% TRIUMF

Weakly bound states and near-threshold resonances from *ab initio* nuclear theory

Critical stability of few-body quantum systems

ECT* Trento, October 23 - 27, 2023

Petr Navratil

TRIUMF

Kostas Kravvaris, Sofia Quaglioni, Mack Atkinson (LLNL), Guillaume Hupin (IJCLab), Chloe Hebborn (MSU/LLNL), Peter Gysbers (TRIUMF), Michael Gennari (UVic/TRIUMF), Matteo Vorabbi (Surrey), Jakub Herko (UND)

0

2023-10-26

Outline

- *Ab initio* nuclear theory
 - No-core shell model (NCSM) and NCSM with continuum (NCSMC)
 - Input chiral NN+3N interactions
- Applications to weakly-bound states and near threshold resonances
 - DT fusion
 - S-wave resonance close to the ⁶He+p threshold in ⁷Li
 - Parity inversion in ¹¹Be ground state
 - β-delayed proton emission in ¹¹Be
 - Two-neutron Borromean halo nucleus ⁶He

% TRIUMF

Ab initio nuclear theory

First principles or ab initio nuclear theory – what we do at present

Ŀ

Ab initio No-Core Shell Model (NCSM)

Ab initio no core shell model Bruce R. Barrett^a, Petr Navrátil^b, James P. Vary^{c,*}

Review

5

Basis expansion method - Harmonic oscillator (HO) basis truncated in a particular way (N_{max})

- Why HO basis?
 - Lowest filled HO shells match magic numbers of light nuclei (2, 8, 20 – ⁴He, ¹⁶O, ⁴⁰Ca)
 - Equivalent description in relative(Jacobi)-coordinate and Slater determinant (SD) basis
- Short- and medium range correlations
- Bound-states, narrow resonances

Ab initio No-Core Shell Model (NCSM)

Bruce R. Barrett ^a, Petr Navrátil^b, James P. Vary ^{c,*}

Review

Ab initio no core shell model

- Harmonic oscillator (HO) basis truncated in a particular way (N_{max})
- Why HO basis?
 - Lowest filled HO shells match magic numbers of light nuclei (2, 8, 20 – ⁴He, ¹⁶O, ⁴⁰Ca)
 - Equivalent description in relative(Jacobi)-coordinate and Slater determinant (SD) basis
- Short- and medium range correlations
- Bound-states, narrow resonances

$$\Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi^{HO}_{Ni}(\vec{\eta}_{1}, \vec{\eta}_{2}, ..., \vec{\eta}_{A-1})$$

$$\Psi_{SD}^{A} = \sum_{N=0}^{N_{max}} \sum_{j} c_{Nj}^{SD} \Phi_{SDNj}^{HO}(\vec{r}_{1}, \vec{r}_{2}, ..., \vec{r}_{A}) = \Psi^{A} \varphi_{000}(\vec{R}_{CM})$$

6

 $E = (2n + l + \frac{3}{2})\mathfrak{h}\Omega$

Ab Initio Calculations of Structure, Scattering, Reactions Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| {}^{(A)} \bigotimes, \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu}(\vec{r}) \, \hat{A}_{\nu} \left| \bigotimes_{(A-a)}^{\vec{r}} \bigotimes_{(a)}^{\vec{r}}, \nu \right\rangle$$

S. Baroni, P. Navratil, and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} | \stackrel{(A)}{\Longrightarrow}, \lambda \rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} | \stackrel{\vec{r}}{\bigoplus}_{(A-a)} (a), \nu \rangle$$

$$N = N_{\max} + 1 \stackrel{\vec{h}\Omega}{\longrightarrow}_{N=1} (A) \stackrel{\vec{h}\Omega}{\longrightarrow}_{N=0} (A) \stackrel{\vec{h}\Omega}{\longrightarrow}_{N=0} (A) \stackrel{\vec{h}\Omega}{\longrightarrow}_{N=1} (A) \stackrel{\vec{h}\Omega}{\longrightarrow}_{N=0} (A) \stackrel{\vec{h}\Omega}$$

Static solutions for aggregate system, describe all nucleons close together

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

Static solutions for aggregate system, describe all nucleons close together

Ab Initio Calculations of Structure, Scattering, Reactions

Unified approach to bound & continuum states

No-Core Shell Model with Continuum (NCSMC)

