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The ATLAS experiment

ATLAS is a general-purpose
particle physics experiment.

The ATLAS detector is composed
by three main subsystems:

e Tracker

e Electromagnetic (EM) and
hadronic (HAD) calorimeters

e Muon spectrometer

e Magnet system (Central
solenoid and toroid)
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Physics objects

o« Detector provides position and energy information

o  Physics objects (electrons, muons, ...) need to be
reconstructed

. Neutrinos escape the detector unseen
o Missing tfransverse momentum E;miss

Particle jets reconstructed using energy depositions in the
calorimeters

o  Collimated spray of stable particles arising from
fragmentation and hadronization of a parton after a
collision.
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From collision To data e
CATLAS
2 EXPERIMEN

Run Mumber: 201

289, Event Number: 24151€16

Date: 2012-04-15 16:52:58 CEST

Event rate e | VN Zopp candidate

e 40 million bunch crossings per second
e About 33 collisions per bunch crossing
e About 1 billion collisions per second

Just a little fraction of these events is interesting

A trigger chain reduce the number of events
downto 200 “interesting” events per second.

Still some selection techniques are required to
select only interesting physics process inside the
event.




Flavor tfagging

Flavor tagging aims to identify the Flavor of a
particle jet (b, ¢, light) and it is an essential tool to
study physics processes with b/c-jets in their final
state:

* Processes with heavy flavour quarks (b,c) play a
key role in the LHC physics program (ex. H—bb)

« We can also use flavour tagging to suppress
otherwise overwhelming backgrounds, e.Q.
V+jets
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https://www.sciencedirect.com/science/article/pii/S0370269318307056?via%3Dihub

B-Hadron Properties

Increasing transverse
momentum pr

/ l-jet

Exploit specific topology of heavy-flavor jets for identification

Relatively long lifetimes

High mass: ~5 GeV

Decay product mulfiplicity: on average decay to ~ 5 charged
particles

Decay to c-hadron

Fairly large leptonic decay fraction

Figure source

b-jet

At higher transverse momentum the picture gets more complicated

A.

B.

C.

Increased fragmentation track multiplicity causing more fake SVs.
Increased material interaction increasing number of real SVs not
stemming from heavy flavour jets

Growing pile-up conditions.


https://www.hep.physik.uni-siegen.de/research/atlas/atlas-flavor-tagging

Machine Learning for FTAG
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Flavour Tagging Strategies in ATLAS

Manually Optimised Trained

Low Level IPxD Sv1 JetFitter RNNIP DIPS

IP-based Vertexing Vertexing Track NN Track NN

High Level

Jet and frack inputs are fed to low level taggers:
» Use physics knowledge to construct expert variables: IPxD, SV1, JetFitter

 Track-based ML models: RNNIP, DIPS

High-level faggers (MV2 e DL1) combine all this information and they return probabilities for each flavor class: p,,, p.. P,
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Constructing the Discriminant

» Single model is used for both
b-tagging and c-tagging:

Pp
fc'pc+(1 _fc)'pu

D, = log

Pe
fhpr+d=1)-p,

D. = log

f.and f, are arbitrary parameters which trade-off between
background rejections (e.g. larger f. more c-jet rejection)

Normalised number of jets
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2019-07/fig_07d.png

How to evaluate classifier performance

Samples
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B Background
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= 1
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20 -

Score
Signal > TH
Signal efficiency = 2971? -
Signal
Background

Background rejection rate =
grou — Background > TH

Receiver Operating Characteristic (ROC) curves
can be used to compare performance of different
models.

Background rejection rate

A

Signal efficiency
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Performance

ATLAS Run 2 algorithm performance documented in recent publication: [2211.16345]

Widely used Run 2 tagger: DL1r (DL1 + RNNIP)
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https://arxiv.org/abs/2211.16345
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2019-07/fig_09.png
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2019-07/fig_09.png
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2019-07/fig_08.png

A New Approach

New dall-in-one tagger: GN1

« Jet flavor, vertexing and frack
origin tasks trained
simultaneously

* No need for low level
algorithms

« Naturally suited for a variable
number of unordered input
tracks

« Based on graph neural
networks

——— Simulation

Associated
Jet
. tracks
Manually .
o Trained
optimised algorithms

algorithms

High level
algorithm (DL1r)

L — — — 5 JetFlavour

Figure source
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L — — — » JetFlavour
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/fig_01.png

Training samples and Inputs

Training samples

* Simulated pp collisions with b-, c- and I-jets in final state

* Resampling of jet kinematics (p; and n) for each flavor

* Normalization and shuffling applied

e 30M training jets, further 500k each validation and test jets

Inputs

* Jetprandn

e Track parameters, uncertainties, and impact parameters
e Detailed hit information

e Jetvariables are concatenated with each track.

