Hyper(nuclear) #EFT at next-to-leading order: status and perspectives

Martin Schäfer

Nuclear Physics Institute, Czech Academy of Sciences, Řež, Czech Republic

ECT* workshop ROCKSTAR: Towards a ROadmap of the Crucial measurements of Key observables in Strangeness reactions for neutron sTARs equation of state

10th October 2023

Hypernuclei

Interactions of hadrons :

currently described by QCD

At low and intermediate energies ...

QCD is notoriously difficult to solve in this energy regime !
 → lattice QCD and effective field theories (EFTs)

 $\begin{array}{ccc} \text{Observed properties} & \text{Precise few-body} & \text{Underlying interaction} \\ \text{of few-body hadronic} & \longleftrightarrow & \text{methods} & \longleftrightarrow & \text{models} \\ & \text{systems} & \end{array}$

Experiment & Theory

Momentum scales

 $M_{\rm hi}$... momentum scale of underlying theory

 \rightarrow interest in processes at typical momentum Q comparable to lower momentum scale

$$Q pprox M_{
m lo} << M_{
m hi}$$

Effective Field Theory :

- ullet focus on the low-momentum $M_{
 m lo}$ region in more general case
- most general effective Lagrangian, while keeping the symmetries of the underlying theory
- high-momentum $M_{\rm hi}$ degrees of freedom integrated out
- systematic expansion of an interaction in $(M_{
 m lo}/M_{
 m hi})$
- power counting

Nuclear #EFT

Scales :

 \rightarrow no pionic degrees of freedom

- breakup scale $M_{
 m hi}=m_\pi$
- rough typical momentum estimates :

$$egin{aligned} Q(^4\mathrm{He}) &pprox \sqrt{2M_NB(^4\mathrm{He})/4} &pprox 115 \ \mathrm{MeV} \longrightarrow rac{Q}{M_{hi}} &pprox 0.8 < 1 \ Q(^3\mathrm{H}) &pprox \sqrt{2M_NB(^3\mathrm{H})/3} &pprox 72 \ \mathrm{MeV} \longrightarrow rac{Q}{M_{hi}} &pprox 0.5 < 1 \end{aligned}$$

Hypernuclear #EFT

- Λ is weakly bound to the nuclear core (small typical exchange momentum Q)
- long distance forces $\rightarrow 2\pi$ exchange $(M_{\rm hi}=2m_\pipprox280~{
 m MeV})$

$$rac{Q}{M_{hi}}pprox rac{\sqrt{2M_{\Lambda}B_{\Lambda}}}{2m_{\pi}}pprox 0.3 < 1$$

Not allowed Allowed

6

(Hyper)nuclear #EFT at LO

Hamiltonian :

 $H_{\rm M}^{\rm (LO)} = T_{\rm k} + V_2 + V_3$

$$\begin{split} V_2 &= \sum_{I,S} C_{\lambda}^{I,S} \sum_{i < j} \mathcal{P}_{ij}^{I,S} \delta_{\lambda}(\mathsf{r}_{ij}) \\ V_3 &= \sum_{I,S,\alpha} D_{\lambda,\alpha}^{I,S} \sum_{i < j < k} \mathcal{Q}_{ijk}^{I,S,\alpha} \sum_{\text{cyc}} \delta_{\lambda}(\mathsf{r}_{ij}) \delta_{\lambda}(\mathsf{r}_{jk}) \end{split}$$