Static solutions for aggregate system, describe all nucleons close together

Coupled NCSMC equations

$$H \Psi^{(A)} = E \Psi^{(A)} \qquad \Psi^{(A)} = \sum_{\lambda} c_{\lambda} |^{(A)} \bigotimes_{\lambda} \lambda \rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} |_{(A-a)}^{\vec{r}} (a), \nu \rangle$$

$$E_{\lambda}^{NCSM} \delta_{\lambda\lambda'} \qquad \begin{pmatrix} \langle A \rangle \otimes |H \hat{A}_{\nu}|_{(a)}^{\vec{r}} (a) \rangle \\ \downarrow \\ H_{NCSM} \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle A \rangle \otimes |A \rangle \\ \downarrow \\ H_{NCSM} \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle A \rangle \otimes |A \rangle \\ \downarrow \\ H_{NCSM} \end{pmatrix} \begin{pmatrix} \langle C \rangle \\ \langle P \rangle \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle A \rangle \otimes |A \rangle \\ \downarrow \\ H_{NCSM} \end{pmatrix} \begin{pmatrix} \langle C \rangle \\ \langle P \rangle \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle A \rangle \otimes |A \rangle \\ \downarrow \\ H_{NCSM} \end{pmatrix} \begin{pmatrix} \langle C \rangle \\ \langle P \rangle \end{pmatrix} = E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle A \rangle \otimes |A \rangle \\ \downarrow \\ I_{NCSM} \end{pmatrix} \begin{pmatrix} \langle C \rangle \\ \langle P \rangle \end{pmatrix}$$

Physica Scripta doi:10.1088/0031-8949/91/5/053002 Royal Swedish Academy of Scie 053002 (38pp)

11

mment

ed ab initio approaches to nuclear structure and reactions

Petr Navrátil¹, Sofia Quaglioni², Guillaume Hupin^{3,4}, Carolina Romero-Redondo² and Angelo Calci¹

Novel chiral Hamiltonian and observables in light and medium-mass nuclei

V. Somà,^{1,*} P. Navrátil[®],^{2,†} F. Raimondi,^{3,4,‡} C. Barbieri[®],^{4,§} and T. Duguet^{1,5,∥}

Input for NCSMC calculations: Nuclear forces from chiral Effective Field Theory

- Quite reasonable description of binding energies across the nuclear charts becomes feasible
 - The Hamiltonian fully determined in A=2 and A=3,4 systems
 - Nucleon–nucleon scattering, deuteron properties, ³H and ⁴He binding energy, ³H half life
 - Light nuclei NCSM
 - Medium mass nuclei Self-Consistent Green's Function method

NN N³LO (Entem-Machleidt 2003) 3N N²LO w local/non-local regulator

PHYSICAL	REVIEW	C 101,	, 014318	(2020)
----------	--------	--------	----------	--------

Novel chiral Hamiltonian and observables in light and medium-mass nuclei

V. Somà,^{1,*} P. Navrátil[®],^{2,†} F. Raimondi,^{3,4,‡} C. Barbieri[®],^{4,§} and T. Duguet^{1,5,∥}

Input for NCSMC calculations: Nuclear forces from chiral Effective Field Theory

- Quite reasonable description of binding energies across the nuclear charts becomes feasible
 - The Hamiltonian fully determined in A=2 and A=3,4 systems
 - Nucleon–nucleon scattering, deuteron properties, ³H and ⁴He binding energy, ³H half life
 - Light nuclei NCSM
 - Heavy nuclei HF-MBPT(3)

NN N³LO (Entem-Machleidt 2003) 3N N²LO w local/non-local regulator

% TRIUMF

DT fusion

Deuterium-Tritium fusion

- The $d+^{3}H \rightarrow n+^{4}He$ reaction
 - The most promising to produce fusion energy in the near future
 - Used to achieve inertial-confinement (laser-induced) fusion at NIF, and magnetic-confinement fusion at ITER
 - With its mirror reaction, ${}^{3}\text{He}(d,p){}^{4}\text{He}$, important for Big Bang nucleosynthesis

