# Application of SMS chiral interactions to light hypernuclei

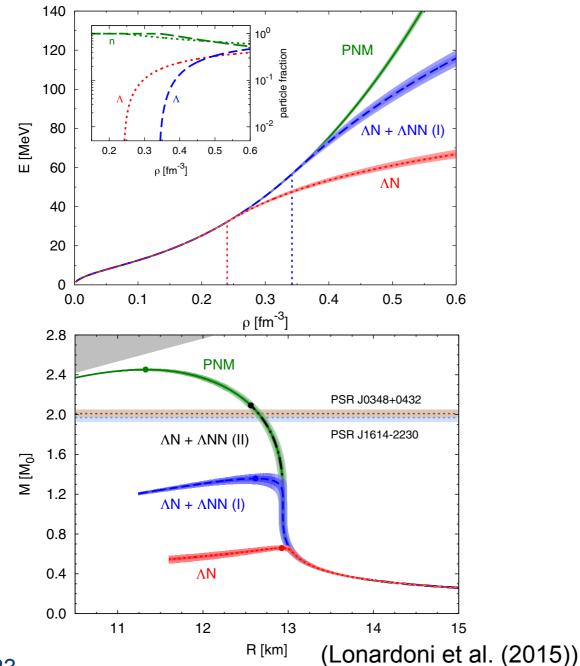




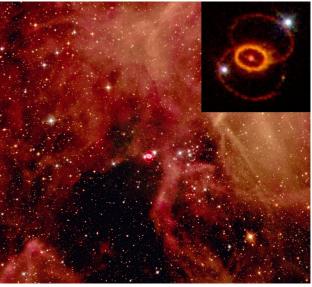
Andreas Nogga, Forschungszentrum Jülich ROCKSTAR Workshop, ECT\*, Trento, Italy

- Motivation
- New chiral YN interactions
- Theoretical uncertainties of  $\Lambda$ -separation energies
- Estimates of 3BF contributions for  ${}^3_{\Lambda}H$  ,  ${}^4_{\Lambda}H$  /  ${}^4_{\Lambda}He$  and  ${}^5_{\Lambda}He$
- CSB of the YN interaction
- Conclusions & Outlook

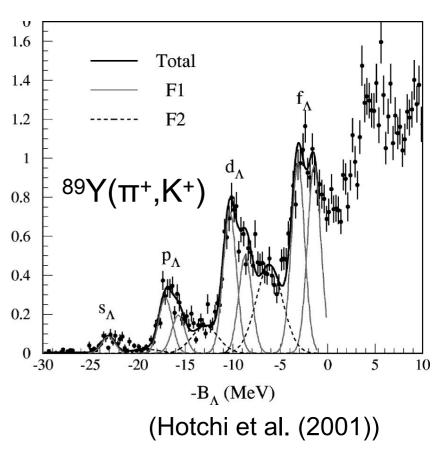
in collaboration with Hoai Le, Johann Haidenbauer and Ulf Meißner


Hoai Le et al. arXiv:2308.01756.

- J. Haidenbauer et al. EPJ A 59, 63 (2023).
- J. Haidenbauer et al. FBS 62, 105 (2021).


#### Hypernuclear interactions

#### Why is understanding hypernuclear interactions interesting?


- hyperon contribution to the EOS, neutron stars, supernovae
- "hyperon puzzle"
- Λ as probe to nuclear structure
- flavor dependence of baryon-baryon interactions







(SN1987a, Wikipedia)



#### Hypernuclei

# Only few YN data. Hypernuclear data provides additional constraints.

- AN interactions are generally weaker than the NN interaction
  - naively: core nucleus + hyperons
  - "separation energies" are quite independent from NN(+3N) interaction
- no Pauli blocking of Λ in nuclei
  - good to study nuclear structure
  - even light hypernuclei exist in several spin states
- *non-trivial constraints* on the YN interaction even from lightest ones
- size of YNN interactions?
   need to include Λ-Σ conversion!





(from Panda@FAIR web page)

+++0

= 140

140

40

40

44

#### Hypernuclei





- new data (J-PARC, Star, Alice, ...)
- world averages compiled by Mainz group (Eckert et al.)