(Hyper)nuclear *[#]*EFT at LO

		A=2	A=3	A=4	A=5	A=6
N N $C_1 \rightarrow \begin{cases} S = 0 \\ S = 0 \end{cases}$	N N N (S = 1/2	$a_{NN}(^1S_0)$	$^{3}\mathrm{H}$	$^{4}\mathrm{He}$		
$C_2 \rightarrow \begin{cases} I = 1 \\ S = 1 \\ I = 0 \end{cases}$	$D_1 \rightarrow \begin{cases} J = 1/2 \\ I = 1/2 \end{cases}$	$a_{NN}({}^{3}S_{1})/{}^{2}\mathrm{H}(1^{+})$				
$ \begin{array}{c} N \\ C_3 \rightarrow \begin{cases} S = 0 \\ l = 1/2 \\ S = 1 \end{array} $	$ \begin{array}{c} N \Lambda N D_2 \rightarrow \begin{cases} S = 1/2 \\ I = 0 \end{cases} \\ D_3 \rightarrow \begin{cases} S = 3/2 \\ I = 0 \end{cases} $	$a_{N\Lambda}(^1S_0)$	³ H ∧311*	⁴ ΛH	$^{5}_{\Lambda}\mathrm{He}$	
$\land C_4 \rightarrow \begin{cases} I = 1/2 \end{cases}$	$\left \right\rangle = D_4 \rightarrow \begin{cases} S = 1/2 \\ I = 1 \end{cases}$	$a_{N\Lambda}({}^{3}S_{1})$	$^{\rm A}_{\rm A}{ m H}^*$	$^{+}_{\Lambda}H^{*}$		
$\bigwedge^{\Lambda} \bigwedge^{\Lambda} (s = 0)$	$\bigwedge N \bigwedge $ $(S = 1/2)$		Λnn			
$C_5 \rightarrow \begin{cases} 3-0\\ l=0 \end{cases}$	$D_5 \rightarrow \begin{cases} I = 1/2 \end{cases}$	$a_{\Lambda\Lambda}(^1S_0)$	$\Lambda\Lambda n$	$^{4}_{\Lambda\Lambda}$ H	$^{5}_{\Lambda\Lambda}{\rm H}$	$^{6}_{\Lambda\Lambda}{\rm He}$
				1111111		

Hamiltonian :

 $H_{\lambda}^{(\mathrm{LO})}=~T_{\mathrm{k}}+V_{2}+V_{3}$

$$V_{2} = \sum_{I,S} C_{\lambda}^{I,S} \sum_{i < j} \mathcal{P}_{ij}^{I,S} \delta_{\lambda}(\mathbf{r}_{ij})$$
$$V_{3} = \sum_{I,S,\alpha} D_{\lambda,\alpha}^{I,S} \sum_{i < j < k} \mathcal{Q}_{ijk}^{I,S,\alpha} \sum_{cyc} \delta_{\lambda}(\mathbf{r}_{ij}) \delta_{\lambda}(\mathbf{r}_{jk})$$

Regularization and renormalization

Regularization :

For singular interaction the solution of the Schrödinger equation requires regularization.

 \rightarrow regulator function smears the $\delta\text{-function}$ over λ^{-1}

6

$$\delta_{\lambda}(r_{ij}) = \frac{\lambda^3}{8\pi^{3/2}} \exp\left(-\lambda^2 r^2/4\right)$$

 \rightarrow all low-energy constants (LECs) gain specific λ dependencies C(λ), D(λ), ...

ightarrow all observables are independent of arbitrary λ value (renormalization)

Truncation of the EFT at the selected order :

 \rightarrow for $\Lambda >> M_{hi}$ observables acquire residual cutoff dependence $\mathcal{O}(Q/\lambda)$

 \rightarrow truncation of the Lagrangian at the given order induces relative error of $\mathcal{O}({\it Q}/{\it M_{\rm hi}})$

The onset of $\Lambda\Lambda$ hypernuclear binding

(L. Contessi, M. Schäfer, N. Barnea, A. Gal, and J. Mareš, Phys. Lett. B 797, 134893 (2019))

10

Hierarchy of interaction terms - power counting

$$LO \qquad \bigwedge \qquad \sum_{i=1}^{N} C_0^{(0)} \delta(\mathbf{r}_{12}), D_0^{(0)} \delta(\mathbf{r}_{12}) \delta(\mathbf{r}_{23})$$

$$NLO \qquad \bigwedge \qquad \sum_{i=1}^{N} C_1^{(1)} \nabla_{\mathbf{r}_{12}}^2 \delta(\mathbf{r}_{12}), E_0^{(1)} \delta(\mathbf{r}_{12}) \delta(\mathbf{r}_{23}) \delta(\mathbf{r}_{34})$$

$$N^2 LO \qquad \bigwedge \qquad \sum_{i=1}^{N} \sum_{i=1}^{N} \dots C_2^{(2)} (\nabla_{\mathbf{r}_1} \cdot \nabla_{\mathbf{r}_2}) \delta(\mathbf{r}_{12}), \text{ more 3-body, higher-body}$$

