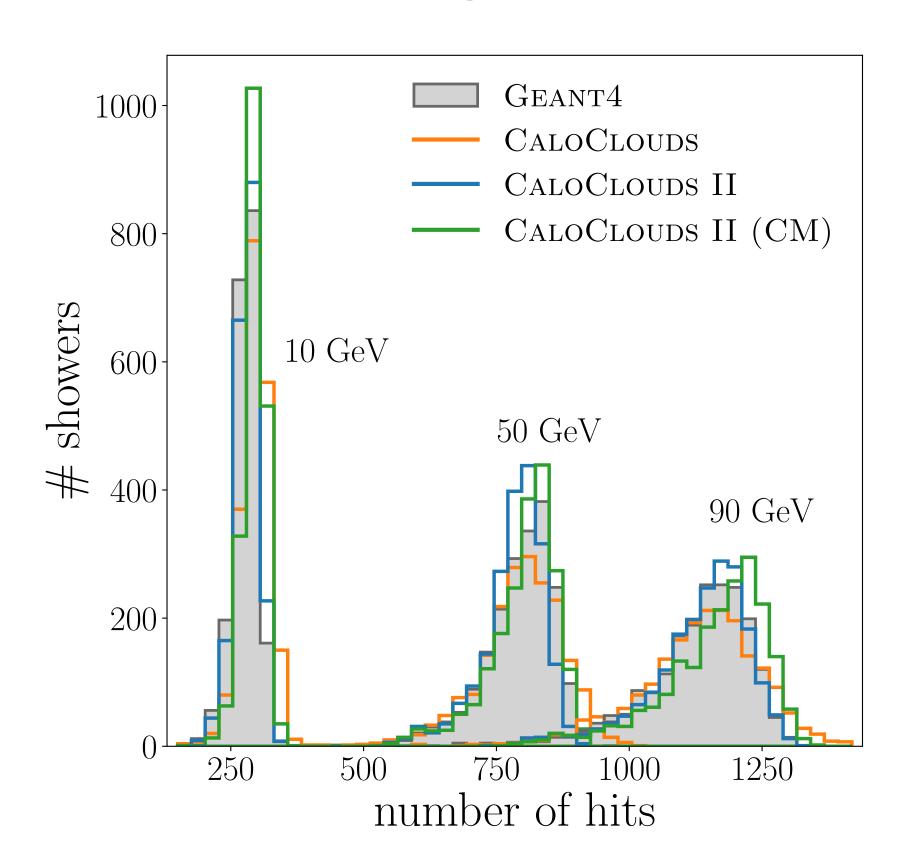
- **Sim** level angle reconstruction

- **Rec** level angle reconstruction
 - After full reconstruction with PandoraPFA