| • • • • • •              | >                                                                                                                                                                                                                                                                                                                                                                       | 🖻 🥥 🤇                                                                                       |                                                           | 🔒 hypernu                                            | lei.kph.uni-mainz.de                                                                               |                                                              | ିଷ୍                                                                                                                                                  | 2                                                                                                                            |                                                                                                      | $( \downarrow )$ | ᠿ +  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------|------|
| 📴 Historischer …ergang . | Jülich 👩 25th Europeanan · (Indico) 🧑 Secon                                                                                                                                                                                                                                                                                                                             | d Majordico (Indico) 🛛 🌐 c                                                                  | ollaboration/events.shtm                                  | I ddclient mitbuntuu                                 | ers.de 🏼 😏 JSC Service Sta                                                                         | tus 🔵 Gasve                                                  | arbrauch 🗽 ResearchRabl                                                                                                                              | bit 🗎 FZJ 🗸 🗎 Bonn 🖌 🗎 Ohio                                                                                                  | 🗸 🗀 Lit 🖌 🗀 Data 🗸                                                                                   | 🗎 Banken 🗸       |      |
| C 🥑                      | ø 🤢 🖬                                                                                                                                                                                                                                                                                                                                                                   | ) )                                                                                         | ኃ 🗧                                                       | 6                                                    | G RB                                                                                               | GSI                                                          | 9                                                                                                                                                    | @ <u>E</u> s                                                                                                                 | s 🔇                                                                                                  | ×                | 🛟 Ch |
|                          | CHART OF HYPERNU                                                                                                                                                                                                                                                                                                                                                        | JCLIDES – Hype                                                                              | nuclear Structure and Decay Data JG U STRONG              |                                                      |                                                                                                    |                                                              |                                                                                                                                                      |                                                                                                                              |                                                                                                      |                  |      |
|                          |                                                                                                                                                                                                                                                                                                                                                                         | A14 A14 A                                                                                   | <sup>3</sup> AHydrogen                                    |                                                      |                                                                                                    |                                                              | A. A binding energy + − < > ↓                                                                                                                        |                                                                                                                              |                                                                                                      |                  |      |
|                          | 6                                                                                                                                                                                                                                                                                                                                                                       | <sup>12</sup> <sub>A</sub> C <sup>13</sup> <sub>A</sub> C <sup>14</sup> <sub>A</sub> C      | Non-strange                                               | core: <sup>2</sup> H                                 |                                                                                                    |                                                              | <sup>3</sup> <sub>Λ</sub> H: Λ binding er                                                                                                            | hergy + -                                                                                                                    |                                                                                                      |                  |      |
|                          | 5 <sup>9</sup> <sub>A</sub> B <sup>10</sup> <sub>A</sub> B                                                                                                                                                                                                                                                                                                              | <sup>11</sup> <sub>A</sub> B <sup>12</sup> <sub>A</sub> B                                   | - mass: mo                                                | GS = 1875.613 MeV/c <sup>2</sup>                     |                                                                                                    |                                                              | 6                                                                                                                                                    |                                                                                                                              |                                                                                                      |                  |      |
|                          |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                           | te spin/parity: 1 <sup>+</sup>                       |                                                                                                    |                                                              | our value                                                                                                                                            | e: 0.164 ± 0.043 MeV                                                                                                         |                                                                                                      |                  |      |
|                          | 4 <sup>7</sup> <sub>A</sub> Be <sup>8</sup> <sub>A</sub> Be <sup>9</sup> <sub>A</sub> Be                                                                                                                                                                                                                                                                                | <sup>10</sup> ∧Be                                                                           | Hyperon Cor                                               |                                                      |                                                                                                    |                                                              | 5-                                                                                                                                                   |                                                                                                                              | -                                                                                                    |                  |      |
|                          | 3 <sup>6</sup> Li <sup>7</sup> Li <sup>8</sup> Li                                                                                                                                                                                                                                                                                                                       | <sup>9</sup> ∧Li <sup>10</sup> Li                                                           | - mass: m                                                 | <sub>GS</sub> = 1115.683 MeV/c <sup>2</sup>          |                                                                                                    |                                                              | li'y [(MeV)']                                                                                                                                        | ALICE, 2023 (Heav                                                                                                            |                                                                                                      |                  |      |
|                          |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             | - mean life ti<br>- spin/parity                           | me: <i>t</i> = 263.1 ps<br>. <u>1</u> +              |                                                                                                    |                                                              | density                                                                                                                                              | → STAR, 2020 (Heav)<br>M. Juric, 1973 (Em                                                                                    |                                                                                                      |                  |      |
|                          | 2 <sup>4</sup> / <sub>A</sub> He <sup>5</sup> / <sub>A</sub> He <sup>7</sup> / <sub>A</sub> He                                                                                                                                                                                                                                                                          | ÅHe                                                                                         | - spin/panty                                              | 2                                                    |                                                                                                    |                                                              |                                                                                                                                                      | ← → G. Keyes, 1970 (B                                                                                                        |                                                                                                      |                  |      |
|                          | 1 <sup>3</sup> <sub>A</sub> H <sup>4</sup> <sub>A</sub> H <sup>6</sup> <sub>A</sub> H                                                                                                                                                                                                                                                                                   |                                                                                             |                                                           |                                                      |                                                                                                    |                                                              | -2-                                                                                                                                                  | K. Chaudhari, 196                                                                                                            |                                                                                                      |                  |      |
|                          | 0 <sup>2</sup> <sub>A</sub> n                                                                                                                                                                                                                                                                                                                                           | -                                                                                           |                                                           |                                                      |                                                                                                    |                                                              | 1                                                                                                                                                    | R. G. Ammar, 1962                                                                                                            |                                                                                                      |                  |      |
|                          | ↑ P                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             | Chart Legend -                                            |                                                      |                                                                                                    |                                                              |                                                                                                                                                      | Y. Prakash, 1961 (i                                                                                                          | nainz.de, 6.10.2023                                                                                  |                  |      |
|                          | $\rightarrow$ 1 2 3 4                                                                                                                                                                                                                                                                                                                                                   | 5 6 7                                                                                       | B e less than                                             |                                                      |                                                                                                    |                                                              | 0                                                                                                                                                    | 0.2 0.4 0.6 0.8<br><sup>3</sup> <sub>Λ</sub> H Λ binding energy [MeV]                                                        | 1.0                                                                                                  |                  |      |
|                          | Hyperon Content: A AA Σ                                                                                                                                                                                                                                                                                                                                                 | E Ā Summary                                                                                 | - at least 2                                              | 0 values                                             |                                                                                                    |                                                              |                                                                                                                                                      | N                                                                                                                            |                                                                                                      |                  |      |
|                          | 3.,                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                           |                                                      |                                                                                                    |                                                              |                                                                                                                                                      |                                                                                                                              |                                                                                                      |                  |      |
|                          | <sup>3</sup> H<br>∧ Ground State: ∧ Binding Er                                                                                                                                                                                                                                                                                                                          | nergy                                                                                       | our value: 0.164 ± 0.043 MeV                              |                                                      |                                                                                                    |                                                              |                                                                                                                                                      |                                                                                                                              |                                                                                                      |                  |      |
|                          |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             | Weight                                                    | $\chi^2$ , $\Sigma = 4.69$                           | Author                                                                                             | Year                                                         | Method                                                                                                                                               | Comment                                                                                                                      | More                                                                                                 |                  |      |
|                          | B <sub>A</sub> [MeV]                                                                                                                                                                                                                                                                                                                                                    |                                                                                             | weight                                                    | X, E 4.00                                            | Addior                                                                                             | real                                                         | method                                                                                                                                               |                                                                                                                              |                                                                                                      |                  |      |
|                          | $B_{\Lambda}$ [MeV]<br>$20.102 \pm 0.063$ (stat.) $\pm 0.067$                                                                                                                                                                                                                                                                                                           | 7 (syst.)                                                                                   | 0.21                                                      | 0.46                                                 | ALICE                                                                                              | 2023                                                         | Heavy Ion Coll.                                                                                                                                      | -                                                                                                                            | Info Ref.                                                                                            |                  |      |
|                          |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                           | <i>N</i> ·                                           |                                                                                                    |                                                              |                                                                                                                                                      | -<br>combined                                                                                                                | Info Ref.                                                                                            |                  |      |
|                          | <ul> <li>✓ 0.102 ± 0.063 (stat.) ± 0.067</li> </ul>                                                                                                                                                                                                                                                                                                                     | 0 (syst.)                                                                                   | 0.21                                                      | 0.46                                                 | ALICE                                                                                              | 2023                                                         | Heavy Ion Coll.                                                                                                                                      | -<br>combined<br>matter                                                                                                      |                                                                                                      |                  |      |
|                          | <ul> <li>☑ 0.102 ± 0.063 (stat.) ± 0.067</li> <li>☑ 0.406 ± 0.120 (stat.) ± 0.110</li> </ul>                                                                                                                                                                                                                                                                            | 0 (syst.)<br>121 (syst.)                                                                    | 0.21<br>0.07                                              | 0.46                                                 | ALICE<br>J. Adam                                                                                   | 2023<br>2020                                                 | Heavy Ion Coll.<br>Heavy Ion Coll.                                                                                                                   |                                                                                                                              | Info Ref.                                                                                            |                  |      |
|                          | <ul> <li>✓ 0.102 ± 0.063 (stat.) ± 0.067</li> <li>✓ 0.406 ± 0.120 (stat.) ± 0.110</li> <li>□ 0.346 ± 0.130 (stat.) ± 0.1</li> </ul>                                                                                                                                                                                                                                     | 0 (syst.)<br>121 (syst.)                                                                    | 0.21<br>0.07<br>0                                         | 0.46<br>2.21<br>0                                    | ALICE<br>J. Adam<br>J. Adam                                                                        | 2023<br>2020<br>2020                                         | Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.                                                                                                | matter                                                                                                                       | Info Ref.                                                                                            |                  |      |
|                          | <ul> <li>0.102 ± 0.063 (stat.) ± 0.067</li> <li>0.406 ± 0.120 (stat.) ± 0.110</li> <li>0.346 ± 0.130 (stat.) ± 0.1</li> <li>0.696 ± 0.280 (stat.) ± 0.2</li> </ul>                                                                                                                                                                                                      | 0 (syst.)<br>121 (syst.)<br>261 (syst.)                                                     | 0.21<br>0.07<br>0<br>0                                    | 0.46<br>2.21<br>0<br>0                               | ALICE<br>J. Adam<br>J. Adam<br>J. Adam                                                             | 2023<br>2020<br>2020<br>2020                                 | Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.                                                                             | matter<br>antimatter                                                                                                         | info Ref.<br>info Ref.<br>info Ref.                                                                  |                  |      |
|                          | <ul> <li>0.102 ± 0.063 (stat.) ± 0.067</li> <li>0.406 ± 0.120 (stat.) ± 0.110</li> <li>0.346 ± 0.130 (stat.) ± 0.1</li> <li>0.696 ± 0.280 (stat.) ± 0.2</li> <li>-0.004 ± 0.400 (stat.)</li> </ul>                                                                                                                                                                      | 0 (syst.)<br>121 (syst.)<br>261 (syst.)                                                     | 0.21<br>0.07<br>0<br>0<br>0                               | 0.46<br>2.21<br>0<br>0                               | ALICE<br>J. Adam<br>J. Adam<br>J. Adam<br>S. Acharya                                               | 2023<br>2020<br>2020<br>2020<br>2020<br>2019                 | Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.                                                          | matter<br>antimatter<br>from lifetime measurem                                                                               | info Ref.<br>info Ref.<br>info Ref.<br>info Ref.                                                     |                  |      |
|                          | <ul> <li>✓ 0.102 ± 0.063 (stat.) ± 0.067</li> <li>✓ 0.406 ± 0.120 (stat.) ± 0.110</li> <li>○ 0.346 ± 0.130 (stat.) ± 0.1</li> <li>○ 0.696 ± 0.280 (stat.) ± 0.2</li> <li>○ - 0.004 ± 0.400 (stat.)</li> <li>○ 0.296 ± 1.000 (stat.) ± 3.000</li> </ul>                                                                                                                  | 0 (syst.)<br>121 (syst.)<br>261 (syst.)<br>0 (syst.)                                        | 0.21<br>0.07<br>0<br>0<br>0<br>0                          | 0.46<br>2.21<br>0<br>0<br>0<br>0                     | ALICE<br>J. Adam<br>J. Adam<br>J. Adam<br>S. Acharya<br>J. Adam                                    | 2023<br>2020<br>2020<br>2020<br>2019<br>2016                 | Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.                                                          | matter<br>antimatter<br>from lifetime measurem<br>from lifetime measurem                                                     | Info Ref.<br>Info Ref.<br>Info Ref.<br>Info Ref.<br>Info Ref.                                        |                  |      |
|                          | <ul> <li>✓ 0.102 ± 0.063 (stat.) ± 0.067</li> <li>✓ 0.406 ± 0.120 (stat.) ± 0.110</li> <li>○ 0.346 ± 0.130 (stat.) ± 0.1</li> <li>○ 0.696 ± 0.280 (stat.) ± 0.2</li> <li>○ - 0.004 ± 0.400 (stat.)</li> <li>○ 0.296 ± 1.000 (stat.) ± 3.000</li> <li>○ - 6.104 ± 1.200 (stat.)</li> </ul>                                                                               | 0 (syst.)<br>121 (syst.)<br>261 (syst.)<br>0 (syst.)                                        | 0.21<br>0.07<br>0<br>0<br>0<br>0<br>0                     | 0.46<br>2.21<br>0<br>0<br>0<br>0<br>0                | ALICE<br>J. Adam<br>J. Adam<br>J. Adam<br>S. Acharya<br>J. Adam<br>C. Rappold                      | 2023<br>2020<br>2020<br>2020<br>2019<br>2016<br>2013         | Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.                                       | matter<br>antimatter<br>from lifetime measurem<br>from lifetime measurem                                                     | Info Ref.<br>Info Ref.<br>Info Ref.<br>Info Ref.<br>Info Ref.<br>Info Ref.                           |                  |      |
|                          | <ul> <li>0.102 ± 0.063 (stat.) ± 0.067</li> <li>0.406 ± 0.120 (stat.) ± 0.110</li> <li>0.346 ± 0.130 (stat.) ± 0.1</li> <li>0.696 ± 0.280 (stat.) ± 0.2</li> <li>-0.004 ± 0.400 (stat.)</li> <li>0.296 ± 1.000 (stat.) ± 3.000</li> <li>-6.104 ± 1.200 (stat.)</li> <li>2.296 ± 1.000 (stat.) ± 2.000</li> </ul>                                                        | 0 (syst.)<br>121 (syst.)<br>261 (syst.)<br>0 (syst.)<br>0 (syst.)                           | 0.21<br>0.07<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0.46<br>2.21<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | ALICE<br>J. Adam<br>J. Adam<br>J. Adam<br>S. Acharya<br>J. Adam<br>C. Rappold<br>B. I. Abelev      | 2023<br>2020<br>2020<br>2019<br>2016<br>2013<br>2010         | Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.<br>Heavy Ion Coll.                    | matter<br>antimatter<br>from lifetime measurem<br>from lifetime measurem<br>from lifetime measurem                           | Info Ref.<br>Info Ref.<br>Info Ref.<br>Info Ref.<br>Info Ref.<br>Info Ref.                           |                  |      |
|                          | <ul> <li>0.102 ± 0.063 (stat.) ± 0.067</li> <li>0.406 ± 0.120 (stat.) ± 0.110</li> <li>0.346 ± 0.130 (stat.) ± 0.1</li> <li>0.696 ± 0.280 (stat.) ± 0.2</li> <li>-0.004 ± 0.400 (stat.) ± 0.2</li> <li>-0.004 ± 0.400 (stat.) ± 3.000</li> <li>-6.104 ± 1.200 (stat.) ± 3.000</li> <li>-6.104 ± 1.200 (stat.) ± 2.000</li> <li>0.296 ± 1.000 (stat.) ± 2.000</li> </ul> | 0 (syst.)<br>121 (syst.)<br>261 (syst.)<br>0 (syst.)<br>0 (syst.)<br>0 (syst.)<br>0 (syst.) | 0.21<br>0.07<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0.46<br>2.21<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | ALICE<br>J. Adam<br>J. Adam<br>S. Acharya<br>J. Adam<br>C. Rappold<br>B. I. Abelev<br>B. I. Abelev | 2023<br>2020<br>2020<br>2019<br>2016<br>2013<br>2010<br>2010 | Heavy Ion Coll.<br>Heavy Ion Coll. | matter<br>antimatter<br>from lifetime measurem<br>from lifetime measurem<br>from lifetime measurem<br>from lifetime measurem | Info Ref.<br>Info Ref.<br>Info Ref.<br>Info Ref.<br>Info Ref.<br>Info Ref.<br>Info Ref.<br>Info Ref. |                  |      |

