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The Large Hadron Collider

The Large Hadron Collider (LHC) is the world’s largest 
and most powerful particle accelerator.
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The ATLAS experiment
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ATLAS is a general-purpose 

particle physics experiment.

The ATLAS detector is composed 

by three main subsystems:

● Tracker

● Electromagnetic (EM) and 

hadronic (HAD) calorimeters

● Muon spectrometer

● Magnet system (Central 

solenoid and toroid)



Physics objects
● Detector provides position and energy information  

○ Physics objects (electrons, muons, …) need to be 
reconstructed

● Neutrinos escape the detector unseen 

○ Missing transverse momentum ET
miss

● Particle jets reconstructed using energy depositions in the 
calorimeters

○ Collimated spray of stable particles arising from 

fragmentation and hadronization of a parton after a 

collision.
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From collision to data

Event rate

● 40 million bunch crossings per second
● About 33 collisions per bunch crossing
● About 1 billion collisions per second

Just a little fraction of these events is interesting

A trigger chain reduce the number of events 
downto 200 “interesting” events per second.

Still some selection techniques are required to 
select  only interesting physics process inside the 
event.

Z0→μμ candidate
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Flavor tagging
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Flavor tagging aims to identify the Flavor of a 

particle jet (b, c, light) and it is an essential tool to 

study physics processes with b/c-jets in their final 

state: 

• Processes with heavy flavour quarks (b,c) play a 

key role in the LHC physics program (ex. H→bb)

 

• We can also use flavour tagging to suppress 

otherwise overwhelming backgrounds, e.g. 

V+jets

Figure source

https://www.sciencedirect.com/science/article/pii/S0370269318307056?via%3Dihub


B-Hadron Properties
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Figure source

Exploit specific topology of heavy-flavor jets for identification

• Relatively long lifetimes

• High mass: ~5 GeV

• Decay product multiplicity: on average decay to ~ 5 charged 

particles

• Decay to c-hadron 

• Fairly large leptonic decay fraction

At higher transverse momentum the picture gets more complicated

A. Increased fragmentation track multiplicity causing more fake SVs. 

B. Increased material interaction increasing number of real SVs not 

stemming from heavy flavour jets 

C. Growing pile-up conditions.

Increasing transverse 
momentum 𝑝𝑇

https://www.hep.physik.uni-siegen.de/research/atlas/atlas-flavor-tagging


Machine Learning for FTAG

2007

CDF @ TEVRATON 
Neural networks for FTAG

2015

ATLAS @ LHC
Boosted Decision tree for 
FTAG (MV2)

2005

ML b-tagging tool at a 
hadron collider @ DZero

2012

ATLAS @ LHC
Neural Networks for 
FTAG (MV1)

MLP @ LEP 

1992

2017

ATLAS @ LHC
Neural Networks for FTAG 
(DL1)
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Flavour Tagging Strategies in ATLAS
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Jet and track inputs are fed to low level taggers:

• Use physics knowledge to construct expert variables: IPxD, SV1, JetFitter

• Track-based ML models: RNNIP, DIPS

High-level taggers (MV2 e DL1) combine all this information and they return probabilities for each flavor class: pb , pc , pl
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Constructing the Discriminant
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• Single model is used for both 
b-tagging and c-tagging:

Figure source

fc and fb are arbitrary parameters which trade-off between 
background rejections (e.g. larger fc more c-jet rejection)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2019-07/fig_07d.png


How to evaluate classifier performance
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Background

SignalTH1TH2TH3

Signal efficiency
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Receiver Operating Characteristic (ROC) curves 

can be used to compare performance of different 

models.



Performance
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• ATLAS Run 2 algorithm performance documented in recent publication: [2211.16345]

• Widely used Run 2 tagger: DL1r (DL1 + RNNIP)

Figure 
source

Figure source

https://arxiv.org/abs/2211.16345
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2019-07/fig_09.png
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2019-07/fig_09.png
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2019-07/fig_08.png


A New Approach

13

Figure source

New all-in-one tagger: GN1 

• Jet flavor, vertexing and track 

origin tasks trained 

simultaneously 

• No need for low level 

algorithms 

• Naturally suited for a variable 

number of unordered input 

tracks

• Based on graph neural 

networks

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/fig_01.png


Training samples and inputs
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Figure sourceInputs
• Jet pT and η
• Track parameters, uncertainties, and impact parameters 
• Detailed hit information 
• Jet variables are concatenated with each track.

Training samples

• Simulated pp collisions with b-, c- and l-jets in final state
• Resampling of jet kinematics (pT and η) for each flavor 
• Normalization and shuffling applied 
• 30M training jets, further 500k each validation and test jets

Jet graph
Each node of the graph is a track

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/fig_02.png


GN1 Architecture 
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Figure source

Deep Sets 

Architecture
Graph Neural Network, 

with multi-head attention

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/fig_03.png


Auxiliary tasks

16

Adding physics information during GN1 training with 2 auxiliary tasks to improve classification 
performance.

1. Vertexing
Prediction of track-pair vertex compatibility for each pair of tracks in the jet.

2. Track classification
Classification of track origin.

Figure 
source

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/fig_10.png
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/fig_10.png


Performance
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Figure source

At the 70% working point (WP) for GN1: 
• 2.25x increase in c-jet rejection 

• 1.8x increase in light-jet rejection

Figure source

The 70% WP corresponds to a high-pT Z’ b-efficiency of 
~20%! 

• 5x increase in c-jet rejection 

• 7x increase in light-jet rejection

Significant performance improvement observed with respect to DL1r.