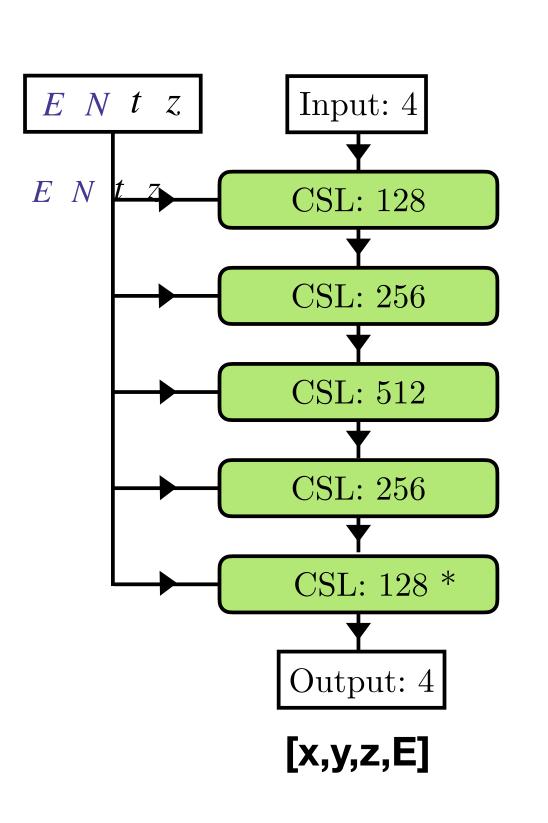
Results: Single Incident Energies



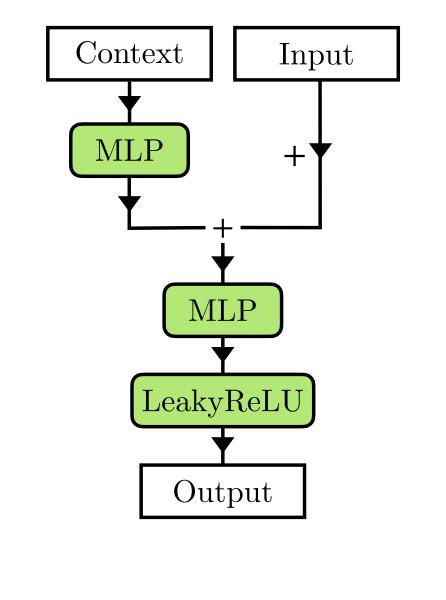


- Total visible energy & number of cell hits for single incident energies well modelled by all three CaloClouds variants (2,000 showers each)
- Number of hits better modeled by the CaloClouds II variants
- Expecting further improvements with wider energy range during training

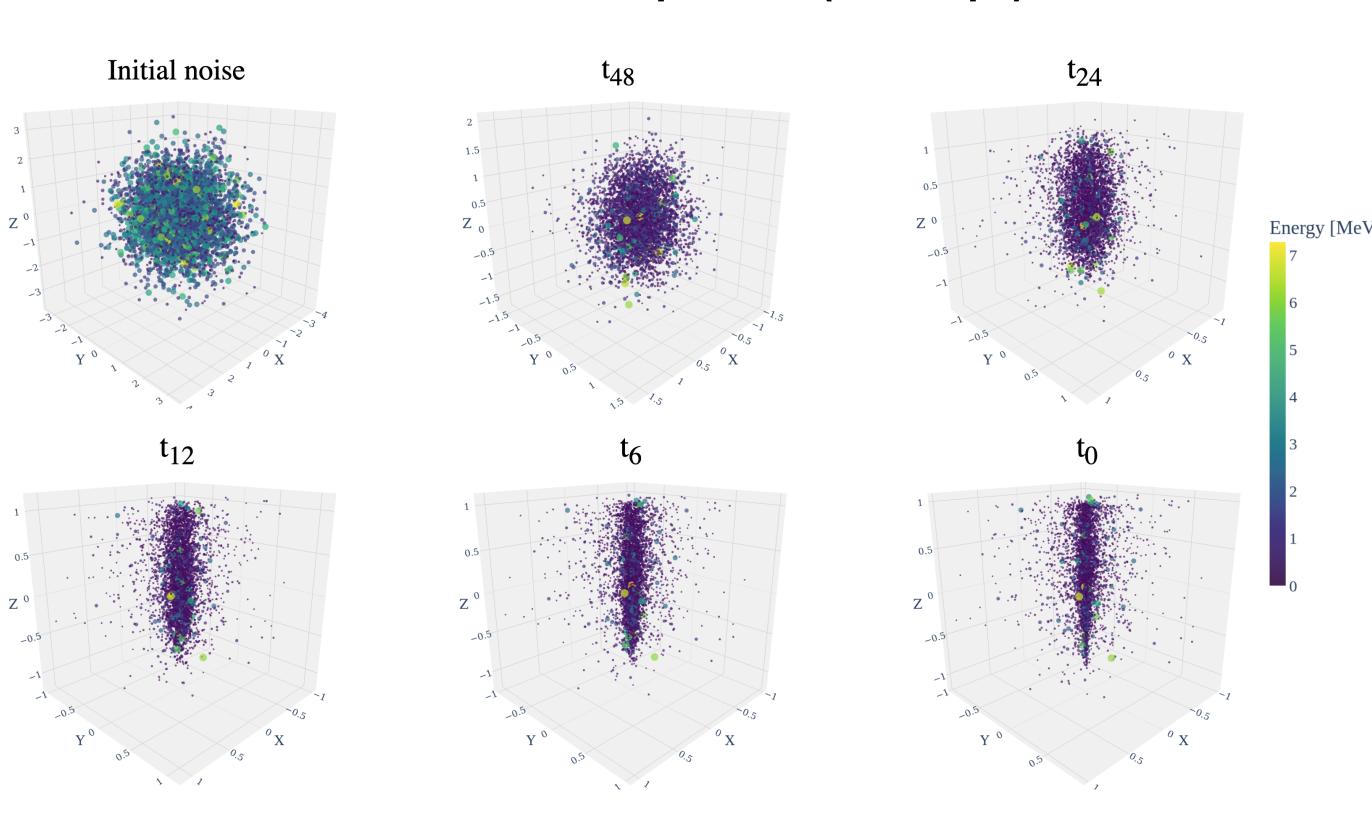
CaloClouds Models



Concat Squash Linear (CSL) Layer



Reverse diffusion process (100 steps)