### Hypernuclear interactions

We will use here chiral interactions, start with a brief summary of other approaches to the  $\Lambda N~(YN)$  interaction

Long history of  $\Lambda N$  interaction models

- early models (Downs, Iddings, Brown, Dalitz, before 1970)
- Nijmegen group (Nijm D, Nijm F, SC89, SC97 and ESC(ESC16), 1973-2016)
- Jülich model (Jülich 1994, Jülich 2004)
- RGM model of Fujiwara, fss2 (1995, 2002)

models have successfully used to understand binding mechanism

important role of  $\Lambda\!-\!\Sigma$  conversion

EFT based approaches

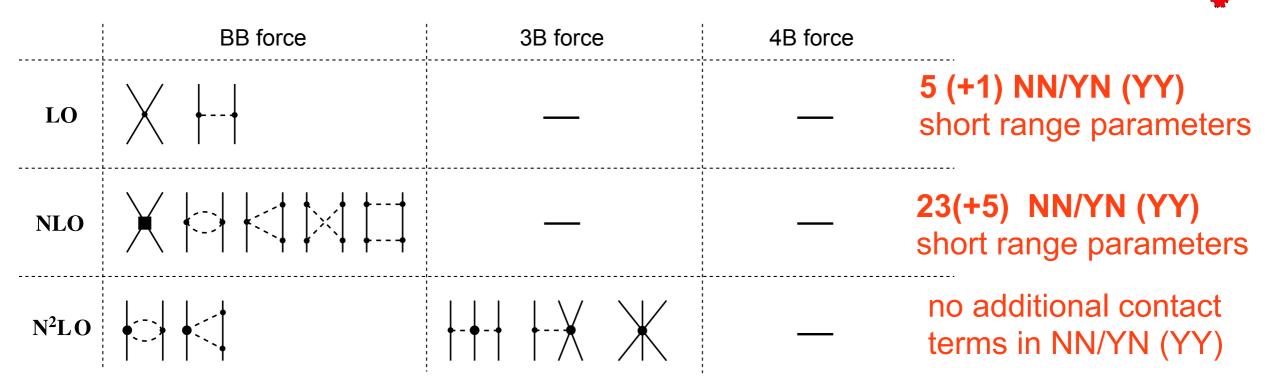
pionless (=Goldstone boson less) EFT

- application to  ${}^{3}_{\Lambda}$ H and  $\Lambda nn$  (Hammer 2002, Hildenbrand et al. 2019,2020)

