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Too much detail!
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A more abstract view
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The central dogma

How is this regulated? Where does variability come into play?
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Even more complicated
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Also during and after transcription
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A big challenge

Biophysical modelling really hard!

Systems biology: mechanistic/ semimechanistic models of
cellular behaviour. Two families: ODE/ stochastic models of
biological processes; metabolic models

Bioinformatics: analysis and prediction algorithms on large
biological data sets

Stats/ unsupervised/ supervised learning on large-scale
measurements
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Some bio-concepts

A gene is a stretch of DNA with a defined function (e.g. code
for a protein)

The collection of all genes and genetic material is the genome of
the organism (all proteins → proteome, etc)

Animals generally have two identical copies of the genome in
each cell (diploid)

When cells divide, they copy the DNA and random errors may
happen. Evolution is the accrual of these changes, selected to
increase fitness

DNA is tightly wrapped around protein complexes. DNA +
proteins = chromatin. A continuous stretch of chromatin is a
chromosome
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Some bio-numbers

Number of genes = 0.4-3×104 (humans ∼ 20K )

Number of human proteins ∼ 70K

Length of human genomes ∼ 3× 109bp ∼ 2m. Total length of
human DNA per individual?

Total number of annotated functions (gene ontology terms)
∼ 38K
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The sequencing multiverse

DNA methylation
WGBS
RRBS
NOMe-seq
MeDIP-seq
MBD-seq
MethylCap-seq
MRE-seq

Histone modifications,
TF binding

ChIP-seq

Accessible Chromatin
DNaseI-seq
ATAC-seq
NOMe-seq

RNA expression
RNA-seq

Chromatin Interactions
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Hi-C
ChIA-PET

Hi-C

RNA expression
RNA-seqMNase-seq

Enhancer

Promoter

RNA Pol IITF
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The kind of questions we want to ask

Single-cell ’omics regularly measure hundreds/ hundreds of
thousands of cells, each with thousands of features (genes/ loci)

Variability in features (gene expression) and interactions can be
explained as technical/ biological/ intrinsic

The law of total variance

Var[Y ] = E [Var[Y |X ]] + Var[E [Y |X ]]

decomposes observed variance in unexplained and explained
components

You need to tease apart what is shared from what is individual
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BRIE: splicing quantification in scRNA-seq
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Splicing quantification in scRNA-seq leveraging sequence (Huang and
Sanguinetti, Genome Biology 2017,2021)
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Single-cell methylation
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Clustering and variability in scBS-seq leveraging chromosomal
location (Kapourani and Sanguinetti Genome Biology 2017,
Kapourani et al Genome Biology 2021)

Guido Sanguinetti (SISSA) ML sc-omics 17 / 30



Single-cell multi-omics
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Studying and modelling correlations between different layers in single
cells (Clark et al Nat. Commun. 2018, Maniatis et al PLoS CompBio
2022).
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Intepretable cell-level models

Single-cell multi-omics: two large feature vectors for each cell
(e.g. accessible regions by ATAC, gene expression)

Each feature vector ¿10K dim, each vector ¿90% zeros, about
10K cells

Can we provide latent representations of cells which are
interpretable at the level of interactions between individual
features (genes/ regions)?
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SHARE-topic (Nour El-Kazwini)

Inspired by cis-topic (Gonzalez 2019).
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SHARE-topic: cell level results

 (a)

 (d)

 (e)

(b)

(c)

Topics can be associated with cell types by enrichment. Also topics
can be interpreted biologically by looking at which genes are highly
expressed in each topic.
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SHARE-topic: gene-level insights
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Can create local region-gene associations (joint probability having
marginalised topic)
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Uncovering dynamics: RNA velocity

scRNA-seq is destructive → static snapshots from a dynamic
process

IDEA (La Manno et al, 2018): use spliced/ unspliced reads to
derive rate of change of RNA levels

dxu
dt

= α− βxu
dxs
dt

= βxu − γxs
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Problems and solutions

Splicing signal is very noisy in single cells

No reason why timescale of splicing should be the relevant one

IDEA: Underlying (low dimensional) nonlinear dynamical system
should govern long-term evolution of cells’ transcriptomes

Spliced/ unspliced ratio gives a noisy measurement of
instantaneous rate of change

Couple the two components in the spirit of physics informed
machine learning
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NeuroVelo (Idris Kouadri Boudjelthia)

L = MSE(X , X̂ ) + RNAvelocityterm

Nonlinear dynamical system interpretable via standard spectral
techniques
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NeuroVelo on CRC
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Interpreting NeuroVelo: enrichment
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