∉EFT

Nuclear #EFT LO and NLO potential

Leading order potential (3 LECs) :

$$\begin{split} V_{\lambda}^{(\mathrm{LO})} &= \sum_{i < j} \left[C_{0}^{(0)}(\lambda) \mathcal{P}_{ij}^{I=1,S=0} + C_{1}^{(0)}(\lambda) \mathcal{P}_{ij}^{I=0,S=1} \right] e^{-\frac{\lambda^{2}}{4}r_{ij}^{2}} \\ &+ D_{0}^{(0)}(\lambda) \sum_{i < j < k} \mathcal{Q}_{ijk}^{I=1/2,S=1/2} \sum_{\mathrm{cyc}} e^{-\frac{\lambda^{2}}{4}(r_{ij}^{2} + r_{jk}^{2})} \end{split}$$

Next-to-leading order potential (6 LECs) :

$$\begin{split} V_{\lambda}^{(\mathrm{NLO})} &= \sum_{i < j} \left[C_{0}^{(1)}(\lambda) P_{ij}^{I=1,S=0} + C_{1}^{(1)}(\lambda) P_{ij}^{I=0,S=1} \right] e^{-\frac{\lambda^{2}}{4}r_{ij}^{2}} \\ &+ \sum_{i < j} \left[C_{2}^{(1)}(\lambda) P_{ij}^{I=1,S=0} + C_{3}^{(1)}(\lambda) P_{ij}^{I=0,S=1} \right] \left(e^{-\frac{\lambda^{2}}{4}r_{ij}^{2}} \overrightarrow{\nabla}_{ij}^{2} + \overleftarrow{\nabla}_{ij}^{2} e^{-\frac{\lambda^{2}}{4}r_{ij}^{2}} \right) \\ &+ D_{0}^{(1)}(\lambda) \sum_{i < j < k} \mathcal{Q}_{ijk}^{I=1/2,S=1/2} \sum_{\mathrm{cyc}} e^{-\frac{\lambda^{2}}{4}(r_{ij}^{2} + r_{jk}^{2})} \\ &+ E_{0}^{(1)}(\lambda) \sum_{i < j < k < l} \mathcal{Q}_{ijkl}^{I=0,S=0} e^{-\frac{\lambda^{2}}{4}(r_{ij}^{2} + r_{ik}^{2} + r_{jk}^{2} + r_{jk}^{2} + r_{kl}^{2})} \end{split}$$

#EFT

LO *[#]*EFT

(exp. constraints)

 $a_{NN}^{0}(a_{nn}^{0}) = -18.95(40)$ fm $a_{NN}^{1}(a_{np}^{1}) = 5.419(7) \text{ fm}$ $B(^{3}\text{H}) = 8.482 \text{ MeV}$

$$k \cot(\delta) = -\frac{1}{a} + \frac{1}{2}rk^2 + \dots$$

#EFT

NLO **#**EFT

Leading order (LO) :

(exp. constraints)

 $a_{NN}^{0} (a_{nn}^{0}) = -18.95(40) \text{ fm}$ $a_{NN}^{1} (a_{np}^{1}) = 5.419(7) \text{ fm}$ $B(^{3}\text{H}) = 8.842 \text{ MeV}$

Next-to-leading order (NLO) :

(exp. constraints)

 $\begin{array}{ll} r_{NN}^{0} \ (r_{nn}^{0}) = \ 2.75(11) \ {\rm fm} \\ r_{NN}^{1} \ (r_{np}^{1}) = \ 1.753(8) \ {\rm fm} \\ B(^{4}{\rm He}) = 28.296 \ {\rm MeV} \end{array}$

Nuclear #EFT up to NLO

Where we stand ?

 NLO #EFT using 6 experimental constraints (a, r) of NN(¹S₀) and NN(³S₁), B(³H), B(⁴He)

What we want to study ?

