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The ALICE experiment

> ALICE experiment designed to study the quark-gluon plasma formed in ultra-relativistic

heavy-ion collisions at the CERN LHC
o quark-gluon plasma — exotic state of matter in which quark and gluons are deconfined

o ACORDE | ALICE Cosmic Rays Detector

> Rich physics
program studying
pp, p-A, and A-A
collisions

e AD | ALICE Diffractive Detector
e DCal | Di-jet Calorimeter
o EMCal | Electromagnetic Calorimeter

e HMPID | High Momentum Particle
Identification Detector

o ITS-IB | Inner Tracking System - Inner Barrel

o ITS-OB | Inner Tracking System - Outer Barrel
9 o o MCH | Muon Tracking Chambers
o MFT | Muon Forward Tracker

@ MID | Muon Identifier

m PHOS / CPV | Photon Spectrometer
@ TOF | Time Of Flight

@ TO+A | Tzero + A

@ T0+C | Tzero + C

@ TPC | Time Projection Chamber

@ TRD | Transition Radiation Detector

m VO+ | Vzero + Detector
@ ZDC | Zero Degree Calorimeter

21/11/2023 F. Catalano 2

>




ALICE upgrades for Run 3

> In preparation for the LHC Run 3 — substantial detector upgrades
o new ITS, MFT, FIT detectors and new GEM readout chambers for the TPC

o enable operations at much higher interaction rate than in Run 2

o improved vertexing and tracking resolution at low transverse momentum

> Reconstruct data in continuous readout, recording time frames instead of events

o ~500 kHz interactions at
pp data taking

o up to 50 kHz during the
Pb-Pb run

o about x50 increase in
statistics for physics
observables

events in TPCwi ch structure @ 50 kHz Pb-Pb
Timeframe of 2 ms shown (will be 2.8 ms in production)
Tracks of different collisions shown in different colour
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Data flow and software

> Completely new software and computing framework (O?) for synchronous and

asynchronous reconstruction (w.r.t. data taking)
developed to cope with the increased data volume
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From G. Eulisse talk at CHEP 2023
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https://indico.jlab.org/event/459/contributions/12432/

Machine learning in ALICE

> Fundamental tool to
o maximise the physics potential
of the measurements
o cope with the huge amount of
data produced at LHC

> ALICE ML activities involve
o physics analyses
o detector calibrations
o data quality control (QC)
o Monte Carlo simulations : 5 S Pb[:cgi'ggilev

18th November 2022
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Ongoing ML activities

"Established
Signal-vs-background classification

o BDT and NN replacing “traditional” linear
selections in data analysis

Jet p. reconstruction

o correction for the background from the
underlying event using shallow NN

Heavy-flavour hadron trigger
o BDT to trigger on displaced decay-vertex
topologies

TPC response calibration
o ML to compute corrections of space
charge distortions
o NN for energy-loss (dE/dx) calibration

General framework developments
o common tools and procedures

21/11/2023

Particle identification (PID)
o exploit complex relationship between
track properties and PID
o NN to combine info from different

detectors
o PID with ITS2 using BDT regression

MFT-MCH track matching

o NN classification giving the score for a
correct match

ML for quality control/assurance
o alert experts quickly and accurately about
issues in data-taking

Fast simulation
o ZDC calorimeter simulation with GANs
and VAEs

... hot a comprehensive list!
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Ongoing ML activities

' Exploratory
Signal-vs-background classification

o BDT and NN replacing “traditional” linear
selections in data analysis

Jet p. reconstruction

o  correction for the background from the
underlying event using shallow NN

Heavy-flavour hadron trigger
o BDT to trigger on displaced decay-vertex
topologies

TPC response calibration
o ML to compute corrections of space
charge distortions
o NN for energy-loss (dE/dx) calibration

General framework developments
o common tools and procedures

21/11/2023

Particle identification (PID)
o exploit complex relationship between
track properties and PID
o NN to combine info from different
detectors
o  PID with ITS2 using BDT regression