WP70%WP70%

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/fig_05.png
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/fig_06.png


Generator dependence
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• Testing the model on other MC samples allows 

for an understanding of the generator 

dependence.

• Essential to verify that the a more sophisticated 

model such as GN1 is not learning generator 

dependent information

Overall generator dependence: O(3%) for b-jets 

and O(6%) for c-jets 

• Indicates that the more sophisticated model is 

not exploiting generator specific information

FTAG-2023-01

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/


data/MC Agreement
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• Need to check performance on data 

• Derive efficiencies for the different flavors on data 

and correct MC via scale factors 

• Using a variety of different, easy to select, 
processes to calibrate the taggers, as dilepton tt̅ 

events.

*Plotting tagger discriminant for leading jet pT

Dilepton event selection:

• Exactly two leptons 

and two jets

• Opposite sign muon 

and electron 

• Invariant mass of 

each jet-lepton pair 

below 175 GeV

FTAG-2023-01

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/


GN1 @ HLT
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GN1 has also been deployed in the ATLAS High 

Level Trigger (HLT) 

• Inputs are precision tracks and jet quantities 

after primary vertexing

• Strong performance compared with DL1d & 

other taggers running at trigger level

Processing time: o(100ms)

*it can depend on the machine

**low level computation not included

*

**
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How will we be triggering events since 2029 when an average 200 pp collisions per 

bunch crossing are expected?



GN1 @ HL-LHC
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GN1 performance are better in the most interesting phase spaces:

• Up to 30% improvement in b-efficiency at high-pT 

•  15% improvement in the newly accessible forward region ( 𝜂 > 2.5) ( significant 

upgrade of the ITk detector)

FTAG-2023-01

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/


Pushing to the extreme

To improve selection performance there is a great interest 

in running Deep Neural Networks in real-time. This 

represents a great technical challenge due to the 

extreme data rate (O(100 TB/s) at L1) to be processed 

with some very strict time constraints.
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● FPGA (Field-programmable gate array) are 

programmable integrated circuits.  They can offer 

low latency and high throughput. 

● A model should fit the FPGA chip-size and latency 

requirements. Depending on the FPGA size, we 

should know how  to reduce the size of a model. DSPs (Digital Signal 
Processor) are 
designed to perform 
multiplications.

RAMs are small 
memories. 

Logic cells for any 
function and simple 
arithmetic.

https://github.com/fastmachinelearning/hls4ml-tutorial


Neural network inference

input
hidden
layer

output

l-layer
output

Activation 
function Weights Input

biases

Precomputed
Memory

Multiplication
DSPs

Addition
Logic cells

A model should fit the FPGA chip-size and latency requirements. Depending on the FPGA size, we should know how  to 
reduce the size of a model. 

Very active research field 
● Coelho, C.N., Kuusela, A., Li, S. et al. Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge 

for particle detectors. Nature Machine Intelligence

● Thea Aarrestad et al.. Fast convolutional neural networks on FPGAs with hls4ml. Machine Learning: Science and Technology
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Pruning with AutoPruner
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Ph.D. Project of Daniela Mascione [UniTN, FBK]

“Deep Learning for online tagging of proton-

proton commissions at the High-

Luminosity LHC”
Pruning tool that works during training stage so that 

only a subset of nodes will contribute to the learning 

process, while unnecessary nodes will be 

neglected.

• The precise number of nodes required by the 

user

• A shadow network will automatically select the 

active nodes. 

The tool can be easily applied to most used 

architecture.

ACAT2022
AutoPruner on LeNet-5
DS: Fashion MNIST

https://www.fbk.eu/en/
https://www.unitn.it/en
https://www.deeppp.eu/


Summary

Next generation b/c taggers based on Graph 
Neural Networks show very promising results.

• GN1 performance will improve jet selection 
both for off-line and HLT level.

• GN2 is already set to be a strong successor.

• The development of DNN model reduction 
techniques is crucial for the development of 
smarter triggers for the high-luminosity 
program at the LHC.
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FTAG-2023-01

https://www.deeppp.eu/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/


deepPP initiative
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In 2017, researchers and PhD student from the 

Physics Department and FBK took the deepPP 

initiative, focused on applications of Deep Neural 

Networks to high energy physics and 

astrophysics.

https://www.fbk.eu/en/
https://www.unitn.it/en
https://www.deeppp.eu/


Back-up



Training sample
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● Mixed dataset consisting of simulated events:

○ t t ̅ H for pT < 250 GeV

○ Z’➔ q q for pT > 250 GeV

ATL-P
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U
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Z’ sample populates high 

pT region

https://cds.cern.ch/record/2273281/files/ATL-PHYS-PUB-2017-013.pdf


GN1 variables
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GN1 steps (one gnn layer)

1. the feature vectors of each node are fed into a fully 
connected layer W, to produce an updated representation of 
each node Wℎi

2. These updated feature vectors are used to compute edge 
scores 𝑒(ℎ𝑖 , ℎ 𝑗) for each node pair

3. These edge scores are then used to calculate attention 
weights 𝑎𝑖 𝑗 for each pair of nodes using the softmax function 
over the edge scores

4. Finally, the updated node representation ℎ ′ 𝑖 is computed by 
taking the weighted sum over each updated node 
representation Wℎ𝑖 , with weights 𝑎𝑖j

5. The output representation for each track is combined using a 
weighted sum to construct a global representation of the jet, 
where the attention weights for the sum are learned during 
training
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GN2 improvements
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