Heavy-light N+1 clusters of two-dimensional fermions

Jules Givois, Andrea Tononi, and <u>Dmitry Petrov</u>

Laboratoire Physique Théorique et Modèles Statistiques (Orsay)

arXiv: 2310.11330

(N+1)-body problem

How many heavy fermions can be bound by a single light atom?

Kinetic energy of the heavy atoms $\sim 1/M$

competes with

Attractive exchange potential of the light atom $\sim 1/m$

Parameters of the free-space zero-range N+1-body problem:

- space dimension *D*
- number of heavy atoms *N*
 - mass ratio *M/m*
- dimer size a (can be used as the length unit)

3D 2+1-trimer

Emergence of a trimer state for M/m>8.2 [Kartavtsev & Malykh'2006]

M/m<8.2 p-wave atom-dimer scattering resonance M/m>8.2 (non-efimovian) trimer state with L=1

Born-Oppenheimer picture

Born-Oppenheimer picture

3D trimer, tetramer, pentamer,...

$$\begin{aligned} \left[-\frac{\hbar^2}{M} \frac{\partial^2}{\partial R^2} + \widetilde{U}_{eff}(R) \right] \chi(R) &= E \, \chi(R) \end{aligned} \\ 3D: \quad \widetilde{U}_{eff}(R) &= U_{eff}(R) + |\epsilon_0| + \frac{\hbar^2 l(l+1)}{MR^2} \longrightarrow l = 1 \rightarrow (M/m)_c = 8.2 \\ & \text{This is actually exact (not Born-Oppenheimer) number} \end{aligned} \\ different \\ 2D: \quad \widetilde{U}_{eff}(R) &= U_{eff}^{2D}(R) + |\epsilon_0| + \frac{\hbar^2 (l^2 - 1/4)}{MR^2} \longrightarrow \text{Rough guess:} \\ & (M/m)_c^{2D} \approx \frac{l^2 - 1/4}{l(l+1)} (M/m)_c^{3D} = 3.1 \end{aligned}$$

Exact ratio $(M/m)_c^{2D} = 3.3$ [Pricoupenko & Pedri'10]

Centrifugal force weaker in 2D \rightarrow p-wave resonance for smaller mass ratio!

... and in 1D $(M/m)_c^{1D} = 1$ exactly!

2D trimer, tetramer, pentamer...

1D trimer, tetramer...(exact)

A. Tononi, J. Givois, DSP, Phys. Rev. A 106, L011302 (2022)

Mean field VS exact

1D main conclusions:

MF works fine, controlled by single parameter
 Thomas-Fermi → Hartree-Fock → hardly improves

- Thomas-Fermi \rightarrow Hartree-Fock \rightarrow hardly improves energy, but predicts structure of the wave function, parity...

More details: Tononi, Givois, DSP (2022) and Givois, Tononi, and DSP (2023)

2D N+1 clusters: Mean field

Mean field + Thomas-Fermi assumptions

For $|\gamma| \sim 1$ and $\alpha \sim 1$ both TF and MF validity conditions are equivalent to:

Mean field + Thomas-Fermi assumptions

$$E = \frac{1}{2m} \int [|\nabla \phi(\mathbf{r})|^2 + \frac{\alpha}{2} n^2(\mathbf{r}) + \gamma n(\mathbf{r}) |\phi(\mathbf{r})|^2] d^2r \qquad \alpha = 4\pi \frac{m}{M} N^2 \qquad \gamma = 2mgN < 0$$

$$\Omega = E - \int [\mu N n(\mathbf{r}) + \epsilon |\phi(\mathbf{r})|^2] d^2r$$

$$Minimization with respect to $\phi(\mathbf{r}) \qquad - \nabla^2 \phi(\mathbf{r}) + \gamma n(\mathbf{r}) \phi(\mathbf{r}) = 2m\epsilon \phi(\mathbf{r})$

$$Minimization with respect to $n(\mathbf{r}) \qquad n(\mathbf{r}) = -\frac{\gamma}{\alpha} \theta[|\phi(\mathbf{r})|^2 + 2mN\mu/\gamma]$
Heavy fermions
$$Heavy \text{ fermions}$$$$$$

