Is the Hyperon Puzzle Still An Open Problem?

The solution requires a mechanism (or mechanisms) that could eventually provide the additional pressure at high densities needed to make the EoS stiffer and, therefore, M_{max} compatible with current observational limits.

Is it the solution unique?

- > Two-body YN & YY interactions
 - Chiral forces: YN from χ EFT predicts Λ s.p. potential more repulsive than those from meson exchange
 - YY vector meson repulsion: ϕ meson coupled only to hyperons yielding strong repulsion at high ρ
- Hyperonic Three Body Forces
 - BHF calculations with χ EFT NN, NNN, NY NNY forces by Weise et al., indicate the appearance of Λ in NS energetically unfavorable \longrightarrow NS are made only of nucleons?
 - Previous BHF calculations with χ EFT (NN, NNN, NNA) + meson-exchange (NY) showed that even if the concentration of Λ 's is strongly reduced they are still present in the interior of a 2M NS
 - Only ANN is usually considered but what about ΣNN , ΞNN , YYN & YYY?
- > Quark Matter Core: Phase transition to deconfined QM at densities lower than hyperon threshold
- Which astrophysical observables could in an unambiguous way tell us whether hyperons are or are not definitely present in NSs?: GW post-merger signal, Cooling,