ROCK STAR: Towards a ROadmap of the Crucial measurements of Key observables in Strangeness reactions for neutron sTARs equation of state

The kaonic helium-4 measurement with SIDDHARTA-2 experiment

at DAΦNE accelerator

Diana Laura Sirghi

INFN-LNF

on behalf of SIDDHARTA-2 collaboration

9-13 October 2023 Trento

DAΦNE: low-momentum kaon beam

- e^+e^- at 510 MeV
- $\Phi (\sigma(e^+e^- \rightarrow \Phi) \sim 5 \mu b)$ resonance decays at 49.2 % in <u>K⁺ K⁻</u>
 - back-to-back pair
- Very low momentum (≈ 127 MeV) <u>K⁻ beam</u>
- Flux of produced kaons: about 1000/second

Best low momentum K⁻ factory in the world

Ideal beam to be stopped in the gaseous target and form, with high efficiency, kaonic atoms

Suitable for low-energy kaon physics: → Kaonic atoms (DEAR/ SIDDHARTA/ SIDDHARTA-2)

The scientific aim

SIDDHARTA-2 measures the X-ray transitions occurring in the cascade processes of kaonic atoms

Fundamental study of <u>strong interaction</u> between anti-K & nucleus at low energy limit

Importance of kaonic atoms studies

Atomic binding energies of light systems the keV range →tens of MeV in the low-energy scattering experiments

	$m ({\rm MeV}/c^2)$	$\mu ({\rm MeV}/c^2)$	B_{1s} (keV)	r_B (fm)	Accessible interaction	Kaonic atoms: the unique
ep	0.511	0.511	13.6×10^{-3}	53 000	Electroweak	opportunity to perform
μp	105.7	95.0	2.53	279	Electroweak	experiments equivalent to
πp	139.6	121.5	3 24	216	Electroweak + strong	experiments equivalent to
Кp	493.7	323.9	8.61	81	Electroweak + strong	scattering at vanishing
<u>p</u> p	938.3	469.1	12.5	58	Electroweak + strong	relative energies

Special role played by lightest Kaonic atoms

determination of the antikaon-nucleon/nucleus interaction at "threshold", without the need of extrapolation to zero relative energy.

Determined isospin dependent KN scattering lengths are key ingredients for all models and theories dealing with low-energy QCD in systems with strangeness

- Explicit and spontaneous chiral symmetry breaking (mass of nucleons)
- Dense baryonic matter structure
- Neutron (strange?) stars EOS

Kaonic Helium atoms

$$\boldsymbol{\varepsilon} = \boldsymbol{E}_{3d \to 2p} (\boldsymbol{exp}) - \boldsymbol{E}_{3d \to 2p} (\boldsymbol{e.m.})$$
The most suitable transition to observe the strong interaction effects
$$Most \text{ kaons are absorbed without radiative transition to 1s state.}$$

$$E(\boldsymbol{e.m.}) \approx -\frac{1}{2} \mu c^2 (Z\alpha)^2 \cdot \left[\frac{1}{n_i^2} - \frac{1}{n_f^2}\right]$$

$$\boldsymbol{\varepsilon} = E(\boldsymbol{exp}) - E(\boldsymbol{e.m.})$$

$$\boldsymbol{\varepsilon} < 0 \text{ (repulsive)}$$

$$\boldsymbol{\varepsilon} > 0 \text{ (attractive)}$$

K⁴He results by KEK PS E570

K⁴He results by SIDDHARTA

Kaonic 4-Helium

Kaonic 3-Helium

K⁴He results by E62 J-PARC

Liquid target for ^{3,4}He

KH results by SIDDHARTA

 $\varepsilon_{1S} = -283 \pm 36(\text{stat}) \pm 6(\text{syst}) \text{ eV}$ $\Gamma_{1S} = 541 \pm 89(\text{stat}) \pm 22(\text{syst}) \text{ eV}$

most reliable and precise measurement ever

Phys. Lett. B704 (2011), 113

SIDDHARTA-2 Scientific Goal

To perform the *first measurement ever of kaonic deuterium X-ray* transition to the ground state (1s-level) such as to determine its shift and width induced by the presence of the strong interaction.

Analysis of the combined measurements of kaonic deuterium and kaonic hydrogen

$$\varepsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\alpha^{3}\mu_{c}^{2}a_{K^{-}p}(1 - 2\alpha\mu_{c}(\ln\alpha - 1)a_{K^{-}p})$$

(μ_c reduced mass of the K⁻p system, α fine-structure constant)

U.-G. Meißner, U.Raha, A.Rusetsky, Eur. phys. J. C35 (2004) 349 next-to-leading order, including isospin breaking

$$a_{K^{-}p} = \frac{1}{2} [a_0 + a_1]$$

$$a_{K^{-}n} = a_1$$

completely solve Isospin-dependent K-N scattering length

SIDDHARTINO

SIDDHARTINO: pilot run of SIDDHARTA-2 1/6 of SIDDHARTA-2 performed during accelerator commissioning