- application to A = 3 - 5 hypernuclei (Contessi et al. PRL 2018)

interactions given by contact interactions, usually in leading order

only  $\Lambda$  explicitly considered


EFT requires **3BFs** in leading order (three additional parameters) expansion parameter

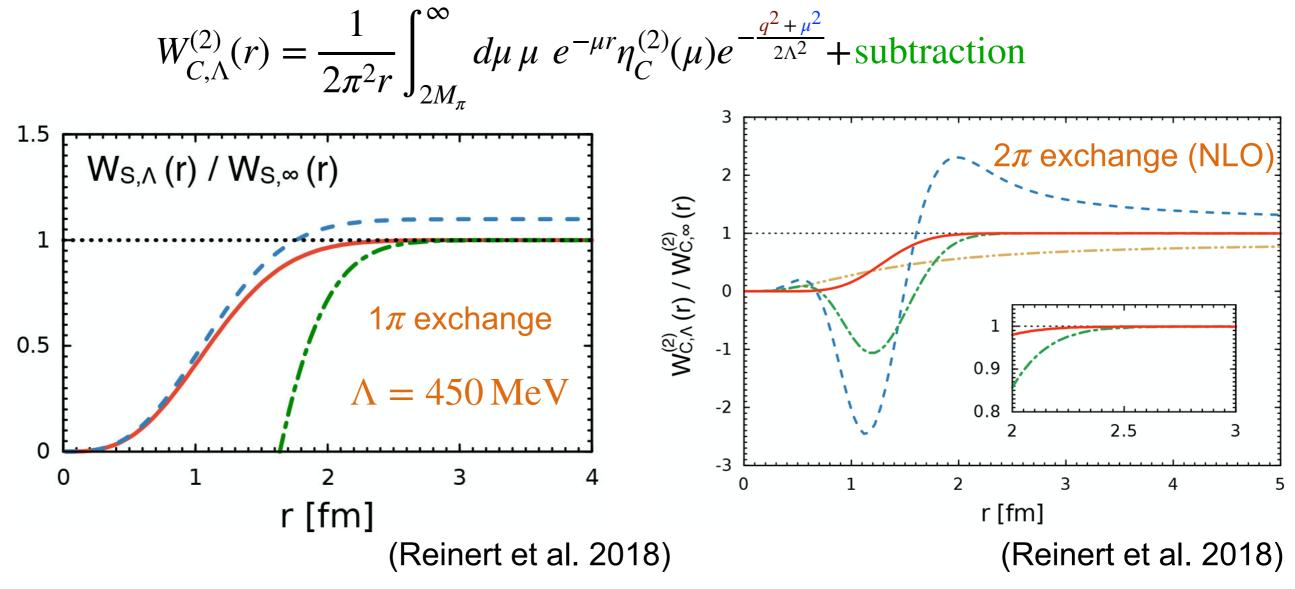


#### Chiral NN & YN interactions



#### EFT based approaches (cont')




Chiral EFT implements chiral symmetry of QCD (adapted from Epelbaum, 2008)

- perturbative expansion for the interaction
- non-perturbative solution of Schrödinger eq.
- symmetries constrain exchanges of Goldstone bosons
- relations of two- and three- and more-baryon interactions
- breakdown scale  $\, \approx \, 600 700 \, MeV$

Retain flexibility to adjust to data due to counter terms **Regulator required** — cutoff/different orders often used to estimate uncertainty **Λ-Σ conversion** is explicitly included (size of 3BFs expected to be N<sup>2</sup>LO) October 9th, 2023

#### Choice of regulator

- trad. regularized (Entem et al. 2005, Epelbaum 2001, Ordonez et al. 1994)
- spectral function (SFR) regularization (Epelbaum 2005)
- semilocal coordinate-space (SCS) regularization (Epelbaum et al. 2015)
- semilocal momentum-space (SMS) regularization (Reinert et al. 2018)

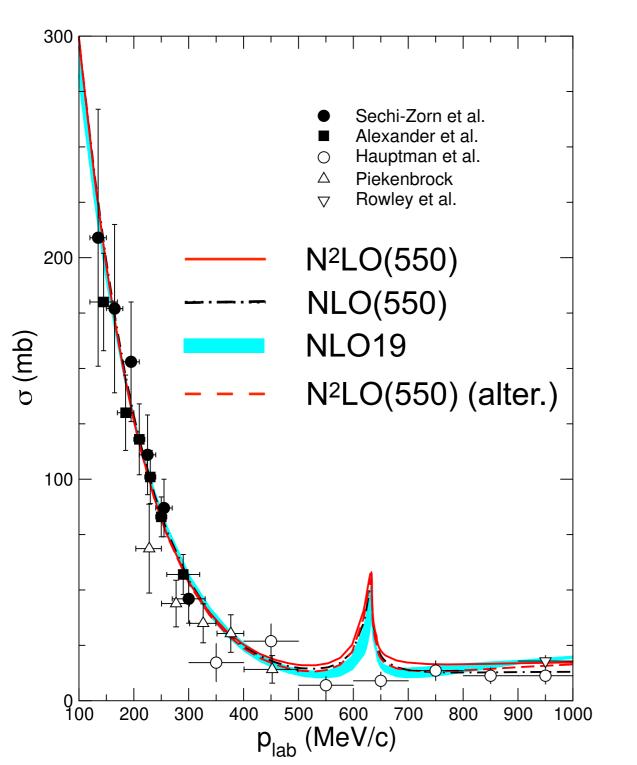


NLO13/NLO19 YN based on trad. reg.

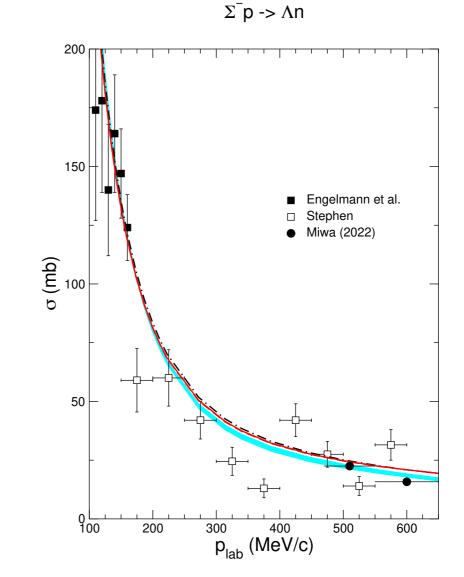
#### N<sup>2</sup>LO based on SMS (incl. subtractions)



JÜLICH Forschungszentrum


In order to check uncertainties realization in LO(700) NLO(500), NLO(550), NLO(600) and N<sup>2</sup>LO(500), N<sup>2</sup>LO(550), N<sup>2</sup>LO(600)

Details on fitting procedure using partly flavor-SU(3):


- flavor SU(3) is broken by using physical meson and baryon masses!
- retain only the 2π exchange from the 2 Goldstone boson exchanges
   should be absorbed in SU(3)-breaking counter terms
- use **36 data** at low energy to determine **s-wave counter** terms
- hypertriton is required to be bound (binding energy roughly correct)  $a_s(\Lambda p) = -2.8 \text{ fm}$  in NLO and N<sup>2</sup>LO
- include SU(3) breaking in LO counter terms (necessary to avoid bound states in YN)
- assume SU(3) symmetry for p-waves counter terms in NLO values for p-wave counter terms of NN
- fit to differential cross section in N<sup>2</sup>LO
  - two versions for N<sup>2</sup>LO(550) differ for differential cross sections none is clearly preferred

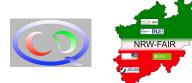
 $\Lambda p \rightarrow \Lambda p$ 

Selected results (show  $\Lambda = 550 \, MeV$ , others are very similar in quality)