Jet graph
Each node of the graph is a track

Figure source

Track inputs Combined Inputs

Jet = . . .

Ntracks X Ntf Ntracks X (n]f + ny)
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/fig_02.png

GN1 Architecture

GNN
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/fig_03.png

Auxiliary tasks

Adding physics information during GN1 training with 2 auxiliary tasks to improve classification

performance.

1. Vertexing

Prediction of tfrack-pair vertex compatibility for each pair of tracks in the jet.

2. Track classification
Classification of track origin.

ATLAS Simulation Preliminary
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tt jets
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/fig_10.png
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/fig_10.png
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Performance

Significant performance improvement observed with respect to DLIr.
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At the 70% working point (WP) for GN1: The 70% WP corresponds to a high-p; Z' b-efficiency of

« 2.25xincrease in c-jet rejection ~207%!

« 1.8xincrease in light-jet rejection  Sxincrease in c-jet rejection

« 7/xincrease in light-jet rejection .


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/fig_05.png
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/fig_06.png

Generator dependence

« Testing the model on other MC samples allows
for an understanding of the generator
dependence.

« Essential to verify that the a more sophisticated
model such as GNI1 is not learning generator
dependent information

Overall generator dependence: O(3%) for b-jets
and O(6%) for c-jets

« |Indicates that the more sophisticated model is
not exploifing generator specific information
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/

Derive efficiencies for the different flavors on data ﬁ 1°e- ATLAS Preliminary B biets
and correct MC via scale factors S - Vs=136TeV, 11.91b' Il Liohtjets
Using a variety of different, easy to select, & 10 Dilepton Events [ eets
processes to calibrate the taggers, as dilepton tt § - 4 Deta 2022
events. 0°E
' 107
Dilepton event selection: : oL
« Exactly two leptons
and two jets v i
« Opposite sign muon - o .:
and electron S o
« Invariant mass of ., g 18
each jet-lepton pair - og— o't

data/MC Agreement

*Plotting tagger discriminant for leading jet pT
Need to check performance on data

_5 0 5 10 15
GN1 Discriminant

below 175 GeV
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/

GNI1 @ HLT

GN1 has also been deployed in the ATLAS High
Level Trigger (HLT)

» Inputs are precision tfracks and jet quantities
after primary vertexing

« Strong performance compared with DL1d &
other taggers running at trigger level

c P—/—m—m—m 77
S I . . . — DL1d

B0 ATLAS Preliminary Simulation e GNA

(9] E _ =
‘© [ /5=13.6TeV, ti sample -—— fastDIPS | PFlow jets
@ [ fastDIPS | EMTopo jets ]
L 404k 4
2 F

(o2}

2

10°k

___________

05 06 07 08 09 10
b-jet efficiency

Processing time: 0(100ms)

Detector L Yédaass High-Level
collisions 99 Trigger

Data
Analysis

@)=\ ==

40,000,000 100,000 1,000

events/sec events/sec events/sec

Inference time per jet [ms] *
Tagger
ttbar 7’
DL1d ** 0.07 0.08
GN1 0.40 0.78

*it can depend on the machine
**low level computation not included

20



HiLumM

LARGE HADRON COLLIDER

LHC HL-LHC

EYETS 13.6Tev  [BEAR

13 TeV 13.6 - 14 TeV

energy
Diodes Consolidation

splice consolidation cryolimit LIU Installation HL-LH
7 TeV 8 TeV button collimators interaction inner triplet C

R2E project regions Civil Eng. P1-P5 pilot beam radiation limit installation

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2022 2023 2024 2025 2026 2027 2028 2029 IIIIIII
5 to 7.5 x nominal Lumi
ATLAS - CMS
experiment upgrade phase 1 ATLAS - CMS
beam pipes

. . . . HL upgrade
nominal Lumi Ew ALICE - LHCb | 2 x nominal Lumi

75% nominal Lumi /‘ upgrade i
m m m integrated LYY fb™!

luminosity REJOR { o
HL-LHC TECHNICAL EQUIPMENT:

DESIGN STUDY ) PROTOTYPES / CONSTRUCTION | INSTALLATION & COMM. ”H PHYSICS

HL-LHC CIVIL ENGINEERING:

DEFINITION EXCAVATION BUILDINGS

How will we be triggering events since 2029 when an average 200 pp collisions per
bunch crossing are expected?
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GNI1 @ HL-LHC
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GNI1 performance are better in the most interesting phase spaces:
Up to 30% improvement in b-efficiency at high-pr
15% improvement in the newly accessible forward region (|n| > 2.5) ( significant

upgrade of the ITk detector)

T30 35 40

Jet [n]
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/

Pushing to the extreme

Detector ; High-Level Data
Trigger

L1 trigger

To improve selection performance there is a greaf intferest ~ =otsions

in running Deep Neural Networks in real-time. This
represents a great technical challenge due to the -
40,000,000

exireme data rate (O(100 TB/s) at L1) to be processed ey e
with some very strict time constraints.

events/sec

e FPGA (Field-programmable gate array) are
programmable integrated circuits. They can offer

Analysis

events/sec

RAMs are small
memories.

Logic cells for any

low latency and high throughput.

— function and simple

e A model should fit the FPGA chip-size and latency

arithmetic.

requirements. Depending on the FPGA size, we
should know how to reduce the size of a model.

DSPs (Digital Signal
Processor) are

designed to perform
multiplications.

|01103IN] |WHS|Y :324N0S


https://github.com/fastmachinelearning/hls4ml-tutorial

Neural network inference

I-layer Activation _ biases
output function Weights Input

r; =g(Wii—1 - 21 + by)

output T I I

Nmul = E nl_cll X nl q Precomputed Multiplication Ad_dition
i nodes nodes Memory DSPs Logic cells
hidden

layer

A model should fit the FPGA chip-size and latency requirements. Depending on the FPGA size, we should know how to
reduce the size of a model.

Very active research field
. Coelho, C.N., Kuusela, A., Li, S. et al. Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge
for particle detectors. Nature Machine Intelligence
. Thea Aarrestad et al.. Fast convolutional neural networks on FPGAs with his4ml. Machine Learning: Science and Technology
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UNIVERSITY
OF TRENTO

Pruning with AutoPruner 5P =

deepPP

Ph.D. Project of Daniela Mascione [UniTN, FBK]
“Deep Learning for online tagging of proton-

Pruning tool that works during training stage so that frOTSm C_leTgfiom af the High-
. . . uminosity

only a subset of nodes will contribute to the learning

process, while unnecessary nodes will be

f_?wv v —~ T~ = e

neglected. 0.8
ACAT2022
. . - AutoPruner on LeNet-5
« The precise number of nodes required by the g 0.6 DS: Fashion MNIST
=}
user Soa
. . —— 100% filters
+ A shadow network will automatically select the 0.2 —— 70% filters
. 30% filters
active nodes.
1.050
The tool can be easily applied to most used 1.025
architecture. '% 1.000
o
0.975
0.950
0] 20 40 60 80 100
Epochs
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https://www.fbk.eu/en/
https://www.unitn.it/en
https://www.deeppp.eu/

(NN ATLAS [ deeppp

QO —
% =>¢{
FONDAZIONE
BRUNO KESSLER
Next generafion b/c taggers based on Graph FTAG-2023-01
Neural Networks show very promising resulfs. —
L . . 70;_ATLAS Simulation Preliminary GN2 ~2500
« GNI1 performance willimprove jet selection o vS=13TeV
. L ,Ep= 00
both for off-line and HLT level. Csf J2000
- GN2is already set fo be a strong successor. 8 aof Fundreco 11500 %
« The development of DNN model reduction 2 DL1d 11000 £

19

L

techniques is crucial for the development of
smarter triggers for the high-luminosity : i ]
program at the LHC. ot i o

2017 2018 2019 2020 2021 2022 2023
Year

{500
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https://www.deeppp.eu/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/

Q O ||
UNIVERSITY O - D(

dee PPP OF TRENTO

deepPP initiative

In 2017, researchers and PhD student from the
Physics Department and FBK took the deepPP
initiative, focused on applications of Deep Neural
Networks to high energy physics and
astrophysics.