Optimization of the machine background during the DAΦNE beams commissioning phase in preparation for the K-d run through the **measurement of K-⁴He 3d->2p transition**

- Detector tuning for SIDDHARTA-2:
 - SDDs
 - > Kaon Trigger
- Degrader (optimization of the kaons stopped in the target)
 - Concluded in 2021

Target

Cooling line

384 SDDs surround the target to detect the X-rays emitted by kaonic atoms

64 SDDs

SIDDHARTA-2 luminosity monitor

Kaon Trigger

SIDDHARTINO setup – ⁴He run

SIDDHARTINO cryogenic target: Target : ⁴He gas Working temperature : 25K Working pressure: 1 bar 1.5% of liquid helium density (LHeD) 0.66% of liquid helium density (LHeD)

SDD Calibration

Kaonic ⁴He 3d \rightarrow 2*p* measurement

Sum of all SDDs after individual calibration

Kaon Trigger

Trigger rejection factor

Degrader optimization

- to compensate assymetry in the kaon⁻ momentum distribution (50 mrad crossing angle of the beams)
- to optimize the numbers of the stopped kaons inside the target

SIDDHARTA-2 Monte Carlo simulation

SIDDHARTA-2 Monte Carlo simulation

KHe 1.5% LHeD

Efficiency of kaon stopped in the target

No of kaons (stopped in the target)

16,64%

No of triggered kaons

Best Degrader : 500 um

Monte Carlo simulation degrader curve for different degrader configurations

x rays / Mil Trigg / cm2

Degrader thickness optimization is fundamental to maximize the number of stopped kaons in the target

K stopped in the target: Z vs Y <u>position</u> (boost direction) dE in Kaon Monitor Top vs Y (boost direction)

SIDDHARTA-2 Kaonic Helium – degrader scan

1.5% LHeD; 275 SDDs; L_{α} line 6.4 keV

The degrader curve was used to verify the compatibility of the simulation data with the experimental data.

Degrader optimization: sensitivity to 100 microns over all material budget (about 4 mm materials of various densities)! a very delicate and fundamental operation (knowledge of material budget at 2.5 % level)

SIDDHARTINO The kaonic ⁴He 3d->2p (L_{α}) measurement

D Sirghi et al 2022 J. Phys. G: Nucl. Part. Phys. 49 055106

SIDDHARTINO The kaonic ⁴He yield measurement

D.L. Sirghi, et al. Nuclear Physics A 1029 (2023) 122567

SIDDHARTA apparatus

Target

commissiong of the SIDDHARTA-2 experiment: helium

 \rightarrow to crosscheck the performances of the experimental apparatus in its full version.

Veto-1

Measurements of high-n transitions in intermediate mass

SIDDHARTA-2

Measurements of high-n transitions in intermediate mass

The new kaonic atoms measurements:

- add valuable input to the kaonic atoms transitions data base, which is used as a reference for theories and models of the low-energy strong interaction between antikaon and nuclei
- pave the way for future dedicated kaonic atoms measurements through the whole periodic table and to a new era for the antikaon-nuclei studies at low energy

SIDDHARTA-2 Kaonic ⁴He – M-type transitions

Paper ready to be submitted to J. Phys. G: Nucl. Part. Phys.

SIDDHARTA-2 Kaonic ⁴He – M-type transitions

SIDDHARTA-2 Kaonic ⁴He yield

Outcomes

> The SIDDHARTINO experiment has successfully been concluded

during the commissioning phase of the collider in 2021.

SIDDHARTA-2 at **DAFNE**

- Installation of the full SIDDHARTA-2 setup
- Kaonic ⁴He test run concluded in July 2022

- ✓ Performed the most precise K-⁴He 3d → 2p measurement in gas
- ✓ Several solid target high-n transition energies measured for the first time
- ✓ <u>The first measurement of the M-series transitions energies and</u> <u>yields of the K-⁴He</u>

Outcomes

The SIDDHARTINO experiment sets the ground for the kaonic deuterium measurement with the SIDDHARTA-2 experiment, which starts the data acquisition campaign in 2022 and continuing in 2023 and 2024, for an overall integrated luminosity of 800 pb⁻¹.

Other types of kaonic atom measurements with various radiation detectors are presently under consideration, to be proposed and performed after the SIDDHARTA-2 run. (see talk of F. Sgaramella)

They could further contribute to a deeper understanding of the strong interaction in the low-energy regime in the strangeness sector, impacting particle and nuclear physics and also astrophysics.

SPARE

SDD energy calibration with ML and Differential Programming

The method can correct for miscalibration improving the systematic

Francesco Sgaramella

Kaonic Atoms with SIDDHARTA-2 at the DAFNE Collider

Francesco Sgaramella

Kaonic Atoms with SIDDHARTA-2 at the DAFNE Collider

Francesco Sgaramella

Kaonic Atoms with SIDDHARTA-2 at the DAFNE Collider

Degrader Curve

Silicon Drift Detectors

