

AUSTRIAN

ACADEMY OF SCIENCES

E57 Kaonic Deuterium at J-PARC

J. Zmeskal

WWW.OEAW.AC.AT/SMI

ROCKSTAR, ECT* Oct.11, 2023

Motivation to study hadronic atoms

- □ exotic hadronic atoms are bound by Coulomb force QED
- **D** e.g. $\pi^+\pi^-$, π^-p , π^-d , **K**⁻**p**, **K**⁻**d**, ...
- Bohr radii > as the typical scale of strong interaction, but due to the larger kaon mass
 - observable effects of QCD
 - energy shift from pure Coulomb value
 - decay width
 - > access to scattering at zero energy
- these scattering lengths are sensitive to chiral and isospin symmetry breaking in QCD
- □ can be analysed systematically in the framework of low-energy Effective Field Theory

AUSTRIAN ACADEMY OF SCIENCES

Kaonic Hydrogen results

A Cieply *et al.* 2016 *Nucl. Phys. A* **954** 17-40.

Experimental challenges towards K⁻d

- X-ray yield: K⁻p ~ 1 %
 K⁻d ~ 0.1 %
- 1s state width: K⁻p ~ 540 eV
 K⁻d ~ 800 1000 eV

BG sources: asynchronous BG \rightarrow timing synchronous BG \rightarrow spatial correlation AUSTRIAN ACADEMY OF SCIENCES

Goal of E57 - Kaonic Deuterium

Kaonic deuterium

measurement

Why an additional measurement at J-PARC?

- □ to validate the SIDDHARTA-2 result
- □ different systematic corrections
- □ advanced background suppression
 - fiducial cut method
 - strongly reduced kaonic X-ray lines (carbon, nitrogen, oxygen, ..)
 - possible coincidence with kaonic deuterium L-lines

Japan Proton Accelerator Research Complex - J-PARC

CDH...cylindrical detector hodoscope CDC...cylindrical drift chamber

ROCKSTAR, ECT* Oct.11, 2023

Solenoid

CDH

AUSTRIAN ACADEMY OF SCIENCES

J-PARC E57 K⁻d setup

2-stage closed cycle cryo-cooler

16-channel amplifier boards

Analogue signal and HV-LV cables –

Ultra-pure aluminium cooling lines -

Line driver boards –

Cryo target + SDD detector –

AUSTRIAN

K1.8BR area as of Jan. 16, 2019

15

E57 pilot run geometry

SDD performance & calibration

Typical calibration spectrum

- We installed 26 units
- 145 / 208 channels worked well
 - ~70% yield

- Energy calibration
 - In-beam condition
 - TiKa (4.5 keV) & ZrKa (15.7 keV)
 - Day by day
 - Peak position was stable during the experiment, even after recooling for the Apr. run.
- Energy resolution
 - < 200 eV FWHM @ 6 keV

Fiducial cut method and charged particle VETO with CDC

Vertex defined by using a min.-DCA (distance of closest approach) CDC to BPC tracks XY on BPC track, Z on CDC track

T. Hashimoto

SCIENCES

Vertex image (BPC&CDC)

-130<Z<-70

70<Z<130

ROCKSTAR, ECT* Oct.11, 2023

T. Hashimoto

AUSTRIAN ACADEMY OF SCIENCES

SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS

Kaonic Hydrogen

ROCKSTAR, ECT* Oct.11, 2023

Energy (keV)

Kaonic Hydrogen spectrum with 90-hour data taking

 $K\alpha$ events less than expected

ROCKSTAR, ECT* Oct.11, 2023

T. Hashimoto

CDS²

x 1.5

BLC2a.b

3 m

BLC1a,b

BHD

Possible options for upgrade

Remove D5 to increase number of inflight kaons

- shorter beam line (still long...) x 1.5
- better beam focus x 1.5
- Larger target to increase stopping efficiency
 - add more SDDs x 1.5
- Shielding of SDDs
- SDD inside the hydrogen gas target (similar to KpX at KEK)
 - no losses in the cell wall (now ~80% transmittance) x 1.2
 - to avoid kaonic kapton lines
 - possibility to measure 2p state
- > Higher primary beam intensity $50kW \rightarrow 80kW$?

S3

D3

D5

08

•D4

Temperature: 135K

- empty target measurement
- filled with Ar @ 0.4 bar
- filled with D2 @ 0.4 bar
- filled with D2+H2 @ 1.0 bar

414

Active target prototype

AUSTRIAN ACADEMY OF SCIENCES

Active target prototype

Conclusion

First test beam time has shown that improvements are necessary:

- shorter beam line and better beam focus
- active target
- additional SDDs

MC and design studies to shorten the beam line are finished
 Active target studies are ongoing

Possible time line for E57: Test beam time end of FY 2024 Kaonic deuterium run FY2025

Thanks

Work supported by the Austrian Science Fund FWF Project 33037-N