- Weight sharing across all points
- Each point independently sampled
- No interaction between points → very fast sampling

Architecture from:

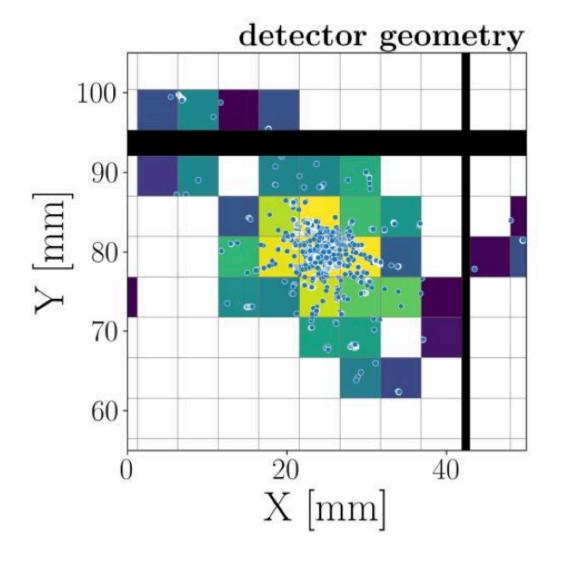
Diffusion Probabilistic Models for 3D

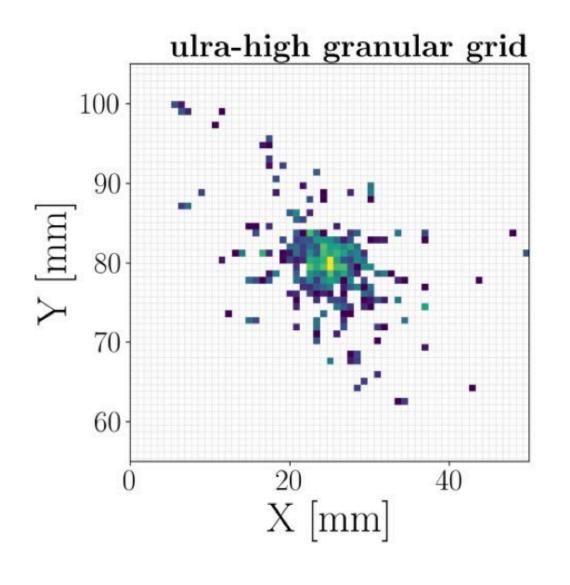
Point Cloud Generation

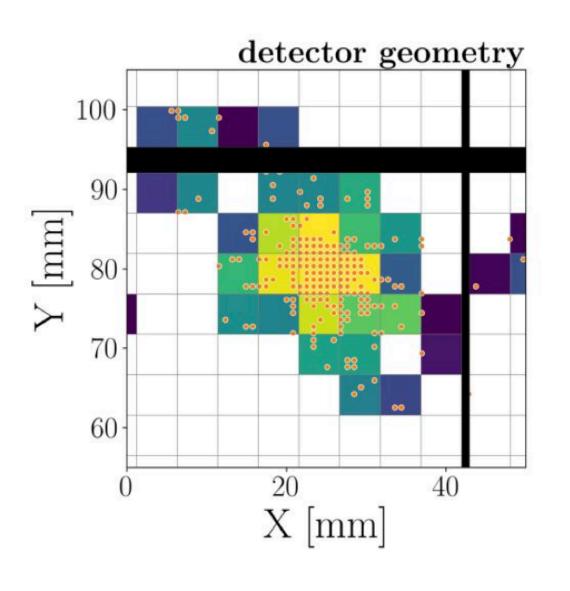
S Luo, W Hu; arXiv: 2103.0145

EM Showers: effects of pre-clustering

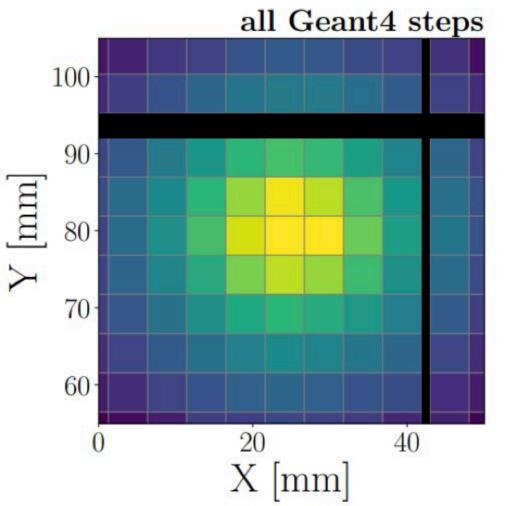
Single event of 90 GeV shower in 21th layer

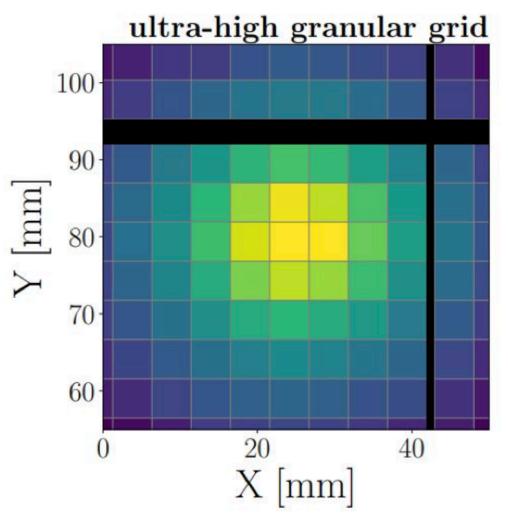


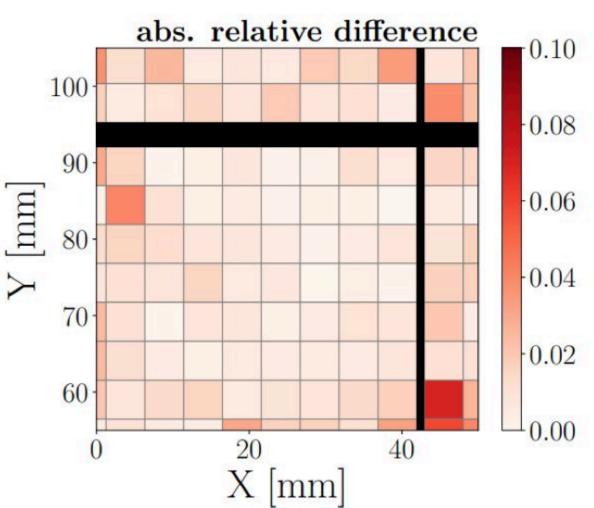




2k events of 90 GeV showers in 21th layer, overlay







CaloClouds Results: Metrics & Classifier

