The SIDDHARTA-2 experiment: present status and future perspectives

Florin Sirghi o behalf of SIDDHARTA-2 Collaboration

ZIONE KESSLER ROCKSTAR: Towards a ROadmap of the Crucial measurements of Key observables in Strangeness reactions for neutron sTARs equation of state

Trento, 9-13 October 2023

- $\Phi \to K^- K^+$ (48.9%)
- Monochromatic low-energy K⁻
 - (~127 MeV/c ; ∆p/p = 0.1%)
- Less hadronic background compared to hadron beam line

KAONIC ATOMS RESEARCH

KAONIC ATOMS RESEARCH

expectation

A new method to obtain a precise value of the mass of the charged kaon" Phys. Lett. B535 (2002) 52.

Kaonic nitrogen X-ray transition yields in a gaseous target Phys. Lett. B593 (2004) 48.

<u>Kaonic helium 4</u> - Phys. Lett. B 681 (2009) 310; NIM A628 (2011) 264, Phys. Lett. B 697 (2011) <u>Kaonic helium 3</u> – Phys. Lett. B 697 (2011) 199 <u>Yields - Phys. Lett. B714 (2012) 40; Nucl. Phys. A916 (2013) 30; EPJ A(2014) 50; Nucl. Phys. A954 (2016) 7</u>

Experimental determination of the isospin-dependent K-N scattering length

KAONIC DEUTERIUM KAONIC Helium KAONIC Neon

KAONIC Helium

Kaonic Helium - D Sirghi et al., J. Phys. G: Nucl. Part. Phys. 49 (2022) 055106 F. Sgaramella et al., Eur. Phys. J. A 59, 56 (2023) Yields - D.L. Sirghi et al., Nuclear Physics A 1029 (2023) 122567

new solutions for the cooling scheme - target and SDD
Better control of target parameters (pressure, temperature, density,....)

Target + SDD cooling

Leybold MD10 - 18 W @ 20 K target cell and SDDs are cooled via ultra pure aluminum bars $T_{TC} = 20-30 K$ $T_{SDD} \sim 130 K$

 ✓ Second stage dedicated to target cooling

✓ new solutions for the cooling scheme - target and SDD

✓ Better control of target parameters (pressure, temperature, density,....)

The ToF is different for Kaons, m(K)~ 500 MeV/c² go and light particles originating from beam-beam and beam-environment interaction (MIPs). Can efficiently discriminate by ToF Kaons and MIPs!

TDC a.u.

• 2 pairs of scintillator

640 x 130 x 10 mm³ Scionix EJ-200

• R10533 PMTs Hamamatsu

light-guides

VETO system adds - VETO3

- Al tube + µMetal (0.1mm)
- reflective and light proof foil
- optical cement

\checkmark Selected materials in different configuration:

vacuum entrance windows target walls cooling supports

would eliminate Nitrogen and Oxygen contamination

• Redesign and complete the bottom shielding near to IR

Degrader optimization for Kaonic Neon

-50 -40 -30 -20 -10

0 +10 +20 +30 +40 +50 mm

SIDDHARTA-2 Kaonic Neon (2023)

Optimization of SIDDHARTA-2 setup - results

Online monitoring tools for fast feedback

Rates

Reduce background and improve KAON/SDD ratio

Optimization of SIDDHARTA-2 setup - results

Online monitoring tools for fast feedback

Reduce background and improve KAON/SDD ratio

Optimization of SIDDHARTA-2 setup - results

Online monitoring tools for fast feedback

Reduce background and improve KAON/SDD ratio

Kaonic deuterium - Monte Carlo simulation

2023/2024 Monte Carlo for an integrated luminosity of 800 pb⁻¹ to perform the first measurement of the strong interaction induced energy shift and width of the kaonic deuterium ground state (similar precision as K-p) !

Kaonic deuterium run ongoing

Significant impact in the theory of strong interaction with strangeness

Kaonic deuterium shift and width

Future plans

proposal to perform fundamental physics at the strangeness frontier at $DA\Phi NE$ for a 3-years period (post-SIDDHARTA-2)

Kaonic Hydrogen: 200 pb⁻¹ - with SIDDHARTA2 setup - to get a precision < 10 eV (KH)

Selected light kaonic atoms (LHKA)

Selected intermediate and heavy kaonic atoms charting the periodic table (IMKA)

Ultra-High precision measurements of Kaonic Atoms (UHKA)

Dedicated runs with different types of detectors:

SDD 1mm, CZT detectors, HPGe, crystal HAPG spectrometer-VOXES project

C. Curceanu et al., arXiv:2104.06076 [nucl-ex](2021) C. Curceanu et al., Front. Phys. 11 (2023) EXtensive Kaonic Atoms research: from Lithium and Beryllium to URanium

antikaon

Nucleus

EXKALIBUR

Future plans

- Thicker detectors are produced by FBK with larger guard rings
- Samples of detector under test in Milano
- Same active area
- New Focusing electrodes added

SDD 1mm detector

... more details in talk of Francesco Artibani and Francesco Sgaramella

Future plans

Gantt chart possible implementation of the kaonic atoms measurements

	1 st year									2 nd year											3 rd year												
KH																																	
LHKA																																	
IMKA																																	
UHKA																																	

Preparation of the experiment Installation and commissioning Data taking

> Total integrated Luminosity: 200 + 400 (200) + 400 (200) + 400 pb-1

Fast, handy and significant physics measurements with very low costs and human efforts

Conclusions

The SIDDHARTA-2 NEON run (technical run)

First Kaonic deuterium run done - from May to July 2023 (optimized setup for about 110 pb⁻¹ integrated luminosity)

We are confident in machine performance, ready and very motivated to continue the SIDDHARTA-2 program

Second Kaonic deuterium run - ongoing

Future measurements - proposal EXKALIBUR we put forward several proposals for measurements with SIDDHARTA-2 setup and dedicated detectors systems for 200-300 pb⁻¹

