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Quantum potential… 
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Investment in quantum 
technology

Source: McKinsey 2023
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/quantum-technology-
sees-record-investments-progress-on-talent-gap

Principles of quantum mechanics enhance computations

Superposition leads to parallelism à exponential speedup?

Entanglement à non linear correlation and classical intractability?

Operations (gates) are unitary transformations à reversible 
computing?

Output is the result of a quantum state measurement according to 
Born rule à stochastic computation ?

No-cloning theorem à information security

Quantum state coherence and isolation à computation stability 
and errors

Qubit state collapses  à reproducibility?



Qubits and algorithms
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• Basic Unit of Quantum Computation
• Classical bits are binary “0 or 1”

• Quantum Mechanics predicts superposition states
• Dirac notation

Bloch Sphere

Interest in multi level representations: qutrits..

• Operations are unitary matrices 
• Input and output states have the same dimension
• Some classical gates (or, and, nand, xor...) cannot be 

implemented directly
• Can simulate any classical computation with small 

overhead



Noisy Intermediate-Scale Quantum devices

• Limitations in terms of stability and connectivity
• Circuit optimisation

• De-coherence, measurement errors or gate level 
errors (noise)

• Specific error mitigation techniques
• Prefer algorithms robust against noise

• Problem size 
• Initially integrated in hybrid quantum-classical 

infrastructure (HPC + QC)
• Quantum Processing Units as new “hardware 

accelerators”
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Superconducting qubits: 
IBM Seattle



•How do we define advantage?
• Speed-up and complexity
• Sample efficiency
• Representational power
• Energy efficiency???

•Evaluate performance on realistic use cases

2019: Google

https://www.nature.com/articles/s41586
-019-1666-5



The CERN Quantum Technology
Initiative was launched in 2020

Understanding the impact of quantum 
technologies in HEP

Quantum simulation and HEP theory 
applications
Quantum Computing 
Quantum Sensing
Quantum Communication



QC @CERN
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Quantum Machine 
Learning :

Some basic concepts



QML in HEP

• Does it make sense to use 
QML in HEP?

• How do we understand 
when it is useful ?

• Which are the QML 
models we can leverage?
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(Quantum) 
ML Lifecycle

Data Embedding

The advantage of many known QML algorithms is impeded today by I/O bottleneck 

Readout  and 
measurement “shots”

Data Preparation

Model Definition

Model TrainingModel Testing

Model 
Interpretation

Adapt classical 
learning models to 

quantum space
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Compromise between exponential compression and 
circuit depth

Ex:  Amplitude Encoding

Quantum embedding for 
classical data
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Exponential compression
nqubit ∝ O(log(N)) 

Polynomial number of gates
ngate ∝ O(poly(N))

Gianelle, A., Koppenburg, P., 
Lucchesi, D. et al. Quantum 
Machine Learning for b-jet charge 
identification. J. High Energ. Phys.
2022, 14 (2022). 
https://doi.org/10.1007/JHEP08(20
22)014

S.Y. Chang, poster at ”Quantum Tensor Network in Machine Learning, NeurIPS 2021 

Effect of different 
encoding in 
quantum CNN 



Models

Gradient-free or gradient-based optimization
Data Embedding can be learned
Ansatz design can leverage data symmetries1

Variational algorithms (ex. QNN)

Kernel methods (ex. QSVM)

Feature maps as quantum kernels

Classical kernel-based training (convex losses)

Identify classes of kernels that relate to specific data
structures2

Image credit M. Schuld

2 Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." arXiv:2105.03406 (2021).

Image credit 
SwissQuantumHub

1 Bogatskiy, Alexander, et al. "Lorentz group equivariant neural network for particle physics." PMLR, 2020.

Representer theorem:

Implicit models achieve better accuracy3

Explicit models exhibit better generalization performance

3Jerbi, Sofiene, et al. "Quantum machine learning beyond kernel methods." arXiv preprint arXiv:2110.13162 (2021).
13

Energy-based ML (ex. QBM)
Build network of stochastic binary units and 
optimise their energy. 
QBM has  quadratic energy function that follows 
the Boltzman distribution (Ising Hamiltonian)



QML Convergence

Classical Intractability & expressivity vs
trainability and generalization 



• Create classically intractable features 
in the Hilbert space

• Estimate Fidelity kernel
• Use classical training (convex losses)

x z

Quantum embedding and kernel methods

Hilbert space is exponentially larger 

Sparser data

Loss of predictive power

F. Di Marcantonio et al. , CHEP2023



Project quantum kernels to lower 
dimensionality (i.e. local density matrix)1:

• Improved generalizion while keeping 
features into states  classically hard

• Example: ttH(bb) binary classification22

Projected Quantum Kernel

1Huang, Hsin-Yuan, et al. "Power of data in quantum machine learning." Nature communications 12.1 (2021): 2631. 
2 V Belis et al, (2021), Higgs Analysis with Quantum Classifiers, EPJ Web Conf
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Generative QML and trainability barriers
Representation learning: encoding probability distributions

Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Vallecorsa, S., Grossi, M., & Holmes, Z. (2023). 
Trainability barriers and opportunities in quantum generative modeling. arXiv:2305.02881.