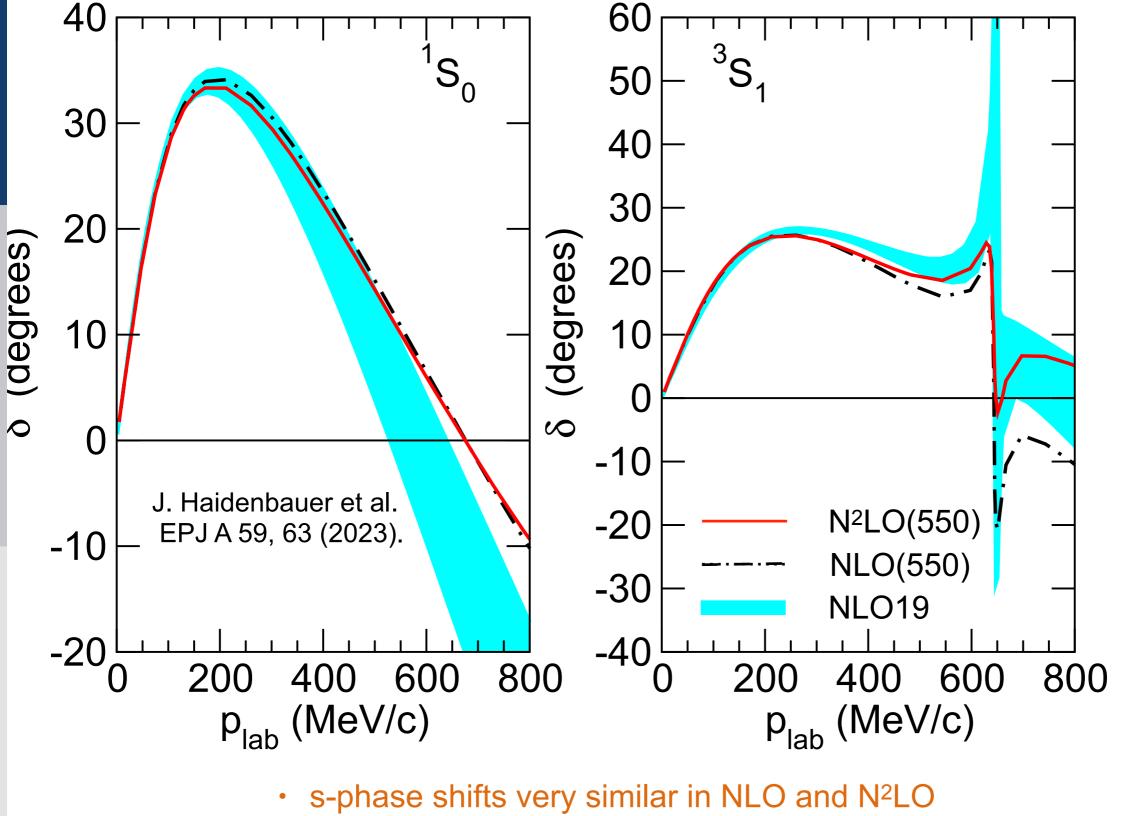


- most relevant cross sections very similar in NLO and N<sup>2</sup>LO
- similar to NLO19
- alternative fit (see later)