MFT-MCH track matching

o NN classification giving the score for a
correct match

ML for quality control/assurance
o alert experts quickly and accurately about
issues in data-taking

Fast simulation
o ZDC calorimeter simulation with GANs
and VAEs

... hot a comprehensive list!
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ML to improve measurements — Hypertriton

> ° His the lightest known hypernucleus

o bound state of a neutron, a proton and a A
o could be approximated as a deuteron-/A bound state with an
N expected radius of ~10 fm

> Unique probe to study the A-nucleus interaction, with

strong implications for astro-nuclear physics
o hyperons expected to be produced in neutron-star inner core

"deuteron” core

> 3 H candidates built combining *He + 1" pairs
(and charge conjugates) Secondary vertex - V0.
o matching of tracks coming from a common DCA *He |
secondary vertex
o huge combinatorial background

Priméry s to PV
Vertex #
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ML to improve measurements — Hypertriton

>

XGBoost BDTs for binary classification

(signal vs combinatorial background)

Models trained employing high-level
physical variables (decay length, PID,
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> Most precise measurements of the hypertriton
lifetime and A separation energy to date
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https://xgboost.readthedocs.io/en/stable/
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.102302

ML to improve measurements — Jet p.. reconstruction

> Reconstruction of inclusive jet p_ in heavy-ion collisions
difficult due to large fluctuating background from the

O
underlying event

arXiv:2303.00592
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Calorimeter Towers

Charged Tracks

op

T pT, rec pT, true

> Shallow NN from scikit-learn to correct the jet

transverse momentum
jet and constituent (p; of leading tracks) properties as
input to the model

O

> Improved performance w.r.t. “standard” area based

approach

o narrower 5p; — reduced residual fluctuations
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https://arxiv.org/abs/2303.00592
https://scikit-learn.org/stable/

ML to enable new measurements — Non-prompt charm hadrons

> ML tools used to single out charm hadrons produced in beauty-hadron decays
o indirect access to the beauty sector

CERN-THESIS-2022-046 Hp

A T o R & TO] PR TR LT W [ T o [ W [ T pv » 7
= - This Thesis = Prompt D" Non-prompt D
S 1E pp, Vs=5.02TeV =+ Non-prompt D: 3
gl F 3<p_<4GeVic —— Comb. bkg. 7
& L ! j
£107k E > XGBoost BDTs for multiclass classification, to
(o] 7
= ] disentangle

10 E o  two kinds of signal (prompt and non-prompt

charm hadrons)
107 o combinatorial background
- . > Models trained using high-level physical
Lol (#7x10 .
4 45 5 variables (decay length, PID, ...)

DL (um)
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https://xgboost.readthedocs.io/en/stable/
https://cds.cern.ch/record/2810132/

ML to enable new measurements — Non-prompt charm hadrons

> BDT output related to the candidate probability of being a prompt charm hadron, a
non-prompt charm hadron or combinatorial background

JHEP 05 (2021) 220
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> Production of prompt and non-prompt D°, D*, D.", and A" hadrons measured separately
o non-prompt charm-hadron measurements not possible without ML
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https://link.springer.com/article/10.1007/JHEP05(2021)220

Software for ML

> ML applications in ALICE based either on
o ROOT TMVA
m early applications, now essentially abandoned

o python software stack (scikit-learn, XGBoost, TensorFlow, PyTorch, ...)

[ ROOT, @ python’
l‘ %CBoost ‘a"

Integrated out-of-the-box in ALICE Widely used outside HEP
analysis software
y Huge amount of ML models and
X Limited selection of ML models and techniques available
tools
X Need interfaces with the ALICE C++
X Limited documentation software (uproot, treelite,

ONNXRuntime)

21/11/2023 F. Catalano 13


https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/stable/
https://www.tensorflow.org/
https://pytorch.org/
https://github.com/scikit-hep/uproot5
https://github.com/dmlc/treelite
https://github.com/microsoft/onnxruntime

Software for ML

M

@ python
%CBOOSI' .gﬂ

o python software stack (scikit-learn, XGBoost, TensorFlow, PyTorch, ...)