DT cross section would be 100x smaller, like DD, without the 3/2⁺ resonance

M.B. Chadwick et al., arXiv:2305.00647

Big bang Nucleosynthesis and DT fusion

- D(T,n)α, enhanced by the 3/2⁺ resonance, is responsible for 99% of primordial ⁴He
- The remaining 1% of primordial ⁴He came from the D(³He,p)⁴He reaction, which benefits from the same mirror 3/2⁺ resonance but is suppressed because of the larger Coulomb repulsion between D and ³He
- This helium became a source for the subsequent creation of ≥25% of the carbon and other heavier elements and, thus, a substantial fraction of our human bodies

NCSMC calculation of the DT fusion

$$|\Psi\rangle = \sum_{\lambda} c_{\lambda} \left| \stackrel{^{5}\text{He}}{\longrightarrow}, \lambda \right| + \int d\vec{r} \, u_{\nu_{DT}}(\vec{r}) \hat{A}_{DT} \left| \stackrel{\vec{r}}{\longrightarrow} \stackrel{D}{\longrightarrow}, \nu_{DT} \right| + \int d\vec{r} \, u_{\nu_{n\alpha}}(\vec{r}) \hat{A}_{n\alpha} \left| \stackrel{\vec{r}}{\longrightarrow} \stackrel{n}{\longrightarrow}, \nu_{n\alpha} \right|$$

- 2x7 static ⁵He eigenstates computed with the NCSM
- Continuous D-T(g.s.) cluster states (entrance channel)
 - Including positive-energy eigenstates of D to account for distortion
- Continuous n-⁴He(g.s.) cluster states (exit channel)
- Chiral NN+3N(500) interaction

FY: Faddeev-Yakubovsky method - Rimantas Lazauskas

of $d+^{3}H$ is S-wave to $n+^{4}He$ in D-wave: Importance of the **tensor and 3N force**

ARTICLE

https://doi.org/10.1038/s41467-018-08052-6 OPEN

Ab initio predictions for polarized deuterium-tritium thermonuclear fusion

Guillaume Hupin^{1,2,3}, Sofia Quaglioni ³ & Petr Navrátil⁴

Assuming the fusion proceeds only in S-wave with spins of D and T completely aligned: Polarized cross section 50% higher than unpolarized

While the DT fusion rate has been measured extensively, a standing of the process is still unit of the

 Very little is known experimentally of now the polarization of the reactants' spins affects the reaction

$$\sigma_{unpol} = \sum_{J} \frac{2J+1}{(2I_{D}+1)(2I_{T}+1)} \sigma_{J}$$

$$\approx \frac{1}{3}\sigma_{1}^{2} + \frac{2}{3}\sigma_{3}^{3}$$

$$\sigma_{pol} \approx 1.5 \sigma_{unpol}$$

Polarized fusion

$$\frac{\partial \sigma_{pol}}{\partial \Omega_{c.m.}}(\theta_{\text{c.m.}}) = \frac{\partial \sigma_{unpol}}{\partial \Omega_{c.m.}}(\theta_{\text{c.m.}}) \left(1 + \frac{1}{2}p_{zz}A_{zz}^{(b)}(\theta_{\text{c.m.}}) + \frac{3}{2}p_zq_zC_{z,z}(\theta_{\text{c.m.}})\right)$$

Ab initio predictions for polarized deuteriumtritium thermonuclear fusion

Guillaume Hupin^{1,2,3}, Sofia Quaglioni ³ & Petr Navrátil⁴

ARTICLE

NCSMC calculation demonstrates impact of partial waves with / > 0 as well as the contribution of I = 0 $J^{\pi} = \frac{1}{2}^{+}$ channel

Polarized fusion

$$\frac{\partial \sigma_{pol}}{\partial \Omega_{c.m.}}(\theta_{c.m.}) = \frac{\partial \sigma_{unpol}}{\partial \Omega_{c.m.}}(\theta_{c.m.}) \left(1 + \frac{1}{2}p_{zz}A_{zz}^{(b)}(\theta_{c.m.}) + \frac{3}{2}p_zq_zC_{z,z}(\theta_{c.m.})\right)$$

 $- 5 \cdot 10^{8}$

[]

 $10^{9}E$

$N_{\rm A} \langle \sigma v \rangle^{-1} {\rm S. } \frac{10^8}{10^8} {\rm Gm}^3 {\rm Cm}^3 {\rm Im}^3 {\rm$ $5 \cdot 10^{7}$ $\substack{p_z=0.8,\; q_z=0.8\\p_{zz}=0.8}$ Unpolarized Bosch and Hale Descouvement NACRE $5 \cdot 10^{0}$ 10^{1} $2 \cdot 10^1$ $5\cdot 10^1$ 10^{2} $2 \cdot 10^2$ $5 \cdot 10^{2}$ T [keV]