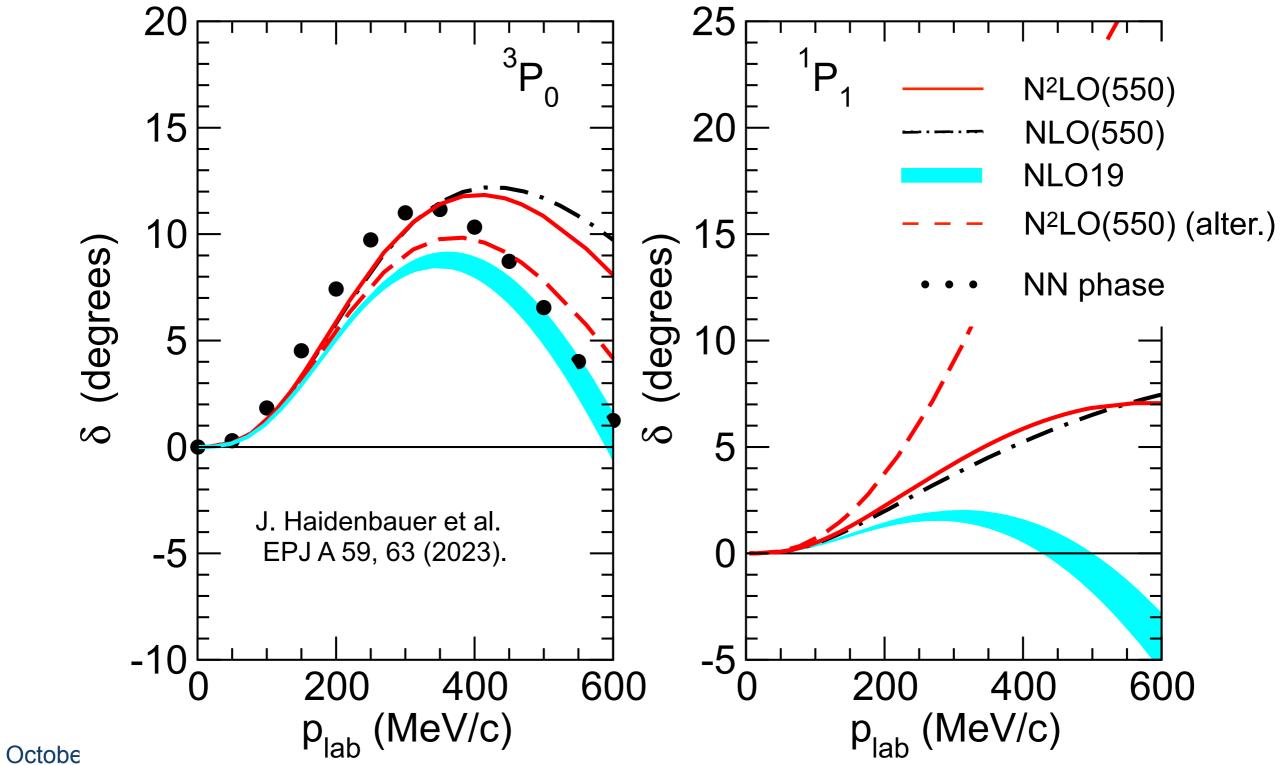

October 9th, 2023

J. Haidenbauer et al. EPJ A 59, 63 (2023).



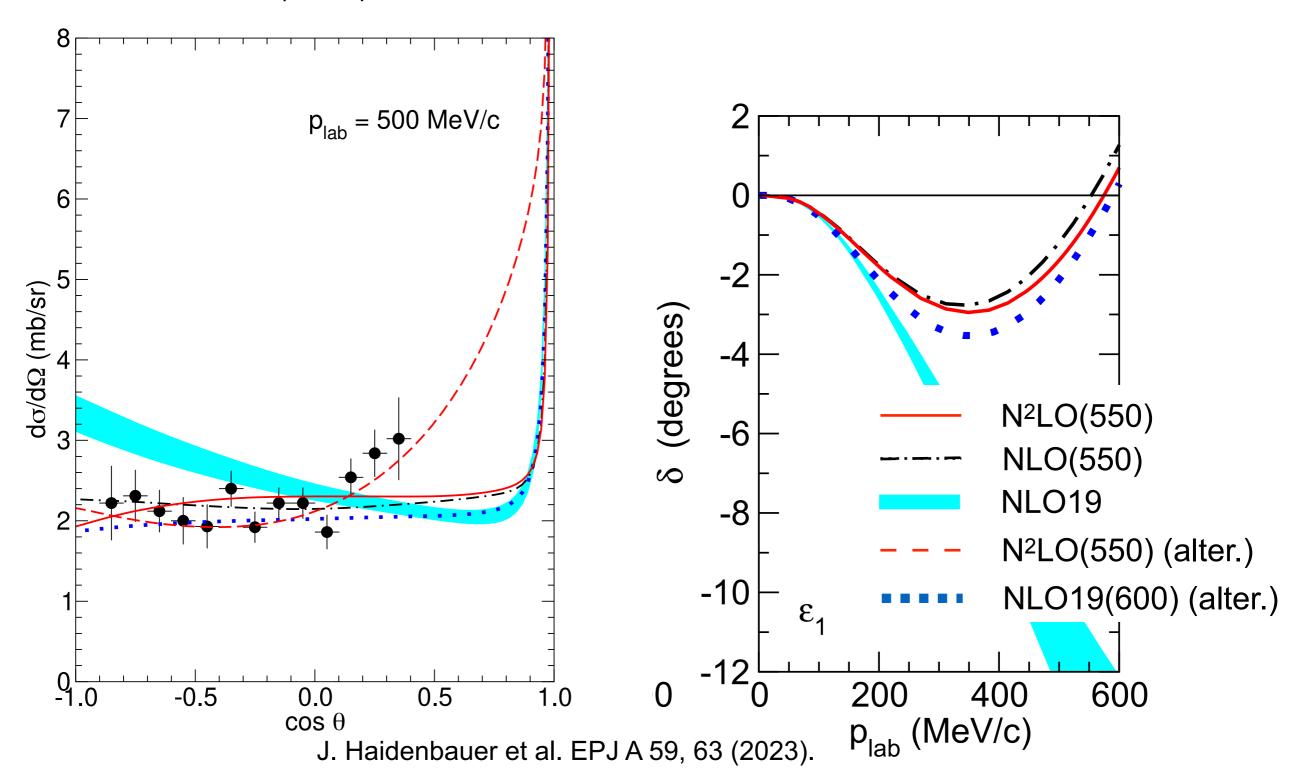





Selected phase shifts




similar to NLO19 although different tail at high momenta

 $\Sigma^+$ —*p* scattering can be strongly related to NN in <sup>3</sup>P<sub>0</sub>,<sup>3</sup>P<sub>1</sub>,<sup>3</sup>P<sub>2</sub> (at least in NLO) In <sup>1</sup>P<sub>1</sub>, in NLO, setting the counter term to zero is OK.



**ICH** 

new data (Miwa(2022)) at higher energies provides new constraints!



 $\Sigma^+ p \rightarrow \Sigma^+ p$ 





Notes on the current status of the SMS interactions

- so far no YNN forces (N<sup>2</sup>LO) have been used in A>2 calculations (see in a moment)
- p-waves are not uniquely determined more accurate hypernuclear calculations and/or additional differential observables (polarizations, more cross differential cross sections, ...)
- data from additional channels will be helpful ( $\Lambda p, \Sigma^- p \to \Sigma^0 n, \dots$ )
- calculation for single particle energies in nuclear matter yields results similar to NLO19

   dependence on order and cutoff indicates need to include YNN forces
- even ratio of spin singlet/spin triplet strength requires  ${}^3_\Lambda H$

Is assumption of negligible YNN force valid for this hypernucleus?

#### 

- 1. pin down dependence on NN force (motivated by recent work of Gazda et al 2022, Htun et al. 2021)
- 2. estimate N2LO contribution which quantifies the expected YNN force contribution

#### Uncertainty analysis to A = 3 to 5





Order N<sup>2</sup>LO requires combination of chiral NN, YN, 3N and YNN interaction

Need calculation of separation energies (use Faddeev, Yakubovsky eq. or J-NCSM) and use **different orders** for uncertainty estimate.

Assuming a negligible numerical uncertainty and the following ansatz for the order by order convergence

$$X_{K} = X_{ref} \sum_{k=0}^{K} c_{k} Q^{k} \quad \text{where} \quad Q = M_{\pi}^{eff} / \Lambda_{b} \quad (X_{ref} \text{ LO, exp., max, ...})$$

a Bayesian analysis of the uncertainty is possible (see Melendez et al. 2017,2019)

**Extracting**  $c_k$  for  $k \le K$  from calculations and assuming identical probability distributions for  $c_k$  for k > K the uncertainty is given by the distribution of

$$\delta X_K = X_{ref} \sum_{k=K+1}^{\infty} c_k Q^k$$

#### **Uncertainty analysis** to A = 3 to 5



How to obtain the distribution for  $c_k$ ?

EFT expectation:  $c_k$  are natural-sized, i.e. of order 1.

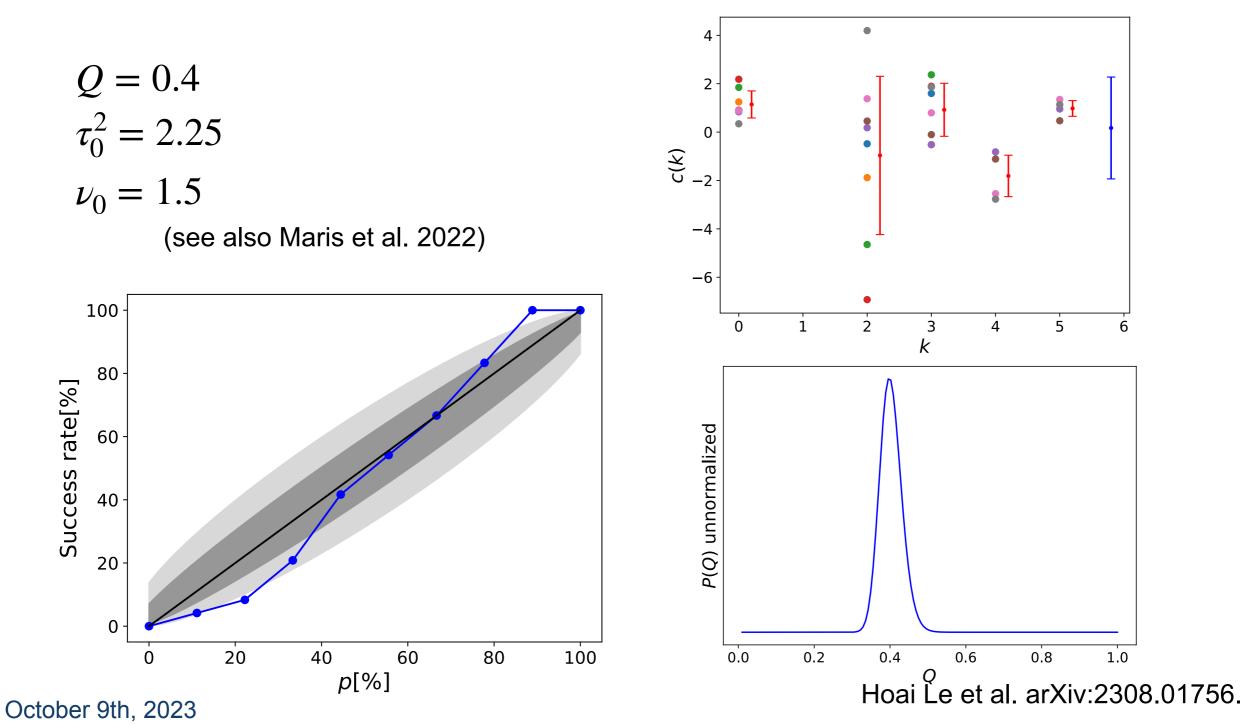
defines prior distribution (usually normal distribution with width  $\bar{c}$ )  $\bar{c}$  is distributed using an inverse- $\chi^2$  distribution (parameters  $\nu_0$ ,  $\tau_0$ )

For this choice, the posterior then follows the same distribution (conjugate prior) with shifted parameters given the data:

 $\nu = \nu_0 + n_c \quad \nu \tau^2 = \nu_0 \tau_0^2 + \vec{c}_k^2 \quad (\vec{c}_k^2 = \sum c_k^2 \text{ for } n_c \text{ values extracted})$ 



uncertainty follows so-called student *t* distribution (analytically known) allows to extract degree of believe intervals (DoB)