> Some common software tools have been developed by ALICE members
o automatise workflows and/or ease typical steps of an analysis

o useful to kickstart new analysers and to have consistent practices within the Collaboration

o hipe4ml package (available on PyPlI)
m wrapper around popular ML libraries
m used also outside the ALICE Collaboration O\
/O

hiped4ML
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https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/stable/
https://www.tensorflow.org/
https://pytorch.org/
https://github.com/hipe4ml/hipe4ml

Typical analysis workflow — Local inference

Data preparation
> |Information written from AO2D

to ROOT TTree
ESD/AOD » » » > Full data and Monte Carlo
samples downloaded locally

Training and optimisation
> Small fraction of real data and all MC simulations used to train/optimise the model
o requires a few minutes/hours on a workstation for common use cases

Data Preparation Training Application

Inference on full data sample

> Afew minutes/hours depending on the use case
o in some cases high-end machine needed to store and process the large amount of data
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Typical analysis workflow — GRID inference

Data preparation

Information written from AO2D
to ROOT TTree

ESD/AOD Only data needed for training
downloaded locally

Data Preparation Training Application

Local machines

Training and optimisation
> Small fraction of real data and all MC simulations used to train/optimise the model
o requires a few minutes/hours on a workstation for common use cases

Inference on full data sample
> Afew days on the Worldwide LHC Computing Grid (WLCG)

o usual time for a “train run” from the user point of view
o the ML inference step is added to standard analysis tasks

21/11/2023 F. Catalano 16



Analysis workflows in Run 3

ESD/AOD )

Data Preparation

ESD/AOD

21/11/2023

Training

Application

F. Catalano

ALICE is collecting a lot of data in Run 3
o ~27 pb™ of pp in 2022 and 2023
m ~4 PB of raw data stored
o ~1.5nb™ of Pb-Pb collected this year
m ~43 PB of raw data stored

ML model inference on full data samples

challenging on local machines
o  even with server-grade machines

Efficient way to perform ML inference on

the GRID implemented. To support:
o analyses
o “core” tasks (trigger, calibration, particle
identification, ...)

17



Software for ML — Model inference

> Inference of ML models in ALICE Run 3 software implemented via ONNX+ONNXRuntime
o positive experience so far

2 & ONNX— 3 O @)

python”

> Models trained with Python software exported to ONNX format
o supports most ML models (BDT, NN, ...) and libraries (XGBoost, PyTorch, TensorFlow, ...)
o stable format — good for model preservation
o industry standard

> Inference of models in ONNX format performed by ONNXRuntime library
o integrated in ALICE software stack
o C++ APl available, some custom classes developed to simplify usage
o mainly used on the GRID at the moment
o ML models stored in database and retrieved at runtime

21/11/2023 F. Catalano 18


https://onnx.ai/
https://github.com/microsoft/onnxruntime

Software for ML — Model inference

> Under investigation

o provide data from Apache Arrow tables (ALICE Run 3 data format) to ONNXRuntime efficiently

and with flexibility
o TMVA SOFIE as inference provider

m experimental tool in ROOT to read and perform inference for ONNX models
m pros: easy integration, possibly better support for ALICE data format through RDataFrame Arrow

backend
m cons: limited number of ONNX operators supported

> |n ALICE Run 1 and Run 2 software, inference of ML
models was enabled by
o treelite

m project of a XGBoost developer providing a C++ API
m  support for decision tree forests only (e.g. BDTs)

o various custom classes in C++ developed by analysers

21/11/2023 F. Catalano

Models from
various libraries

XGBoost Your C++

application

Treelite

LightGBM Common
representation

Scikit-learn

Model
Builder
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https://indico.fnal.gov/event/23628/contributions/237964/attachments/154980/201725/TMVA_SOFIE_ROOTWS_May2022%20.pdf
https://github.com/dmlc/treelite

Particle identification using the TPC

> The Time Projection Chamber (TPC) is one of the main detectors used for particle

identification (PID) in ALICE
o via measurement of the particle energy-loss per unit length (dE/dx) in the TPC gas