Mean field + Thomas-Fermi results

MF solution exists only for $\alpha < 2\pi C \approx 11.70$ i.e., $M/m > 1.074N^2$, and for a certain $\gamma = \gamma_c(\alpha)$

Features/problems

- Scaling invariance

$$-\nabla^2 \phi(\mathbf{r}) + \gamma n(\mathbf{r}) \phi(\mathbf{r}) = 2m\epsilon \phi(\mathbf{r})$$
$$n(\mathbf{r}) = -\frac{\gamma}{\alpha} \theta[|\phi(\mathbf{r})|^2 + 2mN\mu/\gamma]$$
$$\int |\phi(\mathbf{r})|^2 d^2r = 1 \qquad \int n(\mathbf{r}) d^2r = 1$$

If this set is a solution, the rescaled set is also a solution

- Vanishing energy $E_0 \implies E = E_0/R^2 \implies E = 0$

For bosonic Townes soliton see [Vlasov et al.'71, Pitaevskii'96, Bakkali-Hassani&Dalibard (Varenna Lectures'22)]

- What is $\gamma=2mgN$? Is it an external parameter or not?

Solution for bosonic soliton [Hammer&Son'04] g is the bare coupling constant, it gets renormalized

Solution = go beyond mean field

- Beyond-MF term is dominated by the diverging second-order Born integral

Minimization of BMF functional

$$E = \frac{1}{2m} \int [|\nabla \phi(\mathbf{r})|^2 + \frac{\alpha}{2} n^2(\mathbf{r}) + \gamma n(\mathbf{r}) |\phi(\mathbf{r})|^2] d^2r - \frac{1}{2m} \frac{\gamma^2}{2\pi N} \int n(\mathbf{r}) |\phi(\mathbf{r})|^2 \ln \frac{e^{1/2} \kappa}{\sqrt{4\pi n(\mathbf{r})N}} d^2r$$

$$When \ \gamma = \gamma_c(\alpha)$$

$$\phi(r) = \phi_0(r/R)/R$$

$$n(r) = n_0(r/R)/R^2$$

Three MF terms separately are of order $\sim 1/R^2$, but their sum vanishes

The BMF term $\sim (N^{-1} \ln N)/R^2 \ll$ each MF term

The shape of the cluster unchanged, but there exists an optimal R

In the leading BMF order we thus have

$$E = \frac{1}{2mR^2} \int \left[(\gamma - \gamma_c) n_0(r) |\phi_0(r)|^2 - \frac{\gamma_c^2}{2\pi N} n_0(r) |\phi_0(r)|^2 \ln \frac{e^{1/2} \kappa R}{\sqrt{4\pi n_0(r)N}} \right] d^2r$$
$$(\gamma - \gamma_c) /\gamma_c^2 \approx 1/\gamma_c - 1/\gamma$$
$$I_1 = \int n_0(r) \phi_0^2(r) d^2r$$
$$I_2 = \int n_0(r) \phi_0^2(r) \ln n_0(r) d^2r$$
$$R_{\min}^2 = \pi N a^2 e^{4\pi N/\gamma_c + I_2/I_1 + 2\gamma_E}$$
$$E_{N+1} = -\frac{I_1 \gamma_c^2}{8\pi N m R_{\min}^2}$$

Need better mean field

Hartree-Fock vs Thomas-Fermi

$E_{N+1}^{\rm TF} = -$	$-\frac{1}{2ma^2}e^{-4\pi N/\gamma_c^{\rm TF}-2\ln N+O(1)}$
------------------------	---

$$E_{N+1}^{\rm HF} = -\frac{1}{2ma^2} e^{-4\pi N/\gamma_c^{\rm HF} - 2\ln N - I_2/I_1 - 2\gamma_E + \ln(I_1\gamma_c^2) - 2\ln(2\pi) + o(N^0)}$$

Exact vs Hartree-Fock

Summary and outlook

Outlook

• Binding of two or more *N*+1 clusters

Thank you!