SECONDARY ST

$$\langle \sigma \nu \rangle = \sqrt{\frac{8}{\pi \mu (k_b T)^3}} \int_0^\infty S(E) \exp\left(-\frac{E}{k_b T} - \sqrt{\frac{E_g}{E}}\right) dE,$$

For a realistic 80% polarization, reaction rate increases by ~32% or the same rate at ~45% lower temperature

ARTICLE https://doi.org/10.1038/s41467-018-08052-6 OPEN

Ab initio predictions for polarized deuterium-tritium thermonuclear fusion

Polarized fusion

$$\frac{\partial \sigma_{pol}}{\partial \Omega_{c.m.}}(\theta_{\text{c.m.}}) = \frac{\partial \sigma_{unpol}}{\partial \Omega_{c.m.}}(\theta_{\text{c.m.}}) \left(1 + \frac{1}{2}p_{zz}A_{zz}^{(b)}(\theta_{\text{c.m.}}) + \frac{3}{2}p_zq_zC_{z,z}(\theta_{\text{c.m.}})\right)$$

ARTICLE

Ab initio predictions for polarized deuteriumtritium thermonuclear fusion

OPEN

For a realistic 80% polarization, outgoing neutrons and alphas emitted dominantly in the perpendicular direction to the magnetic field

Guillaume Hupin^{1,2,3}, Sofia Quaglioni ³ & Petr Navrátil⁴

% TRIUMF

S-wave resonance close to the ⁶He+p threshold in ⁷Li

27

celerate

ac

Matteo Vorabbi 🔊 and Petr Navrátil† TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

Sofia Quaglioni Lawrence Livermore National Laboratory, P. O. Box 808, L-414, Livermore, California 94551, USA

Guillaume Hupin 🗅

Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406, Orsay, France

- NCSMC study of ⁷Li and ⁷Be nuclei using all binary mass partitions
 - Known resonances reproduced
 - Prediction of several new resonances of both parities

S-wave resonance close to the threshold of ⁶He+p?

Matteo Vorabbi 🔊 and Petr Navrátil† TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

29

.07

P

Sofia Quaglioni Lawrence Livermore National Laboratory, P. O. Box 808, L-414, Livermore, California 94551, USA

Guillaume Hupin Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406, Orsay, France

NCSMC study of ⁷Li and ⁷Be nuclei using all binary mass partitions

- Known resonances reproduced
- Prediction of several new resonances of both parities

S-wave resonance close to the threshold of ⁶He+p?

Matteo Vorabbi 🔊 and Petr Navrátil† TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

Sofia Quaglioni Lawrence Livermore National Laboratory, P. O. Box 808, L-414, Livermore, California 94551, USA 30

Guillaume Hupin 🛽

Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406, Orsay, France

- NCSMC study of ⁷Li and ⁷Be nuclei using all binary mass partitions
 - Known resonances reproduced
 - Prediction of several new resonances of both parities

S-wave resonance close to the threshold of ⁶He+p?

Matteo Vorabbi 🔊 and Petr Navrátil† TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

Sofia Quaglioni Lawrence Livermore National Laboratory, P. O. Box 808, L-414, Livermore, California 94551, USA

Guillaume Hupin [®] Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406, Orsay, France

⁶He(d,n)⁷Li^{*} \rightarrow ⁶He+p experiment at Texas A&M University Cyclotron Institute

Near threshold resonance not found

3/2- T=1/2 anti-analog resonance observed just above 3/2- T=3/2

Weakness of the calculation - mass partitions not coupled:

The resonance appears in both ⁶Li+n and ⁶He+p. Might be below the ⁶He+p threshold or might decay by charge exchange ⁶He(p,n)⁶Li(gs) ...or might be dissolved in d+n+⁴He continuum (not included)

S-wave resonance close to the threshold of ⁶He+p?