> Particle energy loss as a function of ® 800F B i e
c [ Run 3 pp, gse: ;nfif TeV
momentum described by Bethe-Bloch Z 700(
parameterization < 600}
o parameters determined from a fit to data § 500
(dE/dx) apppn = ay * (az — log(as + (BY)7%)/B% — 1) * 2% * farrp 400;—
fup+ dE/dx value for minimum ionising particles 300_
> Assignment of particle species for a track 2008
o by testing different mass hypotheses and _
comparm.g measured energy loss with the 03 i3 i a ; 2 .
parametrization p/ Z (GeVic)
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TPC PID calibration with neural networks

st e I} il H i H HIHHHH}H A HIHHUHH“

o n-dimensional (6D) corrections — correlations
kept into account
o only one iteration needed

> Replaced the “Spline corrections” used in Run2 ;
o per-dimension corrections assuming factorisation % °
o multiple iterations to produce

> Performance comparable or better than Splines PO O X T ——
on Run 2 data - H |

ol e 1 1

for all Run 3 pp data

o = detector resolution on dE/dx

Further details: CERN-TH ESIS-2022-342 _—31.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 -110@0 -0.75 -0.50 —0.25ta0':10(0A) 025 050 0.75 1.00 10°

tan(A)
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https://cds.cern.ch/record/2856252

TPC PID calibration with neural networks

mean

. . Fi | NN corr.
> Fully connected NNs performing a regression na s

o PyTorch library used

o final NN trained on the output of two larger models (12
nodes x 10 layers) for performance reasons at
inference time

Output Layer

Hidden Layer 3

> Training performed for each data-taking period
o starting from analysis-object data (AO2D)
o on farm equipped with GPUs
o ~7-8 hours of GPU time on Nvidia V100 or AMD MI100

Hidden Layer 2

> ~300 hours of training time per data-taking year

Hidden Layer 1

> Trained models uploaded to database and accessible
for analyses on the GRID
0 model inference based on ONNXRuntime

Input Layer

Further details: CERN-THESIS-2022-342
21/11/2023 F. Catalano 22



https://cds.cern.ch/record/2856252

Software trigger for high-energy pp program

> ALICE high-energy pp program aims to collect an integrated luminosity of ~200 pb™' during

LHC Run 3 (2022-2025) cERN-LHCC-2020-018
o based on software trigger running after data reconstruction (similarly to a normal analysis)
o interesting events selected — definition of time intervals around triggered collisions to be kept in
reduced compressed time-frames (skimmed CTFs) and subsequently re-reconstructed

Deletion of original CTFs and
archival of skimmed CTFs

Original CTFs Skimmed CTFs

Grid, EPNs Grid Grid
Data processing - Offline trigger CTF skimming: ~10%
async reconstruction selection (filtering) of the original size

AO02D analysis

Is the
collision
interesting?

Can be kept To be discarded

lew

Credits: M. Puccio

21/11/2023 F. Catalano

Grid, EPNs
Rl T w Data processing -

async reconstruction

NB: sizes of symbols/images only for illustration purposes

23


https://cds.cern.ch/record/2724925

Heavy-flavour hadron trigger for high-energy pp program

> Trigger dedicated to select interesting events for heavy-flavour (HF) hadron studies
o selection of signal-like particle candidates reconstructed from track combinatorial

XI19_'3"I""I""I""
- ALICE Performance '
_ pp, Vs =13.6 TeV .
| offline trigger

> HF selections exploit XGBoost multi-class BDTs
o input: few and simple variables based on the
HF-hadron displaced decay-vertex topology

N
o

o aim: to be robust against possibly non-optimal
reconstruction and calibrations (which are
improved iteratively)
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> Currently being used in the skimming of all 2022 i

0 - .
and 2023 pp data collected by ALICE p D" — K m and charge con).
. . p.>1GeV/c
o inference on reconstructed data using Fo T
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ONNXRuntime 175 18 18 19 195 2
M(Kn) (GeV/c?)
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HF-hadron trigger — BDT inference optimisations

