Multichannel nature of the lithium few-body puzzle

23-10-2023

Servaas Kokkelmans

CQT TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

TU/e TU/e

EINDHOVEN HENDRIK CASIMIR INSTITUTE CENTER FOR QUANTUM MATERIALS AND TECHNOLOGY EINDHOVEN

Outline

Introduction Li few-body puzzle

Three-body elastic and inelastic scattering for strong and weak interactions Momentum-space method

Use realistic two-body interaction potentials

Multi-channel three-body scattering K-39 with Fixed Spectating Spin Li-7 with Full Multichannel Spin exchange

Conclusions

Three-body collisions

collapse regime

 $T_{\theta > 0}$

stable uniform state (U)

 $\theta = 0$

0.5

-0.5

four-critical poin

D'Errico et al. New J. Phys. 9 223, 2007

The "lithium few-body puzzle"

Three-body recombination

• Three identical bosons, Feshbach resonance

N. Gross, et. al., Phys. Rev. Lett. **103**, 163202 (2009). R. Chapurin, et. al., Phys. Rev. Lett. **123**, 233402 (2019).

N. Gross, et al., C. R. Phys. 12, 4 (2011)

Multichannel nature of the lithium few-body puzzle

Multichannel three-body simulation

What is missing from our current theoretical and numerical approaches?

T. Secker, et. al., Phys. Rev. A **103**, 022825 (2021) T. Secker, et. al., Phys. Rev. A **103**, 032817 (2021)

Alt-Grassberger-Sandhas (AGS) equations

Two-body transition operator $T \implies a$					
Three-body transition operators $U_{fi} \implies D$					
$\begin{cases} U_{00}(z) = \sum_{\alpha=1}^{3} T_{\alpha}(z)G_{0}(z)U_{\alpha 0}(z) \\ U_{\alpha 0}(z) = G_{0}^{-1}(z) + \sum_{\substack{\beta=1\\ \beta \neq \alpha}}^{3} T_{\beta}(z)G_{0}(z)U_{\beta 0}(z) \\ \text{for } \alpha = 1, 2, 3, \end{cases}$					

α	configuration
0	A + B + C
1	A + BC
2	B + CA
3	C + AB

- $G_0(E) = (E H_0)^{-1}$ where H_0 is the three-body kinetic energy operator
- T_{α} is the transition operator of a two-particle subsystem E.g. $T_1(E) = V_{23} + V_{23}G_0(E)T_1(E)$

[E. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. B 2, 167 (1967)]

Multichannel spin models

AGS equation : $U = Pt(1 + P) + PtG_0U$

$$t = V + VG_0t$$

$$V = V_S P_S + V_T P_T$$

$$G_0 = (E - T - H_c)^{-1}$$

- *V*: pairwise interaction
- V_{S/T}: singlet/triplet interaction potential
- H_c: multichannel spin Hamiltonian

Multichannel spin models

 $\mathbf{f} = \mathbf{i} + \mathbf{s}$ $M_{\text{tot}} = m_{f1} + m_{f2} + m_{f3}$ Constant

³⁹K in the $|f=1, m_f=-1>$ state, for instance

Multichannel spin models

Multichannel nature of the lithium few-body puzzle

Three-body multi-channel physics

Strongly interacting regime

Strongly interacting regime

	ESS result	$a_{-}[r_{ m vdW}]$				
	155 Tesuit	this work	Ref. [18]			
	N=2, LJ	-13.51	-7.61			
	N=3, LJ	-14.33	-11.20			
	N=4, LJ	-14.16	-12.27			
	N=5, LJ	-14.60	-12.69			
	full	-14.12	_			
	full40	-14.03	_			
	measurement	-14.0	05(17)			
20						
	т					
∄ 15		-				
$ /r_v $						
		Ā				
10 -		• • • • • • • • • • • • • • • • • • •				
10	² 10 ⁰	10 ² 10 ⁴				

V_{S/T} is modeled by a Lennard-Jones (LJ) potential with *N* s-wave bound states or taken as full molecular potential (full) from *Phys. Rev. A 78 012503(2008)*

[18] R. Chapurin et al., Phys. Rev. Lett. 123, 233402 (2019).