Real World Training data Training distribution

Quantum Circuit Born Machine Sampled data Model distribution

Loss function

exponentially larger number of shots is 
required to keep accuracy of explicit 

losses
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Quantum Circuit Born Machine for HEP

QCBM
Sample variational pure 
state | ⟩ψ(θ) by projective 
measurement through 
Born rule: 𝐩𝛉 𝐱 =
|*𝐱|𝛙(𝛉 ⟩) |𝟐 .

Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Vallecorsa, S., Grossi, M., & Holmes, Z. (2023). Trainability barriers 
and opportunities in quantum generative modeling. arXiv:2305.02881.



The size of the Hilbert space requires compromises between 
expressivity, convergence and generalization

Classical gradients vanish exponentially with the number of layers (J. 

McClean et al., arXiv:1803.11173)
• Convergence still possible if gradients consistent between batches.

Quantum gradient decay exponentially in the number of qubits 
(number of graph paths is exponential in the number of gates)

• Random circuit initialization
• Loss function locality in shallow circuits (M. Cerezo et al., arXiv:2001.00550)
• Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, et al., Physical Review X 11.4 

(2021): 041011. )

• Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 (2021))

Model Convergence and Barren Plateau

QCNN: A Pesah, et al., Physical 
Review X 11.4 (2021): 041011

TTN for MNIST classification (8 qubits), 
Zhang et al., arXiv:2011.06258 

J. McClean et al., arXiv:1803.11173



Quantum Machine 
Learning examples:

Anomaly Detection

Quantum anomaly detection in the latent space 
of proton collision events at the LHC
arXiv:2301.10780.



Unsupervised learning for Anomaly 
Detection

A typical hybrid QML workflow



2222

Simulate QCD multi-jets at the LHC

Build jet from 100 highest pt particles
Apply realistic event selection

Standard Model jets

Convolutional AutoEncoder 
learns the  jet internal structure

ℝ#$$ → ℝℓ , ℓ = 4, 8,16

Jet table
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Find the hyperplane that maximizes the 
distance of the data from the origin of the 
feature vector space

Unsupervised kernel 
machine

Upper bound on fraction of anomalies in training data at 0.01 (at 
most 1% QCD training data are falsely flagged) 



Quantum anomaly detection in the latent space 
of proton collision events at the LHC
arXiv:2301.10780.

Results

Is this an «advantage» 
we can use?



Quantum anomaly detection in the latent space 
of proton collision events at the LHC
arXiv:2301.10780.

In reality….

Higher 
is better

Increasing entanglement & expressivity

Classical is 
better



Quantum Machine 
Learning examples:

Reinforcement Learning
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1st study: 1D beam steering
CERN North Area transfer line (discrete action space)

50x fewer 
training steps

DQN

FERL

300x fewer network 
parameters

Free-energy based RL (FERL)

27

RL performance depends on type of Q-
function approximator 
Ø Classical Deep Q-learning (DQN)

Feed-forward neural net
Ø Free-energy based RL (FERL)

Quantum Boltzmann machine (QBM)

Key concept: sample-efficiency
Ø Relevant for particle accelerator control 

given cost of beam time (online training)

Schenk, M et al. Hybrid actor-critic algorithm for quantum reinforcement learning at 
CERN beam lines. arXiv preprint arXiv:2209.11044.,  CHEP2023
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∈ ℝ!

DDPG family

Developing a hybrid actor-critic scheme

28

Accelerator optimization requires continuous action space        develop hybrid actor-critic 
algorithm
Ø QBM replaces classical critic net

QBMClassical

Q-learning

𝑄(𝑠, 𝑎!)

𝑄(𝑠, 𝑎"#!)
𝑄(𝑠, 𝑎")

Discrete set 
of 𝑚 actions
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2nd study: 10D continuous beam steering
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Environment: e- beam line of AWAKE
Ø Action: deflection angles at 10 correctors
Ø State: beam positions at 10 BPMs
Ø Objective: minimize beam trajectory rms

reward: negative rms from 10 BPMs
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Training: on D-Wave Advantage quantum annealer (QA)

Exploring & learning Success

Objective

Evaluation: on actual beam line
Real vs. simulated QA

Ø Agent minimizes rms in 1 step in 60 % cases
Ø Hyperparameter tuning with simulated QA
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3rd study: Cartpole-v1
Discrete action problem, non-linear dynamics

FERL (simulated QA)

• Cartpole-v1: official OpenAI gym env from classic control problems domain
• Continuous state (4D), discrete action (right, left) problem with non-linear dynamics
• Terminate episodes after max. 500 steps

DQN
Preliminary

FERL (trained on D-Wave)

before
after

• Big gain in sample-efficiency and robustness for FERL vs DQN



Quantum Machine 
Learning examples:

Phase Transitions identification



QML for quantum data: drawing phase diagrams

1. Supervised classification of the ground 
state using a convolutional QNN

2. Quantum states are exponentially hard to 
save classically. 

3. Bottleneck from access to classical training 
labels (Interpolation does not work)
§ Train in integrable subregions 
§ Generalize to a full model1

Model: Axial Next Nearest Neighbor Ising 

(ANNNI) Hamiltonian:

Integrable for 
𝜅 = 0 or ℎ = 0.