> ONNXRuntime is optimised for the tensor computations typical of NNs
o not so efficient for the inference of BDTs and classical ML algorithms, which are used for the HF
trigger and in many other ALICE analyses

> hummingbird (Python library) )

o converts trained ML models into tensor _ ofel'lo 5
. . e oftlojol o
computation for faster inference “elefe Y snpor poe
o|o |

[elel ]
D
SN B D
o [ ]

J/ output poth
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BE
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Hr
x
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https://github.com/microsoft/hummingbird

HF-hadron trigger — BDT inference optimisations

> Performance improvement given by humminbird tested in the context of heavy-flavour
hadron trigger studies

1073

CPU time / event (s)

1074

hf-track-index-
skims-creator

hf-filter (ONNX)

hf-filter

(hummingbird)

Mind the log scale!

21/11/2023

rectangular
selections

F. Catalano

> About 10x speedup compared
to same model non converted
with hummingbird

> CPU time / event of the task
comparable to using simple
rectangular selections
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Particle identification with the ITS2

> The new ALICE Inner Tracking System (ITS2) has a binary pixel readout
o no dE/dx information from deposited charge in the silicon, as present in old detector used during
LHC Run 1 and Run 2 — in principle no particle identification

> Topology of the produced signal (cluster) in the detector layers can be used as a proxy for
the energy loss of the particle

> XGBoost BDT regressor to estimate the particle 3
o track information (p, tan(A)) and properties of clusters (size, shape, ...) in the ITS2 layers as
inputs to the model

21/11/2023 F. Catalano 27



Particle identification with the ITS2

> Training performed using particles
tagged in TPC
o starting from reconstruction output
o not dependent on data taking period

> Method validated on Run 3 MC
o good separation between e, 1, K, p at
low momentum

> Encouraging results on Run 3 data
o further studies using tagging performed
with K°, A\, Q decays ongoing
o training on larger data samples foresee

21/11/2023 F. Catalano
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Combination of detector PID information

> Combine the particle-identification information of different detectors to provide global PID
o replace hand-crafted combinations and selections
o aim to provide high purity samples of particles of a given species

> Different NN models trained for each particle species and data-taking period
o  PyTorch library used
o starting from analysis-object data (AO2D)
o track information and detector signals related to PID as input

Self-

Attention Classifier

Embedding

> |Information from one or more

et detector could be missing
InputSet e . |
= et [T > o typical for low p_ particles

o solution: model based on
feature set embedding (FSE)
with multi-head self-attention
mechanism

Further details: M. Kabus talk at CHEP 2023
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https://indico.jlab.org/event/459/contributions/11734/

Combination of detector PID information

> 0On Run 2 pp MC, NN with self-attention + FSE shows better performance than other

approaches for incomplete data
o data imputation
| mean
m linear regression

o NN ensemble

S

Feature mapping

| Linear 200 nodes I
| Linear 200 nodes]
ILinear 200 nodes]

3

3 3
= (=
o =]
S S
N N
< =
o o
) ]
- (S
=] =

Linear 200 nodes

4>O Domain label

Gradient reverse I
I Linear 50 nodes I
I Linear 50 nodes I

/

Further details: M. Kabus talk at CHEP 2023
21/11/2023

m p K

model purity |efficiency| F, purity | efficiency F; purity | efficiency F,
mean 0.9718| 0.9934(0.9825]| 0.9559| 0.8927| 0.9232|] 0.8858| 0.8081(0.8452
regression 0.9723[ 0.9931]0.9826| 0.9520| 0.8973| 0.9238] 0.8795| 0.8168|0.8470

case deletion - - = = — N

NN ensemble 0.9745( 0.9914]0.9829] 0.9607| 0.8895| 0.9237| 0.8751 0.8207(0.8470

attention + FSE | 0.9734( 0.9937]0.9835] 0.9648| 0.9009| 0.9318| 0.8841 0.8337(0.8581

best model 2"9 best model

> Further developments

o address data-to-MC discrepancies using domain
adversarial neural networks

o define approach to systematic uncertainty estimation

F. Catalano 30


https://indico.jlab.org/event/459/contributions/11734/

Fast simulation for the ZDC

> (Generative models to replace full simulation for the Zero Degree Calorimeter (ZDC)
o ZDC: system of five sampling calorimeters placed at forward rapidity on both sides of ALICE