Simulator	$W_1^{N_{\text{hits}}} \times 10^{-3})$	$W_1^{E_{\text{vis}}/E_{\text{inc}}} \times 10^{-3})$	$W_1^{E_{\text{cell}}} \times 10^{-3})$	$W_1^{E_{\text{long}}} \times 10^{-3})$	$W_1^{E_{\mathrm{radial}}} $ $(\times 10^{-3})$	$W_1^{m_{1,X}} $ (×10 ⁻³)	$W_1^{m_{1,Y}} $ $(\times 10^{-3})$	$\begin{array}{c} W_1^{m_{1,Z}} \\ (\times 10^{-3}) \end{array}$
Geant4	0.7 ± 0.2	0.8 ± 0.2	0.9 ± 0.4	0.7 ± 0.8	0.7 ± 0.1	0.9 ± 0.1	1.1 ± 0.3	0.9 ± 0.3
CALOCLOUDS II CALOCLOUDS II (CM)	3.6 ± 0.5	26.4 ± 0.4	15.9 ± 0.7 15.3 ± 0.6 16.0 ± 0.7	3.7 ± 1.6	11.6 ± 1.5	$\textbf{2.4}\pm\textbf{0.4}$		

- Evaluation metrics based on 1-Wasserstein distance*
- Similar performance between all three CaloClouds versions
- High-level classifier "metric": CaloClouds II better than CaloClouds