Known resonances reproduced
 Prediction of several new resonances of both parities
 150 N³LO(A = 500 MeV)
 15 E_x [MeV]
 16 E_x [MeV]
 17 E_x [MeV]
 18 Aug
 19 Aug
 19 Aug
 10 Aug

NCSMC study of ⁷Li and ⁷Be nuclei using all binary mass partitions

⁷Li structure: Coupling of different mass partitions in NCSMC in progress

⁶Li+n and ⁶He+p coupled calculations

S-wave resonance just above the ⁶He+p threshold. However, it is in the ⁶Li(1⁺)+n channel; the ⁶He(0⁺)+p *S*-wave phase shift decreasing similarly as ⁶Li(0⁺)+n.

Explains non-observation in the ${}^{6}\text{He}(d,n){}^{7}\text{Li}^{*}$ $\rightarrow {}^{6}\text{He}$ +p Texas A&M experiment

PHYSICAL REVIEW C 107, L061303 (2023)

Search for an *s*-wave resonance in ⁷Li just above the proton-decay threshold

N. Dronchi •,^{1,*} J. Berkman •,² R. J. Charity •,² J. M. Elson •,² L. G. Sobotka •,^{1,2} A. G. Thomas •,² A. Saastamoinen,³ M. Barbui,³ J. Bishop •,³ C. E. Parker,³ B. T. Roeder,³ G. V. Rogachev,^{3,4,5} D. P. Scriven •,^{3,4} S. T. Marley,⁶ and R. M. Shaffer •⁶

⁷Li structure: Coupling of different mass partitions in NCSMC in progress

33

⁶Li+n and ⁶He+p coupled calculations

⁷Li structure: Coupling of different mass partitions in NCSMC in progress

- ⁴He+³H and ⁶Li+n coupled calculations
- First results for ⁶Li(n,t)⁴He

34

Next to do: ⁴He+³H and ⁶Li+n and ⁶He+p coupled calculations

%TRIUMF

Parity inversion in ¹¹Be ground state

Neutron-rich halo nucleus¹¹Be

Z=4, N=7

- In the shell model picture g.s. expected to be J^π=1/2⁻
 - Z=6, N=7 ¹³C and Z=8, N=7 ¹⁵O have J^π=1/2⁻ g.s.
- In reality, ¹¹Be g.s. is J^π=1/2⁺ parity inversion
- Very weakly bound: E_{th}=-0.5 MeV
 - Halo state dominated by ¹⁰Be-n in the S-wave
- The 1/2⁻ state also bound only by 180 keV
- Can we describe ¹¹Be in *ab initio* calculations?
 - Continuum must be included
 - Does the 3N interaction play a role in the parity inversion?

Structure of ¹¹Be from chiral NN+3N forces

- NCSMC calculations including chiral 3N (NN N³LO+N²LO 3N(400), N²LO_{sat}, NN N⁴LO+3N_{Inl})
 - n-¹⁰Be + ¹¹Be
 - ¹⁰Be: 0⁺, 2⁺, 2⁺ NCSM eigenstates
 - ¹¹Be: $\geq 6 \pi = -1$ and $\geq 3 \pi = +1$ NCSM eigenstates

PRL 117, 242501 (2016)	PHYSICAL REVIEW LETTERS	week ending 9 DECEMBER 2016
Can Ab Initio Th	eory Explain the Phenomenon of Parity In	version in ¹¹ Be?
Angelo Calci, ^{1,*} Petr Navrátil	, ^{1,†} Robert Roth, ² Jérémy Dohet-Eraly, ^{1,‡} Sofia Quaglic	oni, ³ and Guillaume Hupin ^{4,5}

week ending 9 DECEMBER 2016

Angelo Calci,^{1,*} Petr Navrátil,^{1,†} Robert Roth,² Jérémy Dohet-Eraly,^{1,‡} Sofia Quaglioni,³ and Guillaume Hupin^{4,5}

week ending 9 DECEMBER 2016

Photo-disassociation of ¹¹Be

Bound to bound	NCSM	NCSMC-phenom	Expt.
B(E1; 1/2 ⁺ →1/2 ⁻) [e ² fm ²]	0.0005	0.117	0.102(2)

Photo-disassociation of ¹¹Be

Bound to bound	NCSM	NCSMC-phenom	Expt.
B(E1; 1/2 ⁺ →1/2 ⁻) [e ² fm ²]	0.0005	0.117	0.102(2)

%TRIUMF

2023-10-26

β -delayed proton emission in ¹¹Be

¹¹Be(β p), a quasi-free neutron decay?