> Response of the ZDC treated as Original
. simulation
an image
o Variational AutoEncoders (VAE)
and Deep Convolutional GANs
(DCGAN) investigated VAE

o generation steered by conditional
parameters (particle energy,
mass, position, ...) e2e SAE

e2e SAE — end-to-end Sinkhorn
autoencoder arXiv:1810.01118

DCGAN

Further details: J. Dubinski lightning talk at 5th IML Workshop



https://indico.cern.ch/event/1078970/contributions/4833319/
https://arxiv.org/abs/1810.01118

Fast simulation for the ZDC

> Various different models evaluated
o Wasserstein distance to quantify the discrepancy between full and fast-ML simulation

O best performance provided by conditional DCGAN with modified loss to enhance diversity of
generated samples

| model | WSMEAN | WsCHI | WSCH2 | WsCH3 | WSCH4 | WSCHs |
6.45 4.75 5.03 4.23 4.34 13.72
8.25 4.35 5.46 7.28 9.13 14.98
6.27 4.17 5.05 4.05 4.03 13.56
7.20 4.24 8.42 3.54 4.55 15.19
5.71 2.53 3.92 3.64 5.93 12.55
5.16 791 4.63 4.89 6.71 8.59
4.51 221 4.03 4.38 6.17 8.04

> Generative models are integrated in ALICE Monte Carlo production workflows
o about 100x speedup in simulating the ZDC response compared to full simulation
o some fine tuning still needed to reach physics-ready state

Further details: J. Dubinski lightning talk at 5th IML Workshop
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https://indico.cern.ch/event/1078970/contributions/4833319/

Summary

> ALICE machine-learning activities expanded considerably in the last years
o ML tools are a staple of data analysis in ALICE, boosting the measurement physics reach

o from the start of Run 3, ML used in “core” tasks such as:
m calibration of the TPC particle-identification information
m software trigger for heavy-flavour studies

> ML applications based mainly on off-the-shelf Python and C++ libraries
o with some internal developments to address specific needs and help analysers wanting to
dive into the topic

> Large-scale inference of ML models using distributed-computing resources is
fundamental to the experiment activities

21/11/2023 F. Catalano
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Supervised learning — Boosted Decision Trees

> The building block of Boosted Decision Trees
(BDTs) is the decision tree (DT)

> For a binary classification problem
o DT built recursively utilising the training data
o at each node the variable and its value that

maximize the separation between classes (A
and B) is selected

o goodness of the separation quantified by a
score (Gini index, entropy, . . .)

> Alarge enough decision tree can perfectly

separate the training data
o however its predictions for unknown data are
not so good (poor generalisation)

21/11/2023 F. Catalano 35



Supervised learning — Boosted Decision Trees

> Solution: use an ensemble of many small decision trees
o each DT is built trying to improve the performance of the current ensemble
o the BDT output is the sum of DT ones

,,,,,,,,,,,,,,,,,,,,,

+ .- ——— BDT output

> Modern BDT algorithms are based on a procedure called gradient boosting
o decision trees are built trying to minimise a target function via gradient descent
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Supervised learning — Shallow neural networks

> Loosely inspired by biological neural networks

> Flow of information happens between nodes
o each node connected to every other node in
the subsequent layer
o each connection has a weight

> Output of a node generally given as

9,=0(2u9,
) Input

—
Forward pass Output

> (0 is the so-called activation function
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Supervised learning — Shallow neural networks

> The activation function introduces non-linearity
into the network
o fundamental to learn complex relations

o can be any nonlinear function differentiable
analytically

> Many possible choices for this!