- behavior of #EFT predictions with increasing order (LO to NLO)
- comparison with experimental results

Test of the theory \longrightarrow predictions of few-body nuclear scattering

∉EFT

 $n+{}^{3}\mathrm{H}$ and $n+{}^{3}\mathrm{He}$ scattering (Phys. Rev. C 107 (2023) 064001)

16

#EFT

Experiment & Theory : $n + {}^{3}H$ and $n + {}^{3}He$ scattering lengths (Phys. Rev. C 107 (2023) 064001)

(Phys. Rev. C 42 (1990) 438; Phys. Rev. C 102 (2020) 034007; Few-Body Syst. 34 (2004) 105; Phys. Lett B 721 (2013) 355; Phys. Rev. C 68(R) (2003) 021002)

¢EFT

 $\textit{n} + {}^{4}\mathrm{He}$ scattering (Phys. Lett. B 844 (2023) 138078)

 $LO \rightarrow NLO$

#EFT

$\textit{n} + {}^{4}\mathrm{He}$ scattering (Phys. Lett. B 844 (2023) 138078)

For references to all theoretical results see (Phys. Lett. B 844 (2023) 138078).

,¢EFT

Hypernuclear $\not T EFT$ up to NLO (preliminary)

	1.0						
S	LO	LO		NLO			
	A=2	A=3	A=2	A=3	A=4		
0	$a_{NN}(^1S_0)$	$^{3}\mathrm{H}$	$r_{NN}(^1S_0)$	$^{3}\mathrm{H}$	$^{4}\mathrm{He}$		
	$a_{NN}({}^{3}S_{1})$		$r_{NN}(^3S_1)$				
-1	$a_{N\Lambda}(^1S_0)$	$^3_\Lambda {\rm H}$	$r_{N\Lambda}(^1S_0)$	$^3_{\Lambda}{ m H}$	$^4_{\Lambda}{ m H}$		
	$a_{N\Lambda}(^3S_1)$	$^3_\Lambda\mathrm{H}^*$	$r_{N\Lambda}(^3S_1)$	$^3_\Lambda\mathrm{H}^*$	$^4_{\Lambda}\mathrm{H}^*$		
		Λnn		Λnn			
-2	$a_{\Lambda\Lambda}(^1S_0)$	$\Lambda\Lambda\mathrm{n}$	$r_{\Lambda\Lambda}(^1S_0)$	$\Lambda\Lambda n$	$^{~4}_{\Lambda\Lambda}{\rm H}$		
	- ///(- 0)		,		$\Lambda\Lambda nn$		

,¢EFT

Hypernuclear #EFT up to NLO (preliminary)

S	LO	LO		NLO			
	A=2	A=3	A=2	A=3	A=4		
0	$a_{NN}(^1S_0)$	311	$r_{NN}(^1S_0)$	311	411-		
	$a_{NN}({}^{3}S_{1})$	Ч	$r_{NN}(^{3}S_{1})$	Ч	пе		
	(_/						
	$a_{N\Lambda}(^1S_0)$	$^3_{\Lambda}{ m H}$	$r_{N\Lambda}(^1S_0)$	$^3_{\Lambda}{ m H}$	$^4_{\Lambda}{ m H}$		
-1	$a_{N\Lambda}(^3S_1)$	$^3_{\Lambda}\mathrm{H}^*$	$r_{N\Lambda}(^3S_1)$	$^3_{\Lambda}\mathrm{H}^*$	$^4_{\Lambda}{ m H}^*$		
		Λnn		Λnn			
-2	$a_{\Lambda}(^{1}S_{0})$	$\Lambda\Lambda\mathrm{n}$	$r_{\rm AA}(^{1}S_{\rm o})$	$\Lambda\Lambda n$	$^{4}_{\Lambda\Lambda}\mathrm{H}$		
			·//(50)		$\Lambda\Lambda nn$		

Hypertriton channels (preliminary)

¢EFT

Hypertriton channels (preliminary)

Summary

Nuclear NLO #EFT

- no problem to fit all LECs (6 input data up to NLO)
- works very well in studies of $n^{-3}H$, $n^{-3}He$, $n^{-4}He$ scattering

∧-hypernuclear NLO #EFT

• difficulties in constraining all LECs (9 input data up to NLO)

- **(**) three-body S = 3/2, $I = 0 \land NN$ channel $\longrightarrow \land d$ femtoscopy ?
- ② three-body S = 1/2, I = 1 ∧*NN* channel \longrightarrow ∧*pp* femtoscopy ?

∧∧-hypernuclear NLO #EFT

• currently not enough data (5 input data required up to NLO)