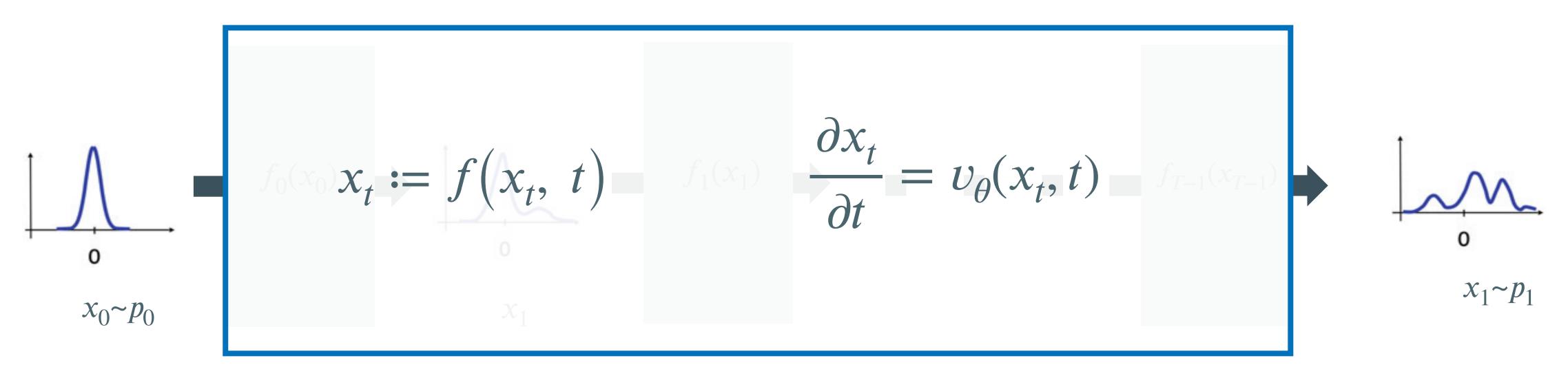
High-level fully connected classifier:

Simulator	AUC
CALOCLOUDS	0.999 ± 0.001
CaloClouds II	0.928 ± 0.001
CaloClouds II (CM)	0.923 ± 0.001

*Particle Cloud Generation with Message Passing Generative Adversarial Networks

R Kansal, et al.; arXiv:2106.11535

Continuous Normalizing Flow



Normalizing Flow (NF)

Training:
$$\log p_T(x_T) = \log p_0(x_0) - \log \left| \frac{\partial f_t^{\theta}}{\partial x_t} \right|$$

Sampling:
$$x_T = f_{T-1} \circ \dots \circ f_0(x_0)$$

- f must be invertible
- Determinant computationally expensive
 - Restricted transformations needed

Continuous Normalizing Flow (CNF)

$$\log p_1(x_1) = \log p_0(x_0) - \int_{t_0}^{t} Tr\left(\frac{\partial v_\theta}{\partial x_t}\right) dt$$

Solve ODE (ordinary differential equation)

- f has no restrictions
- Trace is easier to calculate
- Still computationally expensive