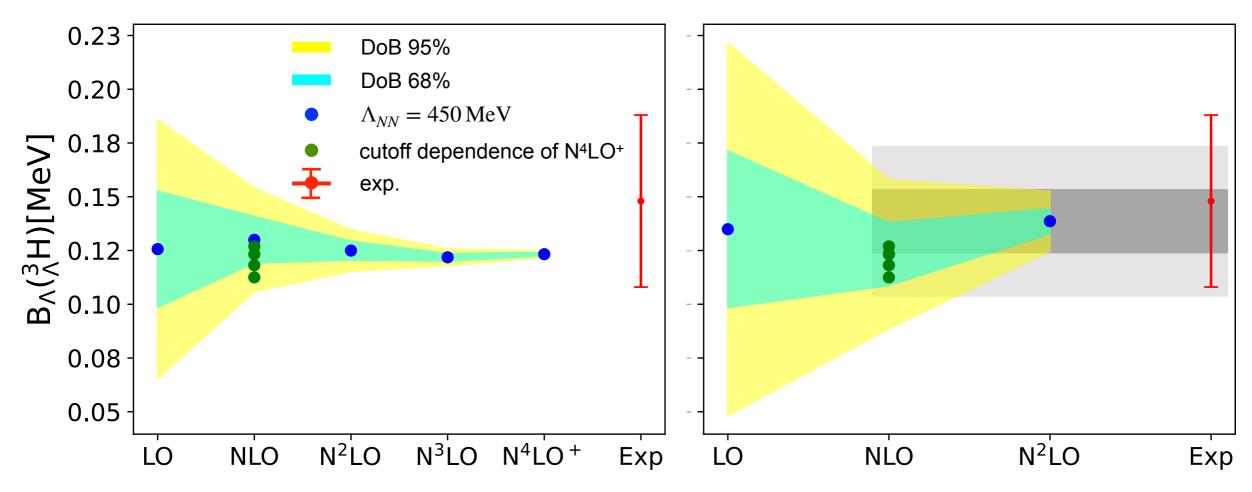

dependence on choice of prior will be less for large  $n_c$  !

### Uncertainty analysis to A = 3 to 5

• expansion parameter Q should be consistent with assumption of k independent distribution of  $c_k$ 

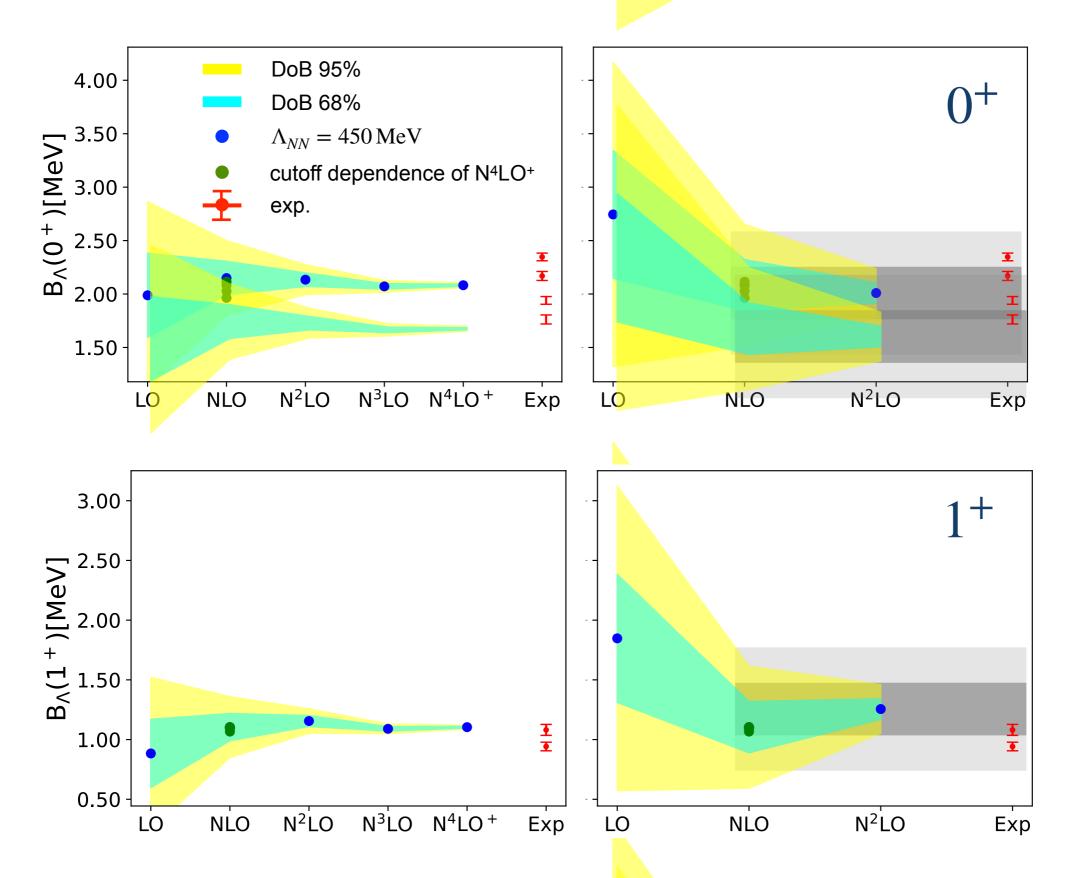


- distribution of of prior should be consistent with observed pattern for  $c_k$
- few orders used cannot entirely remove prior dependence




# Application to $^{3}_{\Lambda}H$

JÜLICH Forschungszentrum



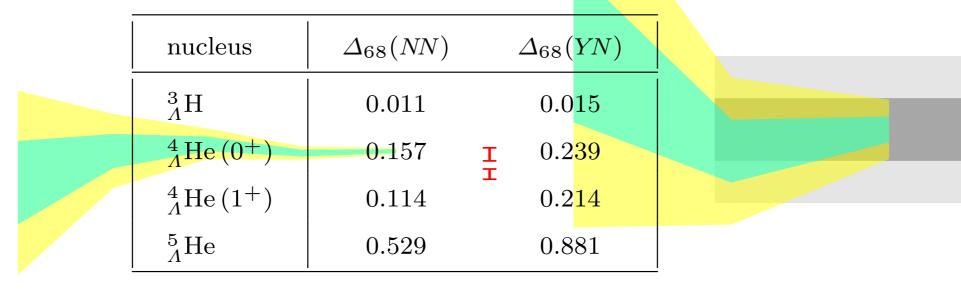

- Q,  $u_0$  and  $u_0$  are chosen using all available data (NN and YN convergence)
- uncertainties are extracted using  $c_k$  for NN or YN convergence
- use  $c_k$  of individual hypernuclei
  - individual uncertainties for NN and YN convergence for each separation energy consistent with experimental data cutoff dependence always at least NLO (YNN missing!)