[T. Secker et al., Phys. Rev. A 103, 022825(2021)]

Strongly interacting regime

[T. Secker D. J. M. Ahmed-Braun, P. M. A. Mestrom, S. J. J. M. F. Kokkelmans, Phys. Rev. A 103, 022825(2021)]

Li-7 – Three-body recombination

⁷Li in the |1,0> state around B=850 G

$K_3 \propto L_m^4$

 $M_{2b} = m_{f1} + m_{f2}$

	f_3	т _{f3}	M_{2b}
A	1	0	0
В	1	1	-1

Weakly interacting regime

→B: Spin-exchange process, cannot be described by the FSS model

[J.-L. Li, T. Secker, P. M. A. Mestrom, S. J. J. M. F. Kokkelmans, Phys. Rev. Research. 4, 023103 (2022)]

[Z. Shotan, O. Machtey, S. Kokkelmans, and L. Khaykovich, Phys. Rev. Lett. 113, 053202 (2014)]

Li-7 – Three-body recombination

Li-7 – Three-body recombination

Multichannel nature of the lithium few-body puzzle

Three-body recombination

N. Gross, et al., C. R. Phys. 12, 4 (2011)

TU/e

Three-body recombination

	a	$r_{ m vdW}$
	\mathbf{FSS}	Experiment
$ 1,1\rangle$	-39.4	-8.43(49)
1,0 angle	-34.4	-8.13(34)

TU/e

Three-body recombination

$\begin{array}{c|ccccc} & & a_{-}/r_{\rm vdW} \\ & {\rm FSS} & {\rm FMS} & {\rm Experiment} \\ \hline |1,1\rangle & -39.4 & -9.4 & -8.43(49) \\ |1,0\rangle & -34.4 & -12.7 & -8.13(34) \end{array}$

Multichannel nature of the lithium few-body puzzle

Li-7 Three-body parameter

[J. van de Kraats, D. J. M. Ahmed-Braun, J. -L. Li, S. J. J. M. F. Kokkelmans, arXiv:2309.13128]

Li-7 Three-body parameter

Main challenge: non-trivial convergence with maximum partial wave and thirdparticle momentum:

Significant numerical effort required

_										
1,1>	$a_{-}/r_{ m vdW}$		η_{-}			$a_{-}/r_{ m vdW}$		η_{-}		
	l_{\max}	FSS	FMS	FSS	\mathbf{FMS}	l_{\max}	FSS	FMS	FSS	FMS
	4*	-40.4	-15.6	0.76	0.32	4	-19.6	-17.6	0.43	0.34
	6^{*}	-46.5	-11.1	0.78	0.38	6	-35.6	-15.1	0.48	0.38
	8*	-43.1	-10.1	0.71	0.32	8	-30.5	-14.2	0.62	0.38
	10^{*}	-39.4	-9.39	0.68	0.29	8*	-36.3	-12.7	0.78	0.38
	12^*	-41.1	-8.79	0.66	0.27	10	-31.3	-13.7	0.57	0.41
	10	-33.1	-11.2	0.64	0.36					
	12	-33.3	-10.8	0.65	0.36	Results with	* have q_{max}	$r_{\rm vdW} = 40, $	otherwise	$q_{\rm max}r_{\rm vdW}=2$

Results show importance of multichannel physics in the lithium few-body puzzle

Analysis partial recombination rates

Analysis partial recombination rates

In the |1,0> state we find a single dominant FMS channel

• Originates from closed-channel Feshbach resonance

Conclusions/outlook

Three-body recombination Li-7

Three-body physics in Lithium-7 is strongly influenced by multichannel effects

Strong coupling to specific three-body hyperfine channels, which have often been neglected in earlier studies

[J. van de Kraats, D. J. M. Ahmed-Braun, J. -L. Li, S. J. J. M. F. Kokkelmans, Emergent inflation of the Efimov spectrum under three-body spin-exchange interactions, arXiv:2309.13128]

Go back to simplified models, investigate approximations based on physical effects

The team!

Paul Mestrom Thomas Secker Silvia Musolino Denise Ahmed-Braun Jasper van de Kraats Jinglun Li Victor Colussi

e EHCI EOR EINDHOVEN HENDRIK

QUANTUM MATERIALS AND TECHNOLOGY EINDHOVEN

TU/e TU/e

CASIMIR INSTITUTE

CQT TU/e