Andrea Di Luca

Marco Cristoforetti Francesco Maria Follega

Roberto luppa

Professor Researcher Researcher Postdoctoral researcher

7 N
(A¢)
’ |
N //

HIGGS BOSON
ANALYSIS @LHC

Since the discovery of the
Higgs boson in 2012, A lot of
efforts were done to
measure its properties.
Within the ATLAS
experiment, we study the
properties of the decay of
the Higgs boson to a couple

of b-quarks.

r/// \
<)

DEEP LEARNING
EXPLAINABILITY

Understanding how the
output of a Deep Neural
Network outputs is
evaluated for a certain input
set helps to detect bias and
reduce systematic

uncertanties

ATLAS

EXPERIMENT

e
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DEEP LEARNING
FAST INFERENCE

Deep Neural networks can
be used at trigger level in
High Energy Physics
experiments to discriminate
interesting events. This
represent a challenging task
since the inference should
be fast enough to process
large amount of data at a

very high rate.

DEEP LEARNING FOR
SPACE EXPERIMENTS

Deep learning algorithms
have gained importance in
astroparticle physics in the
last years. They are implied

in the most modern
experiments for particle

identification, tracking and

energy reconstruction
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Daniela Mascione

PhD candidate

Greta Brianti

PhD student

Pa. i
i

p =

Megha Babu

PhD student


https://www.fbk.eu/en/
https://www.unitn.it/en
https://www.deeppp.eu/
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https://cds.cern.ch/record/2273281/files/ATL-PHYS-PUB-2017-013.pdf

GN1 variables

Jet Input

Description

Pr
Ui

Jet transverse momentum
Signed jet pseudorapidity

Track Input

Description

alp
dn
do
dy

zpsinf

o)

s(dy)

s(zo)
nPixHits
nSCTHits
nIBLHits
nBLHits
nlIBLShared
nIBLSplit
nPixShared
nPixSplit
nSCTShared
nPixHoles
nSCTHoles
leptonlD

Track charge divided by momentum (measure of curvature)
Pseudorapidity of the track, relative to the jet n

Azimuthal angle of the track, relative to the jet ¢

Closest distance from the track to the PV in the longitudinal plane
Closest distance from the track to the PV in the transverse plane
Uncertainty on ¢/p

Uncertainty on track polar angle 6

Uncertainty on track azimuthal angle ¢

Lifetime signed transverse IP significance

Lifetime signed longitudinal IP significance

Number of pixel hits

Number of SCT hits

Number of IBL hits

Number of B-layer hits

Number of shared IBL hits

Number of split IBL hits

Number of shared pixel hits

Number of split pixel hits

Number of shared SCT hits

Number of pixel holes

Number of SCT holes

Indicates if track was used in the reconstruction of an electron or muon (only for GN1 Lep)

30



GNI steps (one gnn layer)

1. the feature vectors of each node are fed into a fully .
connected layer W, to produce an updated representation of
each node Whi

2. These updated feature vectors are used to compute edge
scores e(hi , h j) for each node pair

3. These edge scores are then used to calculate attention
weights ai j for each pair of nodes using the soffmax function . _ ¢ ftmax. [e(hi, b))
over the edge scores Y g v

4. Finally, the updated node representation h ' i is computed by
taking the weighted sum over each updated node
representation Whi , with weights aij

5. The output representation for each track is combined using a
weighted sum to construct a global representation of the jet,
where the attention weights for the sum are learned during
training

e(hi,hj) =a*0 [Wh; ® Wh;|

k;=0'

Z daijj - Wh}]
JEN;



GN2 iImprovements

Type Name GN1 GN2
Hyperparameter | Trainable parameters 0.8M 1.5M
Hyperparameter | Learning rate le—3 OneCycle LRS (max LR 4e—5)
Hyperparameter | GNN Layers 3 6

Hyperparameter | Attention Heads 2 8

Hyperparameter | Embed. dim 128 192

Architectural Attention type GATv2 | ScaledDotProduct
Architectural Dense update No Yes (dim 256)
Architectural Separate value projection | No Yes

Architectural LayerNorm + Dropout No Yes

Inputs Num. training jets 30M 192M

Source Dest
node A; node /z_,.

Linear projections

el I

GN1 P GN2

Source Dest

node /; node h,-

e;j=a- oW, /1’_ () W/ hi) <+— Attention scores

> Deeper & wider

I1,.’j = S()l‘llnax(c'i,) . Wihj
> More attention heads
> RelU — SiLU activation.

Next layer

/z,f, = sol‘lmax(e,;,-) . thj
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