K. Riisager^{a,*}, O. Forstner^{b,c}, M.J.G. Borge^{d,e}, J.A. Briz^e, M. Carmona-Gallardo^e, L.M. Fraile^f, H.O.U. Fynbo^a, T. Giles^g, A. Gottberg^{e,g}, A. Heinz^h, J.G. Johansen^{a,1}, B. Jonson^h, J. Kurcewicz^d, M.V. Lund^a, T. Nilsson^h, G. Nyman^h, E. Rapisarda^d, P. Steier^b, O. Tengblad^e, R. Thies^h, S.R. Winkler^b

- Indirectly observed ${}^{11}\text{Be}(\beta p){}^{10}\text{Be}$
- Measured an extremely high branching ratio $b_p = 8.3 \pm 0.9 \times 10^{-6}$
 - Orders of magnitude larger than theoretical predictions (e.g. 3.0×10^{-8})
- Two proposed explanations:

- D. Baye and E.M. Tursunov, PLB 696, 4, 464-467 (2011)
- **①** The neutron decays to an unobserved $p+^{10}Be$ resonance in ¹¹B
- 2 There are unobserved dark decay modes

Eur. Phys. J. A (2020) 56:100 https://doi.org/10.1140/epja/s10050-020-00110-2 THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Experimental Physics

Search for beta-delayed proton emission from ¹¹Be

K. Riisager^{1,a}, M. J. G. Borge^{2,3}, J. A. Briz³, M. Carmona-Gallardo⁴, O. Forstner⁵, L. M. Fraile⁴, H. O. U. Fynbo¹, A. Garzon Camacho³, J. G. Johansen¹, B. Jonson⁶, M. V. Lund¹, J. Lachner⁵, M. Madurga², S. Merchel⁷, E. Nacher³, T. Nilsson⁶, P. Steier⁵, O. Tengblad³, V. Vedia⁴

New Accelerator Mass Spectrometry experiment that supersedes the 2014 measurement

- Branching ratio $b_p \sim 2.2 \times 10^{-6}$
 - Upper limit, possible contamination by BeH molecular ions

PHYSICAL REVIEW LETTERS 123, 082501 (2019)

Editors' Suggestion

Direct Observation of Proton Emission in ¹¹Be

Y. Ayyad,^{1,2,*} B. Olaizola,³ W. Mittig,^{2,4} G. Potel,¹ V. Zelevinsky,^{1,2,4} M. Horoi,⁵ S. Beceiro-Novo,⁴ M. Alcorta,³
C. Andreoiu,⁶ T. Ahn,⁷ M. Anholm,^{3,8} L. Atar,⁹ A. Babu,³ D. Bazin,^{2,4} N. Bernier,^{3,10} S. S. Bhattacharjee,³ M. Bowry,³
R. Caballero-Folch,³ M. Cortesi,² C. Dalitz,¹¹ E. Dunling,^{3,12} A. B. Garnsworthy,³ M. Holl,^{3,13} B. Kootte,^{3,8}
K. G. Leach,¹⁴ J. S. Randhawa,² Y. Saito,^{3,10} C. Santamaria,¹⁵ P. Šiurytė,^{3,16} C. E. Svensson,⁹
R. Umashankar,³ N. Watwood,² and D. Yates^{3,10}

- Directly observed the protons from ${}^{11}\text{Be}(\beta p){}^{10}\text{Be}$
- Measured consistent branching ratio $b_p = 1.3(3) \times 10^{-5}$
 - Still orders of magnitude larger than theoretical predictions
- Predict the proton resonance at 11.425(20) MeV from the proton energy distribution
 - Predicted to be either $\frac{1}{2}^+$ or $\frac{3}{2}^+$
 - Corresponds to excitation energy of 197 keV

NCSMC extended to describe exotic ¹¹Be β p emission

$$|\Psi_{A}^{J^{\pi}T}\rangle = \sum_{\lambda} c_{\lambda}^{J^{\pi}T} |A\lambda J^{\pi}T\rangle + \sum_{\nu} \int dr r^{2} \frac{\gamma_{\nu}^{J^{\pi}T}(r)}{r} \hat{A}_{\nu} |\Phi_{\nu r}^{J^{\pi}T}\rangle$$
$$|\Phi_{\nu r}^{J^{\pi}T}\rangle = \left[\left(|^{10}\text{Be}\,\alpha_{1}I_{1}^{\pi_{1}}T_{1}\rangle |N\frac{1}{2}\frac{+1}{2}\rangle \right)^{(sT)} Y_{\ell}(\hat{r}_{10,1}) \right]^{(J^{\pi}T)}$$
$$\times \frac{\delta(r - r_{10,1})}{rr_{10,1}}, \quad \text{n for } {}^{11}\text{Be or p for } {}^{11}\text{B}$$