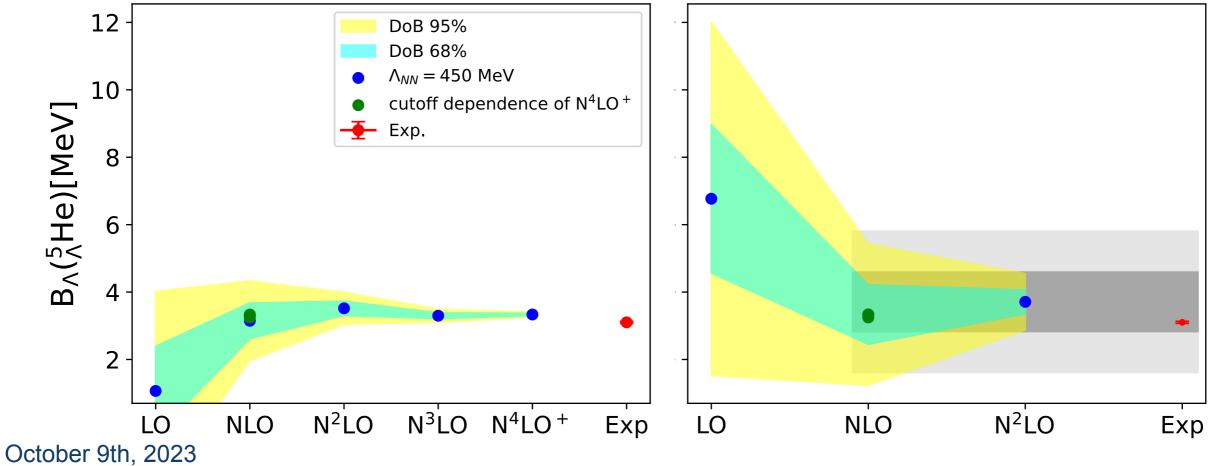


**Application to**  ${}^{4}_{\Lambda}$ He



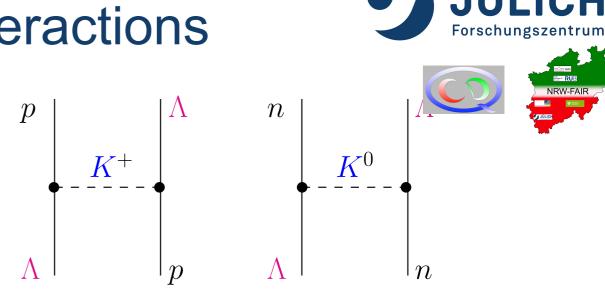




## Application to ${}^{5}_{\Lambda}$ He and summary


- without YNN: sizable uncertainties at A = 4 and 5
- A = 3 sufficiently accurate
- NN/YN dependence small at least for A = 3



Т








### CSB contributions to YN interactions

- formally leading contributions: Goldstone boson mass difference
  - very small due to the small relative difference of kaon masses



subleading but most important

- effective CSB  $\Lambda\Lambda\pi$  coupling constant (Dalitz, van Hippel, 1964)

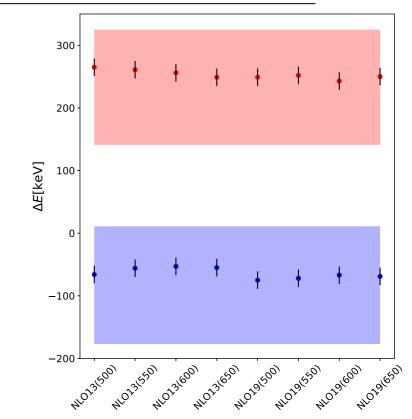
- so far less considered, but equally important
  - CSB contact interactions (for singlet and triplet)

#### Aim: use A=4 hypernuclei to determine the two unknown CSB LECs and predict Λn scattering

October 9th, 2023

Ν

#### Fit of contact interactions


- Adjust the two CSB contact interactions to one main scenario (CSB1)
- Size of LECs as expected by power counting

$$\frac{m_d - m_u}{m_u + m_d} \left(\frac{M_{\pi}}{\Lambda}\right)^2 C_{S,T} \approx 0.3 \cdot 0.04 \cdot 0.5 \cdot 10^4 \,\text{GeV} \propto 6 \cdot 10^{-3} \cdot 10^4 \,\text{GeV}$$

| Λ   | NLO13                  |                           | NLO19                  |                                                  |  |  |
|-----|------------------------|---------------------------|------------------------|--------------------------------------------------|--|--|
|     | $C_s^{CSB}$            | $C_t^{CSB}$               | $C_s^{CSB}$            | $C_t^{CSB}$                                      |  |  |
| 500 | $4.691 \times 10^{-3}$ | $-9.294 \times 10^{-4}$   | $5.590 \times 10^{-3}$ | $-9.505 \times 10^{-4} \\ -1.260 \times 10^{-3}$ |  |  |
| 550 | $6.724 \times 10^{-3}$ | -8.625 × 10 <sup>-4</sup> | $6.863 \times 10^{-3}$ |                                                  |  |  |
| 600 | $9.960 \times 10^{-3}$ | $-9.870 \times 10^{-4}$   | $9.217 \times 10^{-3}$ | $-1.305 \times 10^{-3}$                          |  |  |
| 650 | $1.500 \times 10^{-2}$ | -1.142 × 10 <sup>-3</sup> | $1.240 \times 10^{-2}$ | $-1.395 \times 10^{-3}$                          |  |  |

The values of the LECs are in  $10^4 \text{ GeV}^{-2}$ 

- Problem: large experimental uncertainty of experiment
- here only fit to central values to test theoretical uncertainties



### **Prediction for** $\Lambda n$ **scattering**

- assuming the current experimental situation for  ${}^4_{\Lambda}H$  /  ${}^4_{\Lambda}He$
- without CSB:  $a_s^{\Lambda n} \approx 2.9 \ fm$  with CSB1:  $a_s^{\Lambda n} \approx 3.3 \ fm$
- improved description of  $\Lambda p$  data
- almost independent of cutoff & NLO variant
- CSB of triplet is smaller than of singlet

|            | $a_s^{\Lambda p}$ | $a_t^{\Lambda p}$ | $a_s^{\Lambda n}$ | $a_t^{\Lambda n}$ | $\chi^2(\Lambda p)$ | $\chi^2(\Sigma N)$ | $\chi^2(\text{total})$ |
|------------|-------------------|-------------------|-------------------|-------------------|---------------------|--------------------|------------------------|
| NLO13(500) | -2.604            | -1.647            | -3.267            | -1.561            | 4.47                | 12.13              | 16.60                  |
| NLO13(550) | -2.586            | -1.551            | -3.291            | -1.469            | 3.46                | 12.03              | 15.49                  |
| NLO13(600) | -2.588            | -1.573            | -3.291            | -1.487            | 3.43                | 12.38              | 15.81                  |
| NLO13(650) | -2.592            | -1.538            | -3.271            | -1.452            | 3.70                | 12.57              | 16.27                  |
| NLO19(500) | -2.649            | -1.580            | -3.202            | -1.467            | 3.51                | 14.69              | 18.20                  |
| NLO19(550) | -2.640            | -1.524            | -3.205            | -1.407            | 3.23                | 14.19              | 17.42                  |
| NLO19(600) | -2.632            | -1.473            | -3.227            | -1.362            | 3.45                | 12.68              | 16.13                  |
| NLO19(650) | -2.620            | -1.464            | -3.225            | -1.365            | 3.28                | 12.76              | 16.04                  |

An accurate prediction for the  $\Lambda n$  interaction is possible using hypernuclei! remeasurement of  $^{4}_{\Lambda}H$  excitation energy to match accuracy for  $^{4}_{\Lambda}He$ ? measurement of  $^{4}_{\Lambda}He$  ground state at J-PARC



for "CSB1": currently accepted experimental values

#### **Conclusions & Outlook**

- YN interactions not well understood
  - scarce YN data
  - more information necessary to solve "hyperon puzzle"
- Hypernuclei provide important constraints
  - CSB of  $\Lambda N$  scattering &  ${}^4_{\Lambda}\text{He}$  /  ${}^4_{\Lambda}\text{H}$
  - ${}^{3}_{\Lambda}$ H is used to constrain the spin dependence
  - new experiments planned at J-PARC, MAMI, J-Lab, FAIR,...
- New SMS YN interactions
  - give an accurate description low energy YN data
  - order LO, NLO and N<sup>2</sup>LO allow uncertainty quantification
  - have a non-unique determination of contact interactions (data necessary)
- Chiral 3BF need to be included
  - NLO uncertainty is sizable in A = 4 and 5
  - chiral 3BFs are formulated (Petschauer et al., (2016)) and the implementation is currently checked