Sigmoid ' Leaky ReLU I
o(@) = i max(0.1z, z)

tanh ’ Inout - Outout
Maxout npu utpu
tanh(z) I max(w?z + by, wl'z + by) Forward pass
ReLU | ELU
max(0, z) {r 220
= ale*—1) =<0 - %
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Supervised learning — Shallow neural networks

> As we calculate each node’s output in each layer we
are completing one forward pass

> After each forward pass a process called back
propagation occurs
o the error of the network is computed and the weights
are updated accordingly

o the aim is to minimise a target function via gradient
descent

(a) compute error on g; (b) for each u, that affects g;

IE A IE (i) compute error on u; (i1) update the weight
— = "(h)v, —

98 ZG( Vi oh, JE  JE g ) f R JE

S . u, dg el * " "

should g, how h, will was h, too Jk 9, ’ j

be higher change as high or

do we want g, to
orlower? g;changes too low? 9,

be higher/lower

how g; will change
if Uy is higher/lower

21/11/2023 F. Catalano

Forward pass

—> Qutput

Back propagation

> For each node

o compute error on output 9
o compute error on weights Uy
o update weights accordingly
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TPC PID calibration with neural networks

Further details: CERN-THESIS-2022-342

Mean correction and sigma estimation, Run 2
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https://cds.cern.ch/record/2856252

Combination of detector PID information

> Tests of domain adversarial neural networks on Run 2 pp MC

300 2x10° 300 2x10°
ALICE pp @ Vs=13 TeV ALICE pp @ Vs=13 TeV
- 0
W 250 1.8x10° ¥ 250 1.8x 10
] & selected protons
= s B E (domain gdaptation)
3 500 (no domain adaptation) 1.6x10° - 200 1.6 x 10°
£ s
© ; ©
= 150 1.4x 100 » 130 1.4 x 10°
x £ S
2 A 2 %
w 100 w 100 "’
i - 12x10° O i 1.2 x 10°
R ’ e - S A
& s0 & s0 AR -
0 E 100
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p (GeV/c) p (GeV/c)

Figure 3. Preliminary result of DANN PID for the TPC detector signal (dE/dx) as a function of particle

momentum for particles identified as protons without domain adaptation (left) and with domain adaptation
(right).

Further details: JINST 17 C07016 (2022)
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https://iopscience.iop.org/article/10.1088/1748-0221/17/07/C07016

Fast simulation for the ZDC

> Selective increase of diversity

. - measure of training samples diversity
for this particular set of conditonals ¢

We use mean standard deviation of pixels

dg - measure of distance between 2 images generated
from different noise vectors 7z, z,

We use L;norm between features extracted from the
discrimiantor penultimate layer

|

normalized from 0 to |

dy (6((21,9), 6((22,))\

dz (Z1; ZZ)

d, - measure of distance between 2 input noise vectors

We use L, (z4,25)

Further details: J. Dubinski lightning talk at 5th IML Workshop



https://indico.cern.ch/event/1078970/contributions/4833319/

Fast simulation for the ZDC

> Validation

B

Original
Simulations

Generative
Simulations

272.44.95. 21.397

186. 43. 125. 44. 436.

Gather

distribution

Compare channels
distributions
(e.g. Wasserstein
distance)

Gather

distribution



Run 2 ML applications at a glance

Signal-vs-background classification

o Boosted Decision Trees (BDTs) and
Neural Networks (NN) replacing
“traditional” linear selections

Jet p. reconstruction

o correction for the background from the
underlying event
o regression task using shallow NN

Heavy flavor jet tagging

o BDTs and Deep Neural Networks
(DNN) to tag heavy-flavour jet
topologies

21/11/2023

Monte Carlo (MC) reweighting
o improve agreement between data and MC
simulations

Data quality assurance (QA)

o K-nearest neighbors and Autoencoders to
detect outliers

Rootinteractive

o tool for multidimensional statistical
analysis
o wrappers for tree-based models and NNs

... hot a comprehensive list!
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