Input chiral interaction NN N⁴LO(500) + 3N(InI) Entem-Machleidt-Nosyk 2017 3N N²LO w local/non-local regulator

Including 0^{+}_{gs} and 2^{+}_{1} states of ^{10}Be

$$B(\text{GT}) = \frac{1}{2} \left| \left\langle \Psi_{11B}^{\frac{1}{2} + \frac{1}{2}} \| \hat{\text{GT}} \| \Psi_{11Be}^{\frac{1}{2} + \frac{3}{2}} \right\rangle \right|^2$$

PHYSICAL REVIEW C 105, 054316 (2022)
Ab initia calculation of the β decay from ¹¹ Be to a ¹⁰ Be + p resonance
M. C. Atkinson ^{, 1} P. Navrátil ^{, 1} G. Hupin ^{, 2} K. Kravvaris, ³ and S. Quaglioni ³

Gamow-Teller and Fermi β-decay in NCSMC

Compute GT and Fermi matrix element in NCSMC

$$M_F = \left\langle \Psi^{J^{\pi}T_f M_{T_f}} \left| T_+ \right| \Psi^{J^{\pi}T_i M_{T_i}} \right\rangle$$

• Total isospin (or GT) operator $T_+ = T_+^{(1)} + T_+^{(2)}$ for partitioned system

NCSM-Cluster matrix elements

¹¹Be and ¹¹B nuclear structure results

Bound states wrt ¹⁰Be+N thresholds

1.85

1.46

§<u>11.228</u>5

5.05 4.60 4.43

 $\frac{1/2^+; T = (3/2)}{0 \qquad 7/2^+} 1/2^ \frac{11.600 \qquad 5/2^+}{2} 5/2^-$

-9/2+

12:554

¹¹Be and ¹¹B nuclear structure results

150

100

50

0

-50

200

150

100

50

0

0

 $E_{\rm c.m.}$ [MeV]

 $\delta \, [\mathrm{deg}]$

 $\delta \, [deg]$

¹¹B resonances above ¹⁰Be+p threshold

(11.5092 ¹¹Be

1.85

⁸<u>11.2285</u> ¹⁰Be+p

<u>9.2296</u> ¹⁰B+d-p

<u>5.1969</u> ¹⁰B+t-d

-15.9569

 $1/2^+$; T = (3/2) $1/2^-$

11.600

 $\frac{7}{2^+}$

5/2-

-5/2-

-9/2+

5.05 4.60 4.43

12:554

NCSMC extended to describe exotic ¹¹Be β p emission, supports large branching ratio due to narrow ¹/₂⁺ resonance

¹¹Be \rightarrow (¹⁰Be+p) + β^- + $\bar{\nu}_e$ GT transition

NCSMC extended to describe exotic ¹¹Be β p emission, supports large branching ratio due to narrow ¹/₂⁺ resonance

NCSMC extended to describe exotic ¹¹Be β p emission, supports large branching ratio due to narrow $\frac{1}{2}$ resonance

- New FRIB experiment measuring proton emission led by Jason Surbrook reports branching ratio b_p ~ 8(4) x 10⁻⁶
 - Lower but still consistent with Ayyad TRIUMF experiment
- More experiments planned!
- NCSMC calculations will be extended by **including the** ⁷Li+ α mass partition

% TRIUMF

Two-neutron Borromean halo nucleus ⁶He

accelerated

NCSMC for three-body clusters

NCSMC for three-body clusters: ⁶He ~ ⁴He+n+n

IV

PHYSICAL REVIEW C 97, 034332 (2018)

Three-cluster dynamics within the *ab initio* no-core shell model with continuum: How many-body correlations and α clustering shape ⁶He

Sofia Quaglioni,^{1,*} Carolina Romero-Redondo,^{1,†} Petr Navrátil,^{2,‡} and Guillaume Hupin^{3,§}

How Many-Body Correlations and α Clustering Shape ⁶He

Carolina Romero-Redondo,^{1,*} Sofia Quaglioni,^{1,†} Petr Navrátil,^{2,‡} and Guillaume Hupin^{3,§}