Senk, Physics Reports, 170, 4 (1988)



Results

Binary Cross-entropy

Variational quantum data 

Monaco, at al.  arXiv: 2208.08748 (2022), accepted PRB 

Autoencoder1QCNN (95%)

1Kottman, et al., Phys. Rev. Research 3, 043184 (2021)
2M..Caro et al., arxiv:2204.10268, Banchi et all., PRX QUANTUM 2, 040321 (2021)

1. Out of Distribution Generalization2? 
2. Performance increases with the system’s size 

N=6 à N=12). 
3. QCNN gives quantitative predictions
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Improving Robustness of QML applications

• Understanding conditions to advantage 
• Stabilizing training on NISQ  (arXiv:2212.11826, arXiv:2303.11283)

• Trainability vs expressivity for generative models (arXiv:2305.02881)

• Evaluating generalisation
• Quantum vs classical data, phase transitions  (Physical Review B, 107(8), L081105)

• Algorithms beyond QML (Physical Review C, 106(3), 034325.)



Outlook and open questions

• Quantum technolgies could be revolutionary in terms of computing 
• HEP provides challenges to Quantum Machine Learning

• What are the most promising applications?
• How do we define performance and validate results on realistic use 

cases?

• Experimental data has high dimensionality
• Can we train Quantum Machine Learning algorithms  effectively?
• Can we reduce the impact of data reduction techniques?

• Experimental data is shaped by physics laws
• Can we leverage them to build better algorithms? 
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QML is the right 
solution

QML Exclusion 
Region in HEP?

M. Grossi, CERN



Lectures and Hands-On at CERN

• «A practical Introduction to quantum computing», Elias Combarro
https://indico.cern.ch/event/970903/
• «Introduction to quantum computing », Heather Grey
https://indico.cern.ch/event/870515/
• A set of two hands-on (introduction) sessions for summer students (2023 

openlab summer student lectures) 
https://indico.cern.ch/event/1293871/
https://indico.cern.ch/event/1293874/

https://indico.cern.ch/event/970903/
https://indico.cern.ch/event/870515/
https://indico.cern.ch/event/1293871/
https://indico.cern.ch/event/1293874/
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Thank you!

November 20th-24th, 2023 
@CERN

Sofia.Vallecorsa@cern.ch
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https://www.ibm.com/quantum/roadmap
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Kernel values can 
concentrate 
exponentially around a 
common value

Need exponentially 
larger number of 
measurements to 
resolve

Kernel trainability and kernel concentration

Study kernel trainability in our Anomaly Detection model (arxiv:2208.11060)
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Characterize models  behaviour, similarities among them and link 
to data properties. 

Ex: 
• Data Re-Uploading circuits: alternating data encoding and 

variational layers. 

• Represented as explicit linear models (variational) in larger feature 
space

à can be reformulated as implicit models (kernel)

• Representer theorem: implicit models achieve better accuracy

• Explicit models exhibit better generalization performance

Equivalent interpretations?  

Jerbi, Sofiene, et al. "Quantum machine learning beyond 
kernel methods." arXiv preprint arXiv:2110.13162 (2021).

KERNEL-BASED

DATA RE-UP

VARIATIONAL
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1-slide excursion: quantum fuzzy logic controller
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Knowledge Base

Fuzzification 
Interface

Defuzzification 
Interface

Fuzzy Inference Engine

Database Rule Base

Input Output

Fuzzy Fuzzy

Crisp Crisp

• Alternative control algorithm to RL
• Fuzzy Logic is used to develop control systems based on linguistic rules highly interpretable
• Quantum Fuzzy Control System (G. Acampora, R. Schiattarella, A. Vitiello)

Exploit exponential advantage in computing fuzzy rules on quantum computers
• Successfully evaluated on AWAKE beam line, no training required Evaluation: on AWAKE beam line

Objective reached typically in 1 step
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2nd study: 10D continuous beam steering

• Hybrid actor-critic (A-C) works
• Minor improvement in terms of sample efficiency

50 vs 70 interactions
• Very few interactions sufficient for both approaches
• Dynamics potentially too simple (linear)

Move towards more complex RL benchmarks