Neural Ordinary Differential Equations

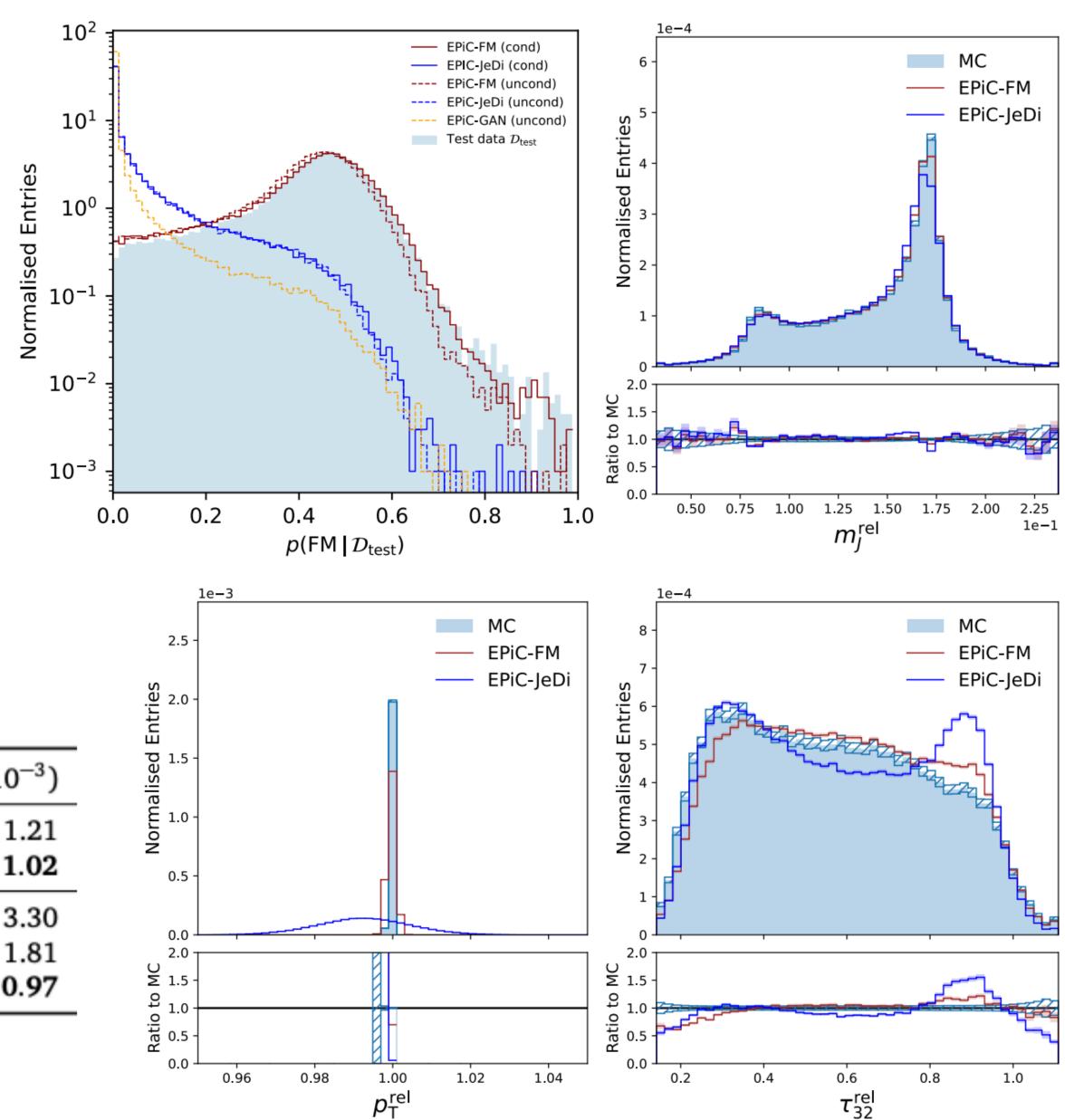
Chen et al.; arxiv:1806.07366

Results on JetNet150

- Conditioned on mass and pT vs. unconditioned
- Comparison to EPiC GAN
- PC-JeDi too slow for 150 particles

- Similar behavior to JetNet30
- EPiC-FM outperforms all models
- Conditioned models are slightly better

Generation	Model	NLP	$KL^m(\times 10^{-3})$	$\mathrm{KL}^{p_T^{\mathrm{const}}}(\times 10^{-3})$	$\text{KL}^{\tau_{21}}(\times 10^{-3})$	$\mathrm{KL}^{\tau_{32}}(\times 10^{-3})$
Conditional	EPiC-JeDi	5.67	9.10 ± 0.79	6.42 ± 0.76	14.32 ± 1.08	19.92 ± 1.21
	EPiC-FM	0.12	4.30 ± 0.53	0.84 ± 0.02	9.43 ± 0.61	11.22 ± 1.02
Unconditional	EPiC-GAN	11.6	6.50 ± 0.63	2.22 ± 0.09	20.60 ± 1.55	69.64 ± 3.30
	EPiC-JeDi	5.70	27.46 ± 1.24	6.39 ± 0.60	20.15 ± 1.25	36.50 ± 1.81
	EPiC-FM	0.98	12.95 ± 0.90	0.87 ± 0.02	10.59 ± 0.88	12.14 ± 0.97



Results on JetNet30

- Better scaling behavior for EPiC layers-6.2x faster at 150 particles
- Effect increases for larger point clouds like calorimeter showers
- Slower than GANs
- Complementary to distillation approaches