Three-cluster dynamics within the *ab initio* no-core shell model with continuum: How many-body correlations and α clustering shape ⁶He

Sofia Quaglioni,^{1,*} Carolina Romero-Redondo,^{1,†} Petr Navrátil,^{2,‡} and Guillaume Hupin^{3,§}

The probability distribution of the ⁶He ground state presents two peaks corresponding to the di-neutron and cigar configurations

59

week ending 25 NOVEMBER 2016

NCSMC for three-body clusters: ⁶He ~ ⁴He+n+n

 PRL 117, 222501 (2016)
 PHYSICAL REVIEW LETTERS
 week ending 25 NOVEMBER 2016
 60

 How Many-Body Correlations and α Clustering Shape ⁶He

 Carolina Romero-Redondo, ^{1,*} Sofia Quaglioni, ^{1,†} Petr Navrátil, ^{2,‡} and Guillaume Hupin^{3,§}

> Separation energy, point proton and matter radius simultaneously consistent with experiment

Conclusions

- Ab initio nuclear theory
 - Makes connections between the low-energy QCD and many-nucleon systems
 - Applicable to nuclear structure, reactions including those relevant for astrophysics, electroweak processes, tests of fundamental symmetries
 - Very recently reach extended to heavy nuclei
- Applications of *ab initio* no-core shell model with continuum to nuclear structure and reactions
 - DT fusion near threshold 3/2⁺ S-wave resonance
 - 1/2⁺ S-wave resonance close to the ⁶He+p threshold in ⁷Li
 - Parity inversion in ¹¹Be ground state weakly bound halo state
 - β-delayed proton emission in ¹¹Be near threshold 1/2⁺ S-wave resonance
 - Two-neutron Borromean halo nucleus ⁶He di-neutron and cigar configurations in the ground state

In synergy with experiments, ab initio nuclear theory is the right approach to understand low-energy properties of atomic nuclei

∂TRIUMF

Thank you! Merci! Grazie!

% TRIUMF

Backup slides

Discovery

accelerated

⁷Be structure and capture reactions important for astrophysics

Jérémy Dohet-Eraly^{a,*}, Petr Navrátil^a, Sofia Quaglioni^b, Wataru Horiuchi^c, Guillaume Hupin^{b,d,1}, Francesco Raimondi^{a,2}

Sofia Quaglioni Lawrence Livermore National Laboratory, P. O. Box 808, L-414, Livermore, California 94551, USA

Guillaume Hupin 🛛

Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406, Orsay, France

S-factor for ³He(α , γ)⁷Be and ⁶Li(p, γ)⁷Be reaction

 3 He(α , γ)⁷Be and 3 H(α , γ)⁷Li astrophysical *S* factors from the no-core shell model with continuum

Jérémy Dohet-Eraly $^{a,\ast},$ Petr Navrátil a, Sofia Quaglioni b, Wataru Horiuchi c, Guillaume Hupin $^{b,d,1},$ Francesco Raimondi a,2

⁷Be and ⁷Li nuclei within the no-core shell model with continuum

Matteo Vorabbi 0° and Petr Navrátil[†] TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canad

Sofia Quaglioni Lawrence Livermore National Laboratory, P. O. Box 808, L-414, Livermore, California 94551, USA

Guillaume Hupin 0 Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406, Orsay, France

A drop in the ${}^{6}\text{Li}(p, \gamma)^{7}\text{Be}$ reaction at low energies

J.J. He^{a,*}, S.Z. Chen^{a,b}, C.E. Rolfs^{c,a}, S.W. Xu^a, J. Hu^a, X.W. Ma^a, M. Wiescher^d, R.J. deBoer^d, T. Kajino^{e,f}, M. Kusakabe^g, L.Y. Zhang^{a,b}, S.Q. Hou^{a,b}, X.Q. Yu^a, N.T. Zhang^a, G. Lian^b, Y.H. Zhang^a, X.H. Zhou^a, H.S. Xu^a, G.Q. Xiao^a, W.L. Zhan^a

No resonance in ⁷Be close to ⁶Li+p threshold contrary to claim in Lanzhou experiment

Still, we predict a $\frac{1}{2}$ ⁺ resonance at ~ 3 MeV above 6 Li+p threshold

Need to couple all mass partitions to get a reliable prediction of its properties