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Roadmap of today

@ Biology from an ML perspective

© Some core concepts

© Some earlier work

@ Topic modelling for single-cell multi-omics

© Dynamics from static data
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Too much detail!
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A more abstract view
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The central dogma
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How is this regulated? Where does variability come into play?
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Even more complicated

GENOME ORGANIZATION IN EUKARYOTES
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Also during and after transcription
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A big challenge

@ Biophysical modelling really hard!
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A big challenge

@ Biophysical modelling really hard!

@ Systems biology: mechanistic/ semimechanistic models of
cellular behaviour. Two families: ODE/ stochastic models of
biological processes; metabolic models

@ Bioinformatics: analysis and prediction algorithms on large
biological data sets
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A big challenge

@ Biophysical modelling really hard!

@ Systems biology: mechanistic/ semimechanistic models of
cellular behaviour. Two families: ODE/ stochastic models of
biological processes; metabolic models

@ Bioinformatics: analysis and prediction algorithms on large
biological data sets

@ Stats/ unsupervised/ supervised learning on large-scale
measurements
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Roadmap of today

© Some core concepts
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Some bio-concepts

@ A geneis a stretch of DNA with a defined function (e.g. code
for a protein)

@ The collection of all genes and genetic material is the genome of
the organism (all proteins — proteome, etc)

@ Animals generally have two identical copies of the genome in
each cell (diploid)

@ When cells divide, they copy the DNA and random errors may
happen. Evolution is the accrual of these changes, selected to
increase fitness

@ DNA is tightly wrapped around protein complexes. DNA +
proteins = chromatin. A continuous stretch of chromatin is a
chromosome
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Some bio-numbers

@ Number of genes = 0.4-3x10* (humans ~ 20K)
@ Number of human proteins ~ 70K

@ Length of human genomes ~ 3 x 10°bp ~ 2m. Total length of
human DNA per individual?
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Some bio-numbers

@ Number of genes = 0.4-3x10* (humans ~ 20K)
@ Number of human proteins ~ 70K

@ Length of human genomes ~ 3 x 10°bp ~ 2m. Total length of
human DNA per individual?

@ Total number of annotated functions (gene ontology terms)
~ 38K
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The sequencing multiverse
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The kind of questions we want to ask

@ Single-cell "'omics regularly measure hundreds/ hundreds of
thousands of cells, each with thousands of features (genes/ loci)

@ Variability in features (gene expression) and interactions can be
explained as technical/ biological/ intrinsic
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The kind of questions we want to ask

@ Single-cell "'omics regularly measure hundreds/ hundreds of
thousands of cells, each with thousands of features (genes/ loci)

@ Variability in features (gene expression) and interactions can be
explained as technical/ biological/ intrinsic

@ The law of total variance
Var[Y] = E[Var[Y|X]] + Var[E[Y|X]]

decomposes observed variance in unexplained and explained
components
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The kind of questions we want to ask

@ Single-cell "'omics regularly measure hundreds/ hundreds of
thousands of cells, each with thousands of features (genes/ loci)

@ Variability in features (gene expression) and interactions can be
explained as technical/ biological/ intrinsic

@ The law of total variance
Var[Y] = E[Var[Y|X]] + Var[E[Y|X]]

decomposes observed variance in unexplained and explained
components

@ You need to tease apart what is shared from what is individual
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Roadmap of today

© Some earlier work
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BRIE: splicing quantification in scRNA-seq

Splicing quantification in scRNA-seq leveraging sequence (Huang and
Sanguinetti, Genome Biology 2017,2021)
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Single-cell methylation
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Clustering and variability in scBS-seq leveraging chromosomal

location (Kapourani and Sanguinetti Genome Biology 2017,
Kapourani et al Genome Biology 2021)
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Single-cell multi-omics
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True correlation

Studying and modelling correlations between different layers in single
cells (Clark et al Nat. Commun. 2018, Maniatis et al PLoS CompBio
2022).
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Talk outline

@ Topic modelling for single-cell multi-omics
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Intepretable cell-level models

@ Single-cell multi-omics: two large feature vectors for each cell
(e.g. accessible regions by ATAC, gene expression)

@ Each feature vector ;10K dim, each vector §90% zeros, about
10K cells
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Intepretable cell-level models

@ Single-cell multi-omics: two large feature vectors for each cell
(e.g. accessible regions by ATAC, gene expression)

@ Each feature vector ;10K dim, each vector §90% zeros, about
10K cells

@ Can we provide latent representations of cells which are
interpretable at the level of interactions between individual
features (genes/ regions)?
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SHARE-topic (Nour El-Kazwini)
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SHARE-topic: cell level results

Topics can be associated with cell types by enrichment. Also topics
can be interpreted biologically by looking at which genes are highly
expressed in each topic.
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SHARE-topic: gene-level insights
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Can create local region-gene associations (joint probability having
marginalised topic)
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Roadmap of today

© Dynamics from static data
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Uncovering dynamics: RNA velocity

@ scRNA-seq is destructive — static snapshots from a dynamic
process
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Uncovering dynamics: RNA velocity

@ scRNA-seq is destructive — static snapshots from a dynamic
process

o IDEA (La Manno et al, 2018): use spliced/ unspliced reads to
derive rate of change of RNA levels
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;t:oz—ﬁxu d—);:Bxu—’yxs
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Uncovering dynamics: RNA velocity

@ scRNA-seq is destructive — static snapshots from a dynamic
process

o IDEA (La Manno et al, 2018): use spliced/ unspliced reads to
derive rate of change of RNA levels
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Uncovering dynamics: RNA velocity

@ scRNA-seq is destructive — static snapshots from a dynamic
process

o IDEA (La Manno et al, 2018): use spliced/ unspliced reads to
derive rate of change of RNA levels
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Uncovering dynamics: RNA velocity

@ scRNA-seq is destructive — static snapshots from a dynamic
process

o IDEA (La Manno et al, 2018): use spliced/ unspliced reads to
derive rate of change of RNA levels
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Problems and solutions

@ Splicing signal is very noisy in single cells

@ No reason why timescale of splicing should be the relevant one
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Problems and solutions

@ Splicing signal is very noisy in single cells
@ No reason why timescale of splicing should be the relevant one

o IDEA: Underlying (low dimensional) nonlinear dynamical system
should govern long-term evolution of cells" transcriptomes

@ Spliced/ unspliced ratio gives a noisy measurement of
instantaneous rate of change
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Problems and solutions

@ Splicing signal is very noisy in single cells
@ No reason why timescale of splicing should be the relevant one

o IDEA: Underlying (low dimensional) nonlinear dynamical system
should govern long-term evolution of cells" transcriptomes

@ Spliced/ unspliced ratio gives a noisy measurement of
instantaneous rate of change

@ Couple the two components in the spirit of physics informed
machine learning
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NeuroVelo (ldris Kouadri Boudjelthia)
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L = MSE(X, X) + RNAvelocityterm

Nonlinear dynamical system interpretable via standard spectral
techniques
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NeuroVelo on CRC

AZD

AZD Trametinib
Parental
Trametinib

Guido Sanguinetti (SISSA) ML sc-omics



Interpreting NeuroVelo: enrichment
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